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The linear systems

In many cases we are not only interested in the solution of the linear
system

Ax = b (1)

but also of the adjoint system

AT y = g . (2)

Our aim is to solve both systems simultaneously!
This is an easy task when working with direct solvers, ie. LU factorisation

but for large-scale problems this is not always feasible.
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The scattering amplitude

In signal processing the scattering amplitude

gT x

has to be computed without looking for the approximation to x itself.
In optimization the scattering amplitude is sought for under the name of
primal linear output

Jpr (x) = gT x .
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A reformulation

Solving
Ax = b AT y = g

simultaneously can be reformulated as[
0 A

AT 0

] [
y
x

]
=

[
0 U
V 0

] [
0 BT

B 0

] [
0 V T

UT 0

] [
y
x

]
=

[
b
g

]
using the bidiagonal factorization

A = UBV T .

From above we get
UBV T x = b

and
VBTUT y = g .
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Residuals for forward and adjoint problem

We can now express the residuals of the adjoint and the forward problem
as

‖r‖2 =
∥∥BV T x − UTb

∥∥
2

and ‖s‖2 =
∥∥BTUT y − V Tg

∥∥
2
. (3)

Decomposition
A = UBV T

not feasible because the computational cost is high.
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An iterative procedure

Therefore, we use the following iterative instance [G.&Kahan’65] or
lsqr [Paige& Saunders’82]

AVk = Uk+1Bk

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1

(4)

where Vk = [v1, . . . , vk ] and Uk = [u1, . . . , uk ] are orthogonal matrices
and

Bk =


α1

β2 α2

β3
. . .
. . . αk

βk+1

 ∈ Rk+1,k .

The initial vectors of both sequences are linked by the relationship

ATu1 = α1v1. (5)
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The iterative residuals

Using the bidiagonalization we get

‖rk‖2 = ‖b − Axk‖2 = ‖‖r0‖ e1 − Bkzk‖2

with xk = x0 + Vkzk and

‖sk‖2 =
∥∥g − AT yk

∥∥
2

=
∥∥s0 − VkB

T
k wk − αk+1vk+1e

T
k+1wk

∥∥
2
.

with yk = y0 + Uk+1wk .

sk not in minres-like structure =⇒ lsqr approach fails for the
adjoint solution. The reason is the link between the starting vectors for
both sequences ATu1 = α1v1.
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A numerical example using lsqr

Example for random matrix with typical stagnation for adjoint problem.
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The glsqr approach

[Saunders, Simon, Yip’88] and [Reichel&Ye’07] introduce a Generalized
lsqr method where u1 and v1 can be chosen independently based on
the factorization

AVk = Uk+1Tk+1,k = UkTk,k + βk+1uk+1e
T
k

ATUk = Vk+1Sk+1,k = VkSk,k + ηk+1vk+1e
T
k

(6)

where
Vk = [v1, . . . , vk ] and Uk = [u1, . . . , uk ]

are orthogonal matrices and

Tk+1,k =


α1 γ1

β2 α2
. . .

. . .
. . . γk−1

βk αk

βk+1

 and Sk+1,k =


δ1 θ1

η2 δ2
. . .

. . .
. . . θk−1

ηk δk

ηk+1

 .
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Some remarks on glsqr

� It represents a special Block-Lanczos method.

� Starting vectors can be chosen such that u1 = r0/ ‖r0‖ and
v1 = s0/ ‖s0‖.

� Without breakdown (all breakdowns are lucky) we have ST
k,k = Tk,k .
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More on the Block-Lanczos
The block-tridiagonal matrix associated with glsqr is now

T =


M1 BT

1

B1 M2 BT
2

B2
. . .

. . .
. . .

. . .


where

Mi =

[
0 αi

αi 0

]
and Bi =

[
0 βi+1

γi 0

]
.

with an orthogonal matrix U = [U1,U2, · · · ] where UT
i Ui = I2.

Thus, one particular instance at step k of the reformulated method
reduces to

Uk+1Bk+1 =

[
0 A

AT 0

]
Uk − UkMk − Uk−1B

T
k−1
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Solutions from glsqr

With the choice of
u1 =

r0
‖r0‖

and v1 =
s0
‖s0‖

.

we get for the residuals

‖rk‖2 = ‖b − Axk‖2 = ‖‖r0‖ e1 − Tk+1,kzk‖2

and
‖sk‖2 =

∥∥g − AT yk

∥∥
2

= ‖‖s0‖ e1 − Sk+1,kwk‖2

with
xk = x0 + Vkzk and yk = y0 + Ukwk
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Preconditioning in glsqr

Introducing preconditioners we get

Â = M−1
1 AM−1

2 and ÂT = M−T
2 ATM−T

1 .

and can efficiently rewrite the glsqr method, ie.

βj+1pj+1 = Aq̂j − αjpj − γj−1pj−1

ηj+1qj+1 = AT p̂j − δjqj − θj−1qj−1.

with the following updates

q̂j = M−1
2 M−T

2 qj

and
p̂j = M−T

1 M−1
1 pj .
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Possible preconditioners

� Incomplete LU factorization with M1 = L and M2 = U.

� Since glsqr is a Block-Lanczos for ATA an Incomplete Cholesky
of ATA would be useful but numerically prohibitive.

� Instead, use Incomplete Orthogonal factorizations [Bai et al.’01,
Papadopoulos et al.’05] where we get

A = QR + E =⇒ ÂT Â = R−TATQQTAR−1 = R−TATAR−1

with M2 = R and M1 = Q and finally

M2 = R and M1 = I .
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The qmr method

The basis for qmr is the non-symmetric Lanczos

AVk = Vk+1Hk+1,k

ATWk = Wk+1Ĥk+1,k

gives the quasi-residual

rk = ‖r0‖ e1 − Hk+1,kyk and sk = ‖s0‖ e1 − Ĥk+1,kwk

with the choice of v1 = r0/ ‖r0‖ and w1 = s0/ ‖s0‖.

Weights can be introduced see [Lu, Darmofal’01].
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Formulation in terms of moments

Starting with the primal output Jpr (x) = gT x , we use x = A−1b and get

Jpr (x) = gTA−1b

which can be written as

Jpr (x) = gT (ATA)−1ATb = gT (ATA)−1p = gT f (ATA)p

with p = ATb. Equivalently,

Jpr (x) =
1

4

[
(p + g)T (ATA)−1(p + g)− (g − p)T (ATA)−1(g − p)

]
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A short course on Gauss quadrature
Using the eigendecomposition we see

ATA = QΛQT =⇒ f (ATA) = Qf (Λ)QT

and therefore
uT f (ATA)v = uTQf (Λ)QT v .

With α = QTu and β = QT v we obtain

uT f (ATA)v = αT f (Λ)β =
n∑

i=1

f (λi )αiβi .

The last Equation can be viewed as a Riemann-Stieltes integral if
αiβi ≥ 0

I [f ] = uT f (ATA)v =

∫ b

a

f (λ)dα(λ)

where the measure α is defined as follows

α(λ) =


0 if λ < a = λ1∑i

i=1 αiβi if λi < λ < λi+1∑n
i=1 αiβi if b = λn < λ
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A short course on Gauss quadrature ctd.

A numerical approximation via Gauss, Gauss-Radau or Gauss-Lobatto
quadrature formulas gives∫ b

a

f (λ)dα(λ) =
N∑

j=1

ωj f (tj) +
M∑

k=1

vk f (zk) + R [f ] ,

where the weights ωj , vk and the nodes tj are unknowns and the nodes
zk are prescribed and

R [f ] =
f (2N+M)(η)

(2N + M)!

∫ b

a

M∏
k=1

(λ− zk)

 N∏
j=1

(λ− tj)

2

dα(λ), a < η < b.
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A short course on Gauss quadrature ctd.

Use the Gauss rule and Lanczos process for ATA which is simply the
Golub-Kahan bidiagonalization process, ie.

ATAVN = VNTN + rNeT
N . (7)

The eigenvalues of of TN determine the nodes of∫ b

a

f (λ)dα(λ) =
N∑

j=1

ωj f (tj) + RG [f ] ,

where

RG [f ] =
f (2N)(η)

(2N)!

∫ b

a

 N∏
j=1

(λ− tj)

2

dα(λ).

The weights for the Gauss rule are given by the squares of the first
elements of the normalized eigenvectors of TN .
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A short course on Gauss quadrature ctd.

BUT we don’t have to compute eigenvalues of TN since

N∑
j=1

ωj f (tj) = eT
1 f (TN)e1

which in our case reduces to

eT
1 T−1

N e1

and even better we can compute bounds on the elements of the inverse
using Gauss, Gauss-Radau, Gauss-Lobatto rules, e.g. from the
Gauss-Radau rule we get

t1,1 − b +
s2
1

b

t2
1,1 − t1,1b + s2

1

≤ (T−1
N )1,1 ≤

t1,1 − a +
s2
1

a

t2
1,1 − t1,1a + s2

1

with ti,j elements of TN and s2
1 =

∑
j 6=1 a2

j1.
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Gauss quadrature and the Block-Lanczos∫ b

a
f (λ)dα(λ) is a 2× 2 symmetric matrix and a quadrature formula is of

the form ∫ b

a

f (λ)dα(λ) =
N∑

i=1

Wj f (Tj)Wj + error (8)

with Tj and Wj being symmetric 2× 2 matrices. Equation 8 can be
simplified using

Tj = QjΛjQ
T
j

is an eigendecomposition of Tj and

N∑
i=1

WjQ
T
j f (Λj)QjWj .

In terms of orthogonal matrix polynomials we get

λpj−1(λ) = pj(λ)Bj + pj−1(λ)Mj + pj−2(λ)BT
j−1

with p0(λ) = I2 and p−1(λ) = 0.
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Gauss quadrature and the Block-Lanczos
Therefore,

λ [p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)] TN + [0, . . . , 0, pN(λ)BN ]T

with

TN =


M1 BT

1

B1 M2 BT
2

. . .
. . .

. . .

BN−2 MN−1 BT
N−1

BN−1 MN


which is a block-triangular matrix. Therefore, we can define the
quadrature rule as∫ b

a

f (λ)dα(λ) =
2N∑
i=1

f (λi )uiu
T
i + error (9)

where 2N is the order of the matrix TN , λi an eigenvalue of TN and ui is
the vector consisting of the first two elements of the corresponding
normalized eigenvector.
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Block-Lanczos, glsqr and the scattering amplitude

This block method can now be used to estimate the scattering amplitude
using glsqr . The 2× 2 matrix integral we are interested in is now∫ b

a
f (λ)dα(λ) =[

0 gT

bT 0

] [
0 A−T

A−1 0

] [
0 b
g 0

]
=

[
0 gTA−1b

bTA−Tg 0

]
.

This can be approximated if a Block-Lanczos for[
0 AT

A 0

]
is given.

Which is what glsqr does!
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Preconditioned Gauss quadrature

glsqr gives approximation to[
0 gTA−1b

bTA−Tg 0

]
.

Reformulating this in terms of the preconditioned method gives,

ĝT x̂ = ĝT Â−1b̂

= (M−T
2 g)T (M−1

1 AM−1
2 )−1(M−1

1 b)
= gTM−1

2 M2A
−1M1M

−1
1 b

= gTA−1b
= gT x

which shows that the natural choice of the preconditioned residuals in the
preconditioned glsqr gives an approximation for the scattering
amplitude.
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A random example

A=sprandn(n,n,0.2)+speye(n);
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A matrix market example

Here the matrix orsirr 1.mtx was used without preconditioning.
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A matrix market example-preconditioned

Matrix orsirr 1.mtx was used with ILU preconditioning.
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An almost orthogonal matrix
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Approximating the scattering amplitude
Preconditioned lsqr for Matrix orsirr 1.mtx
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Approximating the scattering amplitude
lsqr for 187× 187 Navier-Stokes
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Conclusions

� We illustrated how glsqr can be used to compute the solution to
the forward and the backward system simultaneously.

� We introduced preconditioning for glsqr
� We approximated the scattering amplitude directly using Gauss

quadrature and the connection to the Golub-Kahan bidiagonalization

� We illustrated how the interpretation of glsqr as a Block-Lanczos
method can help to approximate the scattering amplitude using the
block version of Gauss quadrature.

� We introduced preconditioning for the Block-Gauss quadrature and
glsqr

We would like to thank James Lu, Michael Saunders and Gerard Meurant
for many helpful comments.
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