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Introduction

The linear systems

In many cases we are not only interested in the solution of the linear

system
Ax = b (1)

but also of the adjoint system

ATy =g. (2)

Our aim is to solve both systems simultaneously!
This is an easy task when working with direct solvers, ie. LU factorisation
but for large-scale problems this is not always feasible.
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The scattering amplitude

In signal processing the scattering amplitude
g'x

has to be computed without looking for the approximation to x itself.
In optimization the scattering amplitude is sought for under the name of

primal linear output
JP(x) =g"x.
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A reformulation

Solving
Ax=b ATy =g

simultaneously can be reformulated as

Lol =1v el S Lo 1] =]

using the bidiagonal factorization

A= UBVT.
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A reformulation

Solving
Ax=b ATy =g

simultaneously can be reformulated as

Lol =1v el S Lo 1] =]

using the bidiagonal factorization

A= UBVT.
From above we get
UBVTx=b
and
VBTUTy =g.
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Residuals for forward and adjoint problem

We can now express the residuals of the adjoint and the forward problem
as

Irll, =BV x—UTb|, and s, =B Uy —V'g|,. (3)
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Residuals for forward and adjoint problem

We can now express the residuals of the adjoint and the forward problem
as

Irll, =BV x—UTb|, and s, =B Uy —V'g|,. (3)

Decomposition
A=UBVT

not feasible because the computational cost is high.
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An iterative procedure

Therefore, we use the following iterative instance [G.&Kahan'65] or
LSQR [Paige& Saunders'82]

AV, = Uky1Bx
ATUir = WUiB] + assaviriel

(4)

where Vi = [v1,...,v] and U = [u1, ..., uk] are orthogonal matrices

and
aq

Bo

By = 53 . c Rk+1’k.

ak
/8k+1

The initial vectors of both sequences are linked by the relationship

ATU1 = 1 V. (5)
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The iterative residuals

Using the bidiagonalization we get
[riclly = 16— Axkll, = [[liroll &1 — Brz |,
with x, = xg + Viz, and
lIskll, = ||& — ATYkH2 = |lso — Vi B{ wic — Oék+1Vk+1ekT+1WkH2-

with yi = yo + U1 wi.
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The iterative residuals

Using the bidiagonalization we get
[kl = 16— Axll, = llllroll €1 — Biezill,
with x, = xg + Viz, and
Isill, = [l& - ATYkHz = |lso = VaB{ wi — ak+1Vk+1ekT+1WkH2-
with yi = yo + U1 wi.
sk not in MINRES-like structure = LSQR approach fails for the

adjoint solution. The reason is the link between the starting vectors for
both sequences AT u; = aqvy.
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A numerical example using LsQr

2-norm of the residual

2
10 ! I ! I 1 I I L L
0 10 20 30 40 50 60 70 80 90 100

Iterations

Example for random matrix with typical stagnation for adjoint problem.
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The cLsqQr approach

[Saunders, Simon, Yip'88] and [Reichel&Ye'07] introduce a Generalized
LSQR method where u; and vy can be chosen independently based on
the factorization

AV = UkiiTarik = UcTik + Brrtukrre) (6)
ATUc = VigaSkrik = VieSik + Mirivisrel

where
Vk:[Vl,...7Vk] and UkZ [u17...,uk]

are orthogonal matrices and

ar m o O
B az - m 02
Tit1,k = o and Syy1k = S G
Bk ak M Ok
Br+1 Mk+1
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Some remarks on GLSQR

o |t represents a special Block-Lanczos method.
e Starting vectors can be chosen such that u; = ro/ ||ro|| and
vi = so/ [[oll-
e Without breakdown (all breakdowns are lucky) we have S, = Tj x.
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More on the Block-Lanczos
The block-tridiagonal matrix associated with GLSQR is now

M, BT
B, M, B

where

I I e | 0 Bin
M’[a; O}andB,{fw 0 }

with an orthogonal matrix U = [Uy,Ua, - - -] where UTU; = 1.

Thus, one particular instance at step k of the reformulated method
reduces to

0 A
Up+1Biy1 = { AT 0 }Uk — UMy — Uy 1B/,
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Solutions from aLsQr

With the choice of

ulziand Vi = ——.
[[roll [[soll

we get for the residuals
Il = 16— Axll, = [[lIroll € = Thesn,kzkll,

and
||5k||2 = Hg - ATYkH2 = ||||50|| € — 5k+17kaH2
with
Xk = Xo + Vizi and yi = yo + Ukwi
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Preconditioning in cLsqQr

Introducing preconditioners we get
A= M'AM;  and AT = M; TATM T

and can efficiently rewrite the GLSQR method, ie.

Bi+1pjr1 = A‘;?_j — Qjpj = Yj-1Pj-1
Ni+19541 = A pj—0;q; —bj_1gj-1.

with the following updates
g =My "My g

and
pj =My M p;.
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Possible preconditioners

e Incomplete LU factorization with M; = L and M, = U.

e Since GLSQR is a Block-Lanczos for AT A an Incomplete Cholesky
of AT A would be useful but numerically prohibitive.

e Instead, use Incomplete Orthogonal factorizations [Bai et al.’01,
Papadopoulos et al.'05] where we get

A=QR+E=—=ATA=R TATQQTAR ' =R TATAR!
with M, = R and M; = Q and finally

l\/lg:Randl\/h:/.
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The gmr method

The basis for QMR is the non-symmetric Lanczos

AV = VirrHiiak
ATWi = WigiHigak

gives the quasi-residual
e = |Iroll €1 — i1 kv and sk = ||sol| €1 — Hir1xwi

with the choice of v; = ry/ ||| and wy = s/ ||s0]|-

Weights can be introduced see [Lu, Darmofal’01].
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Formulation in terms of moments

Starting with the primal output JP"(x) = g x, we use x = A~1b and get
JPr(x)=g"A™lb
which can be written as
P (x) =g (ATA)'ATb =g (ATA)'p =g (AT A)p

with p = AT b. Equivalently,

0= 7 [(p+8) (ATA) (o +8) ~ (& — ) (ATA) (g — p)]
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A short course on Gauss quadrature
Using the eigendecomposition we see
ATA=QAQT = f(ATA) = QF(NQT
and therefore
uTF(ATAW = u" QF(N)QTv.
With @ = QT w and 8 = Q7 v we obtain

uTF(AT A = aTF(NB =D F(A)aif;.
i=1

The last Equation can be viewed as a Riemann-Stieltes integral if
a3 >0
b
I[f]=u" f(ATA)v :/ f(\)da(N)
where the measure « is defined as follows
0 ' fA<a=X\
a(N) =1 Y aifi ifA <A< A
27:1 a,ﬂ; ifb=X, <A
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A short course on Gauss quadrature ctd.

A numerical approximation via Gauss, Gauss-Radau or Gauss-Lobatto
quadrature formulas gives

b N M
/ Fda() = Y wif(5) + 3 vif (@) + RIf,

where the weights w;, vk and the nodes t; are unknowns and the nodes
zi are prescribed and

2
FN+M)(n) N

R[f]= —— A j]:[l(Arj) da()), a<n<b.
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A short course on Gauss quadrature ctd.

Use the Gauss rule and Lanczos process for AT A which is simply the
Golub-Kahan bidiagonalization process, ie.

ATAVN = VyTn + rved.

The eigenvalues of of Ty determine the nodes of

| FNda() = 3o wif(6) + Ralf],
where

(A= 1)| da(n).

J

Re [f] = et /

(2N)! L

The weights for the Gauss rule are given by the squares of the first
elements of the normalized eigenvectors of Ty.
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A short course on Gauss quadrature ctd.

BUT we don't have to compute eigenvalues of Ty since
N
>_wif(t) = el f(Tw)er
j=1

which in our case reduces to
elT T,\71e1

and even better we can compute bounds on the elements of the inverse
using Gauss, Gauss-Radau, Gauss-Lobatto rules, e.g. from the
Gauss-Radau rule we get

52
tin—a+ =

2 2
t171 —ti1a+ s

52
tin—b+ ¢

-5 < T7111§
tlz,l—t1’1b+512 ( N )7

with t; ; elements of Ty and sf =3, a.
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Gauss quadrature and the Block-Lanczos

f f(A ) is a 2 x 2 symmetric matrix and a quadrature formula is of
the form

b
/ ANda(A) = Z W;f(T; )W, + error (8)

with T; and W, being symmetric 2 X 2 matrices. Equation 8 can be
simplified using

T = QNG

is an eigendecomposition of T; and

N
> W QT F(M)QW,
i=1
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Gauss quadrature and the Block-Lanczos

fab f(A)da()) is a 2 X 2 symmetric matrix and a quadrature formula is of
the form

b
/ ANda(A) = Z W;f(T; )W, + error (8)

with T; and W, being symmetric 2 X 2 matrices. Equation 8 can be
simplified using

T = QNQS

is an eigendecomposition of T; and

N
> WQTF(A)QW,
i=1

In terms of orthogonal matrix polynomials we get

Ap-1(A) = pi(N)B) + pi-1(MM; + pj—2(\) B} 4

i
with po(A) = k and p_1(A) = 0.
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Gauss quadrature and the Block-Lanczos

Therefore,

Moo, - -, pu—1(N)] = [po(A), -, Pv—1(N)] T + [0, .., 0, pu(N) Bu] "

with

M, Bf

B M, BJ

Iy = ' -

Bn-2 My_1 Bj_,
By-1 My

which is a block-triangular matrix. Therefore, we can define the
quadrature rule as

2N

/b f(N)da(N) = Z f(\)uiu] + error (9)

i=1

where 2/ is the order of the matrix 7y, A; an eigenvalue of 7y and u; is
the vector consisting of the first two elements of the corresponding
normalized eigenvector.
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Block-Lanczos, cLsqQr and the scattering amplitude

This block method can now be used to estimate the scattering amplitude
using GLSQR . The 2 x 2 matrix integral we are interested in is now

J2F(Nda()) =

0 g’ 0o AT 0 b _ 0 gTA b
bT 0 || AT 0 g 0| | bTATg 0 |

This can be approximated if a Block-Lanczos for

bl

is given.
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Block-Lanczos, cLsqQr and the scattering amplitude

This block method can now be used to estimate the scattering amplitude
using GLSQR . The 2 x 2 matrix integral we are interested in is now

J2F(Nda()) =

0 g’ 0o AT 0 b _ 0 gTA b
bT 0 || AT 0 g 0| | bTATg 0 |

This can be approximated if a Block-Lanczos for

bl

is given. Which is what GLSQR does!
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Preconditioned Gauss quadrature

GLSQR gives approximation to

0 gTA b
bTA-Tg 0 |

Reformulating this in terms of the preconditioned method gives,

gT)f% _ g.TA—lZ)

(My "g)T (M *AM; )~ (M b)
g My Mo AT My M b

gTA b

= gTX

which shows that the natural choice of the preconditioned residuals in the
preconditioned GLSQR gives an approximation for the scattering
amplitude.
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A random example

E]
o
8
210"} -
5 B
e -
o
5
=== QMR forward
107+ — QMR adjoint
~~~GLSQR forward
" GLSQR adjoint

2
! L L L

R

10 20 30 40

50 60 70 80 90

100

Iterations

A=sprandn(n,n,0.2)+speye(n);
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A matrix market example

E
b=
8
2
k]
£
s
5\: | GLSQR forward
10F --"GLSQR adjoint
~=-QMR forward
" —QMR adjoint
107
10'3 L L 1 L 1 L 1 L 1
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Here the matrix orsirr_1.mtx was used without preconditioning.
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A matrix market example-preconditioned

2-norm of the residual

==~ QMR forward

— QMR adjoint

~=~GLSQR forward
GLSQR adjoint

0 50 100 150

Iterations

300 350 400

Matrix orsirr_1.mtx was used with ILU preconditioning.
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An almost orthogonal matrix

o

-~~~ QMR adjoint
QMR forward

GLSQR forward
GLSQR adjoint

2-norm of the residual

10 20 30 40 50 60 70 80 90 100
Iterations
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Approximating the scattering amplitude
Preconditioned LSQR. for Matrix orsirr_1.mtx

T T
s 10° ==-Scattering amplitude H
g = jitioned GLSQR appr
S —
s
S
§ . i |
5 10
£
S
=
. . . . . . I .
20 40 80 80 100 120 140 160
Iterations

10° : - ; ;
- Approximation error
5
£ 4
g 10
ks
£10° *
s
=z

10 o L L 1 L L L

50 100 150 200 250 300 350
Iterations
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Approximating the scattering amplitude
LSQR for 187 x 187 Navier-Stokes

Norm of approximation
3
e
—
-
—

L L L I

L
10 20 30 40 50 60 70 80 90

Iterations
10° : ‘ . : . : ; ;
5 — Approximation error
510 [ 1
£
ks
E10° F *
s
=z
10 o Il L I L I I L L
0 10 20 30 40 50 60 70 80 90
Iterations
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Conclusions

e We illustrated how GLSQR can be used to compute the solution to
the forward and the backward system simultaneously.

e We introduced preconditioning for GLSQR

e We approximated the scattering amplitude directly using Gauss
quadrature and the connection to the Golub-Kahan bidiagonalization

e We illustrated how the interpretation of GLSQR as a Block-Lanczos
method can help to approximate the scattering amplitude using the
block version of Gauss quadrature.

e We introduced preconditioning for the Block-Gauss quadrature and
GLSQR

We would like to thank James Lu, Michael Saunders and Gerard Meurant
for many helpful comments.
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