A hierarchical preconditioner for Stokes and connected problems

M. Fortin, A. Elmaliki

October 23, 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Problem

- Our goal is to solve large 3D incompressible elasticity problems. In practice, this will mean some form of the Mooney-Rivlin model. We will also want to introduce contact.
- We use tetrahedra for ease of generation and for mesh adaptation methods
- The choice of elements for 3D incompressible materials is limited.

ション ふゆ く は マ く ほ マ く し マ

- 1. MINI
- 2. SMALL
- 3. Taylor -Hood $P_2 P_1$.

What should we choose? Let us try to compare the cost of each of them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To do so, let us consider a mesh of n^2 cubes subdivided into 6 tetrahedra. For *n* large we have approximately

- *n*² vertices,
- 6*n*2 tetrahedra,
- $7n^2$ edges
- 12*n*² faces.

Let us compare our elements

Figure: MINI

We have 3 n^2 displacement d.o.f. (+ 18 n^2 internal nodes)+ n^2 pressure d.o.f. For contact problems, MINI produces bad contact pressure.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Figure: SMALL

We have 3 n^2 + 12 n^2 displacement d.o.f + 6 n^2 pressure d.o.f.for a total of 21 n^2 This is much for a first order element

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Taylor-Hood

We have 3 $n^2 + 3x7n^2$ displacement + n^2 pressure d.o.f. for a total of 25 n^2 . But we have a second order element.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Goal

We choose the Taylor-Hood element

- We want a fast and simple solver for the $P_2 P_1$ Taylor-Hood element.
- The key will be the hierarchical basis for P_2
- The rest will be a pile of preconditiners and Krylov subspaces methods.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Hierarchical basis for P_2

The idea is simple.

- Instead of using the standard Lagrange basis, we use the basis of *P*₁, associated to vertices.
- We add the shape functions associated with edges. Their coefficient now represents a correction to the value of the linear approximation.
- This is a standard idea which has been employed in hierarchical error estimation.
- We can write

$$P_2=P_1\oplus C_2$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

For a standard elliptic problem,

$$a(u,v) - \langle f, v \rangle \forall v \in P_2,$$

the associated matrix can be written as

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
(1)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Matrix A₁₁ is the matrix for the P₁ element. It is about 7 times smaller than A
- Matrix A₂₂ has an O(1) condition number.

If we have a good (approximate) solver for A_{11} , we can think of solving the global problem

$$Au = F$$

by a sequence of simpler ones

- Solve (approximately) $A_{11}u_1^{k+1} = F_1 A_{12}u_2^k$
- Solve (approximately) $A_{22}u_2^{k+1} = F_2 A_{21}u_1^{k+1}$ This can be seen as a block SOR method. solution in u_2 can be done through a few iterations of SOR or CG.
- We shall rather write this as a preconditioner. We also want to preserve symmetry.

ション ふゆ く は マ く ほ マ く し マ

Preconditioner form

To recover symmetry, we do a block SSOR sweep

- Solve (approximately) $A_{11}\delta_0 u_1 = F_1 A_{12}u_2^k A_{11}u_1^k = r_1^k$
- Solve (approximately) $A_{22}\delta u_2 = F_2 - A_{21}u_1^k - A_{22}u_2^k - A_{21}\delta_0u_1 = r_2^k - A_{21}\delta_0u_1$

ション ふゆ く は マ く ほ マ く し マ

• Solve (approximately) $A_{11}\delta u_1 = r_1^k - A_{11}\delta_0 u_1 - A_{12}\delta u_2$

This can be fed to a standard CG method

Solving the P_1 part

- This depends on the size of the problem and your cleverness. We can think of,
 - 1. A direct solver if the problem is not too large.
 - 2. A multigrid solver if you are clever.
 - 3. A few iterations of an IC-CG,
 - 4. Or whatever...
- Our own choice was IC-CG, directly available in PetSc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The direct solver was used as a comparison.

A test problem

Figure: A simple elasticity problem

・ロト ・個ト ・モト ・モト

æ

Some sketchy results

• When using the method as a solver: 27 iterations (42 seconds).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- As a preconditioner: 14 iterations (22 seconds).
- The same behaviour was obtained on other problems.

Saddle-Point Problems

• We now consider a problem of the standard mixed form

$$\begin{pmatrix} A & B^t \\ B & 0 \end{pmatrix} = \begin{pmatrix} F \\ G \end{pmatrix}$$
(2)

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- This can be the Stokes problem but we shall also consider the case of contact problems.
- The standard preconditioner is based on the factorisation of the matrix

$$\begin{pmatrix} A & B^{t} \\ B & 0 \end{pmatrix} = \begin{pmatrix} A & 0 \\ B & -S \end{pmatrix} \begin{pmatrix} I & A^{-1}B^{t} \\ 0 & I \end{pmatrix}$$
(3)

• $S = BA^{-1}B^t$

To get a preconditioner

- Approximate A by \hat{A}
- Approximate S. For Stokes, the (lumped ?) mass matrix M is appropriate as S is an operator of order 0.
- If $\hat{A} = A$ this is Uzawa's Method.
- Changing A into $A_r = A + rB^tB$ improves the condition number of the dual but makes the primal problem bad.
- This is equivalent to the method of Arrow-Hurwicz. This attacks the saddle-point by alternating minimisation in *u* and maximisation in *p*

ション ふゆ く 山 マ チャット しょうくしゃ

The method of Arrow-Hurwicz

1. Initialisation: Let p_k and u_k be given,

2. Compute

$$u_{k+1} = u_k + \rho_u \hat{A}^{-1} (F - A u_k - B^t p_k) = u_k - \rho_u \hat{A}^{-1} r_u \quad (4)$$

$$p_{k+1} = p_k + \rho_p M^{-1} (Bu_{k+1} - G)$$
(5)

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

This is not symmetric. To recover symmetry, we solve again in u. Experience shows that there is an optimal ratio ρ_p/ρ_u .

Arrow-Hurwicz-Preconditioner Form

• Let $r_u = Au + B^t p - F$ and $r_p = Bu - G$

• Solve,

$$\delta_0 u = \hat{A}^{-1} (f - Au_k - B^t p_k) = -\rho_u \hat{A}^{-1} r_u$$

$$\delta p = \alpha M^{-1} (r_p + B\delta_0 u)$$

$$\delta u = -\hat{A}^{-1} (r_u - A\delta_0 u - B^t \delta p)$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We use αM , with $\alpha = ?$

A numerical example

Figure: Cylinder

- Mesh 1(1959 elements) A-H+GCR:21 iteration(0.99 seconds), Uzawa: 18
- Mesh 2(7836 elements) A-H+GCR 20 iterations (4.1seconds) Uzawa:18 iterations (7.9 seconds)
- The number of iterations behaves well and also the time

A 3D example

Figure: 3D obstacle

Figure: Mesh 1 (\Box) (\Box) (

Results

We introduced a penalty term in integral form. Obviously, r must remain small.

- On mesh 1 (9067 elements) Uzawa 32 iterations (273.18s) with r = 0, 21 iterations (243.22s) with r = 5
- A-H +GCR) 35 iterations (25.95) with r = 0 , 25 iterations (18.41s) with r = 5
- On mesh 2, (72536 elements) 38 iterations (276.61s) with r = 0, 28 iterations (204.64s) with r = 5

ション ふゆ アメリア メリア しょうくの

Contact Problems

A simple case: an elastic body Ω in contact with a rigid surface S.

Figure: An elastic body on a rigid surface

- The precise formulation of the elastic part is irrelevant and we shall consider a generic case. In practice, we will have to deal with a non linear material.
- The real problem is 3D.

Sliding Contact

- We first consider the sliding case. We denote by $d(\cdot)$ the distance of Ω to S.
- d(x) is computed by projecting the point x of Ω on S.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- $d(\cdot)$ is a non linear function.
- The constraint is d(x) ≥ 0. The bodies must not interpenetrate.
- Thus if v is the displacement of Ω and J(v) an elastic energy functional, we want to solve,

$$\inf_{d(v)\geq 0} J(v) \tag{7}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Contact Pressure

• We introduce a Lagrange multiplier for the constraint,

$$\inf_{v} \sup_{\lambda_n \ge 0} J(v) + < \lambda_n, d(v) > .$$
(8)

• The optimality conditions are then

$$< A(u)u - F, v > + < \lambda_n, v \cdot n > = 0 \ \forall v$$
(9)

$$< d(u), \mu > \geq 0 \quad \forall \mu \geq 0.$$
 (10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We have standard Kuhn-Tucker conditions :

$$\lambda_n \geq 0, \ d(u) \geq 0, < d(u), \lambda_n >= 0. \tag{11}$$

Linearised Problem

- This is a non linear inequality problem which we solve by a Newton's method (SQP).
- We temporarily fix the normal but this should also be linearised.
- Defining $g_0^n = d(u_0)$ for the initial configuration u_0 , we get,

$$\begin{cases} < A'(u_0)\delta u, v > + < \lambda_n, v \cdot n > = < F - Au_0, v > \forall v, \\ < g_0^n - \delta u \cdot n, \phi > \ge 0 \quad \forall \phi \ge 0. \end{cases}$$

We notice that this is an inequation problem for which we must use a suitable algorithm. Once it is solved, we update the configuration, compute a new gap and iterate to convergence

Conjugate Projected Gradient

Figure: Conjugate projected gradient

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dual form

 In our applications, the CPG algorithm will be applied to a dual problem of the form,

$$\inf_{\lambda} (K\lambda, \lambda) - (BA^{-1}F, \lambda) - (G, \lambda),$$
(12)

where

$$K = BA^{-1}B^t \tag{13}$$

 The gradient in λ, at some point λ_k, is conveniently computed by solving

$$Au_k = F - B^t \lambda_k \tag{14}$$

ション ふゆ アメリア メリア しょうくの

and then computing, $g_k - Bu_k - G$.

CPG for Sliding Contact

- The gradient is $g = B_n u G_n$ where the matrix B_n is defined as previously
- In the simplest form, the projected gradient is computed component wise

$$\left\{ \begin{array}{ll} Pg_i = g_i \quad \mathrm{if} \quad \lambda_i > 0, \\ Pg_i = g_i \quad \mathrm{if} \quad \lambda_i = 0 \quad \mathrm{and} \quad g_i \ge 0, \\ Pg_i = 0 \quad \mathrm{if} \quad \lambda_i = 0 \quad \mathrm{and} \quad g_i < 0. \end{array} \right.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Remarks

- $K = BA^{-1}B^t$ is now a first order operator and convergence will depend on h but also on the shape of elements. With conjugation, we have \sqrt{h} which is not so bad...
- Preconditioning with penalty is not very convenient for the contact points change while iterating, which would imply changing the matrix.
- It is not obvious to get a good approximation of $K = BA^{-1}B^t$. T
- The minimum is *S* = *M*, that is the mass matrix. Experience shows that this cures the dependency on the shape of elements. But obviously we still have a dependency on mesh size. Moreover, the projection becomes more difficult.

Projection of the gradient

• We suppose that *M* is some approximation to *K*. To project the gradient, we now have to solve

$$\inf_{d_i \ge 0, i \in AS} \frac{1}{2} < Md, d > - < g, d >$$

$$(15)$$

ション ふゆ アメリア メリア しょうくの

- AS is the active set. We have $i \in AS$, If $\lambda_i = 0$
- This is local only if *M* is diagonal.
- For a non diagonal *M*, we may use a CPG. This is a small problem.

Arrow-Hurwicz with projection-Preconditioner Form

• Let $r_u = Au + B^t p - F$ and $r_p = Bu - G$

Solve,

$$\delta_{0}u = \hat{A}^{-1}(f - Au_{k} - B^{t}p_{k}) = -\rho_{u}\hat{A}^{-1}r_{u}$$

$$\delta p = \alpha P_{M}(r_{p} + B\delta_{0}u) \qquad (16)$$

$$\delta u = -\hat{A}^{-1}(r_{u} - A\delta_{0}u - B^{t}\delta p)$$

ション ふゆ アメリア メリア しょうくの

 We would need a ProjectedMinres. The solve and project strategy should be easy to implant. Anybody has experience with this?

The real problem : choosing M

- Any idea better than the mass matrix?
- Would an IC factorisation of the P₁ part be better?
- Even with the mass matrix, there should be a gain with respect to the present method.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Nested iterations

- This also contains a lot of nested iterations.
- Should we have the iteration on internal pressure at the same level as that for the contact pressure?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Frictional contact

The displacement method presented Monday relies on unconstrained or unilateral saddle-point problems, for instance

$$\begin{cases} < A'\phi, v > +\frac{1}{\epsilon} < C\phi_T, v_T >_{\Gamma} + <\gamma, v \cdot n >_{\Gamma} = < d^k, v \cdot n >_{\Gamma} \\ \phi \cdot n \le 0, \\ \gamma \ge 0, \\ \gamma(\phi \cdot n) = 0. \end{cases}$$

(17)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion and Perspective

• This is a promising avenue for large scale industrial problems.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- There is room for new ideas for preconditioning.
- There is also another iteration on the threshold...