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A motivating example — The Bramble-Pasciak CG: consider
saddle point problem

A BT . . A9 O
A = [ B _C ] with preconditioner P = [ B _71 ]
The (left) preconditioned matrix
~ 1. AjtA A 'BT
A=P A_[BAglA—B BA,'BT +C

IS not symmetric but is self-adjoint and positive definite
when

[A—A4y O
e[

defines an inner product (x, y)# := T Hy

= CG can be used in this inner product
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Conjugate Gradient Method (Hestenes & Stiefel (1952))
for Az = b, A self-adjoint and positive definite in S E

Choose zp, compute ro = b — Axg, Set pg = 1o
for k = 0 until convergence do

ar = (Tk, Tk)H/(ADPk> Pk)H

Tp+1 = Tk + Qg Pk

Tk+1 = Tk — o Apg
< Test for convergence >

Bk = (Tkt1, Tk+1)H/{Tks Tk)H
Pk+1 = Tk+1 + BrPk
enddo

computes iterates {x; } such that
(A(x — z1), & — )y = (T — T, T — Tk) a2

IS minimal in the relevant Krylov subspace



Self-adjointness. assume
() :R" X R" - R
IS a symmetric bilinear form or an inner product
A € R*"*™ |s self-adjoint in (-, -) iff
(Azx,y) = (x, Ay) for all x, y

Self-adjointness of Ain (-, Y% ({x,y)x = T Hy)
thus means

o' A"Hy = (Az,y)n = (=, Ay)n = =" HAy

forall z,y =
A'H = HA

Is the relation for self-adjointness of A in (-, -)x
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Basic properties:

LEMMA If A; and A, are self-adjoint in (-, -)3; then for
any o, 3 € R, a.A; + BA3 Is self-adjoint in (-, <)%
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Basic properties:

LEMMA If A; and A, are self-adjoint in (-, -)3; then for
any o, 3 € R, a.A; + BA3 Is self-adjoint in (-, <)%

LEMMA If Ais self-adjoint in (-, -2, and in {-, -}, then
A is self-adjoint in (-, -) o7, +8#, fOr every a, 3 € R

and of relevance when preconditioning:

LEMMA For symmetric A, A = P~1Ais self-adjoint in
(-, )3 if and only if P~TH is self-adjoint in (-, -) 4

PROOF
P Tr)yTA=HP A= (P tATH = AT (P TH)
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also combining the above:

LEMMA If P; and P5 are left preconditioners for the
symmetric matrix A for which symmetric matrices H, and

H, exist with P; 1A self-adjoint in (-, -)%, and P, 1A
self-adjoint in (-, -}, and if for any a, 3

aP; Hy 4 BP; T Ha = Py T H;
for some matrix P3 and some symmetric matrix Hs then

P; LA is self-adjoint in (-, -),.

shows that if we can find such a splitting we have found a
new preconditioner and a bilinear form in which the matrix
IS self-adjoint.
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Eigenvalues when A self-adjoint in (-, <) 4:

Ax = Az, x #£0
Multiplying from the left by x*H gives
*HAx = Ax™Hx
and HA = AT"H =X eR
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Eigenvalues when A self-adjoint in (-, <) 4:
Axr = Az, x #£0
Multiplying from the left by x*H gives
r*HAx = Ax*Hx
and HA=ATH=XeR

There is no symmetric bilinear form in which A is self-adjoint

unless A has real eigenvalues.
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LEMMA If A= R~!'ARis a diagonalization of .4 with the
diagonal matrix A of eigenvalues being real, then A is
self-adjoint in {-, -} prgg for any real diagonal matrix ©.

PROOF self-adjointness of A in (-, )y =
R'AR"H =HR 'AR
clearly satisfied for H = R ® R whenever © is diagonal

because then ® and A commute.

We remark that this result is not of great use in practice
since knowledge of the complete eigensystem of A is
somewhat prohibitive.
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Self-adjointness for saddle point systems:

A BT
A:_B 0]

General preconditioner

gives

A p-ig— [XA—|—YTB XBT]

ZA+WB ZB7T
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For self-adjointness of

~ 1. | XA+YTB XB?
A=P A_[ZA+WB zBT
In
E FT
<.7.>H7 H_[F G]

we require

AXT + BYT AzT + BTwT E FT
BXxT BZzZT F G

E FT XA+YTB XBT
F G ZA+WB ZzZB7T
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Examples: Bramble-Pasciak CG (Bramble & Pasciak (1988))
widely used CG technique with preconditioner

1 [ Azt o0
P _[BAgl —I

and inner product matrix

[A—A4y O
e
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Examples: Bramble-Pasciak CG (Bramble & Pasciak (1988))
widely used CG technique with preconditioner

1 [ Azt o0
P _[BAgl —I

and inner product matrix

[A—A4y O
e

main drawback: requires
Ag < A

Involves the computation of an eigenvalue problem in the
worst case!

Denote: BP—
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Examples: BP with Schur complement preconditioner
(Klawonn (1998), Meyer et al. (2001), Simoncini (2001))

Agt 0
= [t &
S, 'BA;' -85

Inner product:

S [A—-Ay O
e
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Examples: Zulehner (zulehner (2001), Schoberl & Zulehner (2007)

o _ [ Ao BT B I 0][Ay BT
| B BA;'BT —S, |~ | BA,;" T]| 0 —So
gives P~ 1A self-adjoint in (-, -)4,
Ag— A 0
= 0 BA;'BT — 5, ]

if Ao > Aand Sy < BA,'BT
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Examples: Benzi-Simoncini (Benzi and Simoncini (2006))
extension of CG method of Fischer, Ramage, Silvester & W (1998)

4 [1 o
P =0

iInner product:

o T
H:[A ~I B ]

B ~1

Extension for C' # 0 (Liesen (2006), Liesen & Parlett (2007)):

. T
H:[A ~I B ]

B ~I — C
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Example: Bramble-Pasciak™ method (Stoll & W(2007))

1 [ Azt o
P= BA ! T
and inner product
B A+ Ag O
=T

Note: H defines an inner product for any symmetric and
positive definite preconditioner Ay
= can always apply Lanczos, MINRES in this inner product
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Example: Bramble-Pasciak™ method (Stoll & W(2007))

1 [ Azt o
P= BA ! T
and inner product
B A+ Ag O
=T

Note: H defines an inner product for any symmetric and
positive definite preconditioner Ay
= can always apply Lanczos, MINRES in this inner product

denote: BPT
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Combination preconditioning

Final lemma above shows that if can find Ps and Hs with
aPy Hy + BP; 1 Hy = Py T Hs3

this gives a new preconditioner and symmetric bilinear form
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Combine Bramble-Pasciak and Benzi-Simoncini:

Py "Hy + BP; "Ha =

(A’ + BIA — (a+ By)I (aAy' +BI)BT
—BB —(a+ By)I

|

One possibility for a splitting aP; *H1 + 8P, ' Hs is

and

aA; ' +B8I 0

—-T
P = 0 — B3I

A — (a+ By)(ady’ + BI)71
B

BT
a+6y
B

I
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Combination preconditioning

Final lemma above shows that if can find Ps and Hs with
aPy T Hy + 8Py T Hy = Py T HS

this gives a new preconditioner and symmetric bilinear form
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Combination preconditioning

Final lemma above shows that if can find P3 and Hsg with
aPy T Hy + 8Py T Hy = Py T HS
this gives a new preconditioner and symmetric bilinear form

Take Py, H1 as BP— and P>, H- as BPT
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Combine BP~— and BPT
aPiTHL+ (1 — )Py THy =

A;'A+(1—2a0)I Ay'BT
0 (1 —2a)1
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Combine BP— and BPT

aPiTHL+ (1 — )Py THy =

can be s

Pyl =

A;'A+(1—2a0)I Ay'BT
(1 —2a)1

nlit as

i Aal
0

0

Ay 'BT
(1 —2a)1

|

0

A+ (1 —-2a)Ag 0]
I
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Combine BP~— and BPT
aPiTHL+ (1 — )Py THy =

A;'A+(1—2a0)I Ay'BT
0 (1 —2a)1

can be split as

v [ Ayt A 'BT A+ (1 —-2a)4Ap O
Ps | 0 (1-20)I » Hs = 0 I

Recall P; ' A is self-adjoint in (-, -},
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Combine BP~— and BPT
aPiTHL+ (1 — )Py THy =

A;'A+(1—2a0)I Ay'BT
0 (1 —2a)1

can be split as

" 41 —1 T
P;T = A, A, B ],'H3=[

0 (1—2a)l 0 I

A+ (1 —-2a)Ag 0]

Recall P; ' A is self-adjoint in (-, -},
(o =1 < BP™, a=O<—>BP+)
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lterative method?

e MINRES (applicable when Hj3 is positive definite)
(Paige & Saunders (1975))

e ITFQMR — ideal transpose-free Quasi Minimum
Residuals
(Freund & Nachtigal (1995)) (applicable for symmetric
nonsingular Hs and related to BICG: Rozloznik (2005))

Hong Kong, 2007 — p.21/2



2—norm of the residual

10 E I 3
1 R ITFQMR a=1.5 |
10 —ITFQMR 0=1/100
1 —ITFQMR a=2/3 |
0 ----MINRES
" * ITFOMR a=1 1
10-77 | | | | | | ]
0 20 40 60 ] 80 100 120 140
[terations
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Combine BP- and BP+: another IFISS Stokes problem

ol --- ITFQMR 0=2/3;
—ITFQMR a=1 |

2—norm of the residual

71 | | | | | | | |
0 20 40 60 80 100 120 140 160 180

Iterations
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Summary

e iterative methods more reliable/descriptive convergence
theory/know what preconditioning is trying to achieve
when matrix is symmetric or self-adjoint
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Summary

e iterative methods more reliable/descriptive convergence
theory/know what preconditioning is trying to achieve
when matrix is symmetric or self-adjoint

e ‘isolated’ practical examples of self-adjointness in
non-standard inner products exist - in particular BP~
and the new BPT method

e theory here allow ‘interpolation’ between such
examples, hence broadens the set of possible
application of CG or MINRES in non-standard inner
products

e application here to saddle-point matrices, but theory is
more general
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