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A motivating example – The Bramble-Pasciak CG: consider
saddle point problem

A =

[
A BT

B −C

]
with preconditioner P =

[
A0 0
B −I

]

The (left) preconditioned matrix

Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A − B BA−1

0 BT + C

]

is not symmetric but is self-adjoint and positive definite
when

H =

[
A − A0 0

0 I

]

defines an inner product 〈x, y〉H := xT Hy

⇒ CG can be used in this inner product
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Conjugate Gradient Method (Hestenes & Stiefel (1952))
for Âx = b, Â self-adjoint and positive definite in 〈·, ·〉H:

Choose x0, compute r0 = b − Âx0, set p0 = r0

for k = 0 until convergence do

αk = 〈rk, rk〉H/〈Âpk, pk〉H

xk+1 = xk + αkpk

rk+1 = rk − αkÂpk

<Test for convergence>
βk = 〈rk+1, rk+1〉H/〈rk, rk〉H

pk+1 = rk+1 + βkpk

enddo

computes iterates {xk} such that

〈Â(x − xk), x − xk〉H = 〈x − xk, x − xk〉
H bA

is minimal in the relevant Krylov subspace Hong Kong, 2007 – p.3/24



Self-adjointness: assume

〈·, ·〉 : R
n × R

n → R

is a symmetric bilinear form or an inner product

A ∈ R
n×n is self-adjoint in 〈·, ·〉 iff

〈Ax, y〉 = 〈x, Ay〉 for all x, y

Self-adjointness of A in 〈·, ·〉H (〈x, y〉H = xT Hy)
thus means

xT AT Hy = 〈Ax, y〉H = 〈x, Ay〉H = xT HAy

for all x, y ⇒

AT H = HA

is the relation for self-adjointness of A in 〈·, ·〉H
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Basic properties:

LEMMA If A1 and A2 are self-adjoint in 〈·, ·〉H then for
any α, β ∈ R, αA1 + βA2 is self-adjoint in 〈·, ·〉H
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Basic properties:

LEMMA If A1 and A2 are self-adjoint in 〈·, ·〉H then for
any α, β ∈ R, αA1 + βA2 is self-adjoint in 〈·, ·〉H

LEMMA If A is self-adjoint in 〈·, ·〉H1
and in 〈·, ·〉H2

then
A is self-adjoint in 〈·, ·〉αH1+βH2

for every α, β ∈ R

and of relevance when preconditioning:

LEMMA For symmetric A, Â = P−1A is self-adjoint in
〈·, ·〉H if and only if P−T H is self-adjoint in 〈·, ·〉A

PROOF

(P−T H)T A = HP−1A = (P−1A)T H = AT (P−T H)
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also combining the above:

LEMMA If P1 and P2 are left preconditioners for the
symmetric matrix A for which symmetric matrices H1 and
H2 exist with P−1

1 A self-adjoint in 〈·, ·〉H1
and P−1

2 A

self-adjoint in 〈·, ·〉H2
and if for any α, β

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

for some matrix P3 and some symmetric matrix H3 then
P−1

3 A is self-adjoint in 〈·, ·〉H3
.

shows that if we can find such a splitting we have found a
new preconditioner and a bilinear form in which the matrix
is self-adjoint.
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Eigenvalues when A self-adjoint in 〈·, ·〉H:

Ax = λx, x 6= 0

Multiplying from the left by x?H gives

x?HAx = λx?Hx

and HA = AT H ⇒ λ ∈ R
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Eigenvalues when A self-adjoint in 〈·, ·〉H:

Ax = λx, x 6= 0

Multiplying from the left by x?H gives

x?HAx = λx?Hx

and HA = AT H ⇒ λ ∈ R

There is no symmetric bilinear form in which A is self-adjoint

unless A has real eigenvalues.
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LEMMA If A = R−1ΛR is a diagonalization of A with the
diagonal matrix Λ of eigenvalues being real, then A is
self-adjoint in 〈·, ·〉RT ΘR for any real diagonal matrix Θ.

PROOF self-adjointness of A in 〈·, ·〉H ⇒

RT ΛR−T H = HR−1ΛR

clearly satisfied for H = RT ΘR whenever Θ is diagonal
because then Θ and Λ commute.

We remark that this result is not of great use in practice
since knowledge of the complete eigensystem of A is
somewhat prohibitive.
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Self-adjointness for saddle point systems:

A =

[
A BT

B 0

]

General preconditioner

P−1 =

[
X Y T

Z W

]

gives

Â = P−1A =

[
XA + Y T B XBT

ZA + WB ZBT

]
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For self-adjointness of

Â = P−1A =

[
XA + Y T B XBT

ZA + WB ZBT

]

in

〈·, ·〉H, H =

[
E F T

F G

]

we require

[
AXT + BY T AZT + BT W T

BXT BZT

] [
E F T

F G

]
=

[
E F T

F G

] [
XA + Y T B XBT

ZA + WB ZBT

]
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Examples: Bramble-Pasciak CG (Bramble & Pasciak (1988))
widely used CG technique with preconditioner

P−1 =

[
A−1

0 0

BA−1
0 −I

]

and inner product matrix

H =

[
A − A0 0

0 I

]
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Examples: Bramble-Pasciak CG (Bramble & Pasciak (1988))
widely used CG technique with preconditioner

P−1 =

[
A−1

0 0

BA−1
0 −I

]

and inner product matrix

H =

[
A − A0 0

0 I

]

main drawback: requires

A0 < A

involves the computation of an eigenvalue problem in the
worst case!

Denote: BP−
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Examples: BP with Schur complement preconditioner
(Klawonn (1998), Meyer et al. (2001), Simoncini (2001))

P−1 =

[
A−1

0 0

S−1
0 BA−1

0 −S−1
0

]

Inner product:

H =

[
A − A0 0

0 S0

]
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Examples: Zulehner (Zulehner (2001), Schöberl & Zulehner (2007)

P =

[
A0 BT

B BA−1
0 BT − S0

]
=

[
I 0

BA−1
0 I

] [
A0 BT

0 −S0

]

gives P−1A self-adjoint in 〈·, ·〉H,

H =

[
A0 − A 0

0 BA−1
0 BT − S0

]

if A0 > A and S0 < BA−1
0 BT

Hong Kong, 2007 – p.13/24



Examples: Benzi-Simoncini (Benzi and Simoncini (2006))
extension of CG method of Fischer, Ramage, Silvester & W (1998)

P−1 =

[
I 0
0 −I

]

inner product:

H =

[
A − γI BT

B γI

]

Extension for C 6= 0 (Liesen (2006), Liesen & Parlett (2007)):

H =

[
A − γI BT

B γI − C

]
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Example: Bramble-Pasciak+ method (Stoll & W(2007))

P−1 =

[
A−1

0 0

BA−1
0 I

]

and inner product

H =

[
A + A0 0

0 I

]

Note: H defines an inner product for any symmetric and
positive definite preconditioner A0

⇒ can always apply Lanczos, MINRES in this inner product
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Example: Bramble-Pasciak+ method (Stoll & W(2007))

P−1 =

[
A−1

0 0

BA−1
0 I

]

and inner product

H =

[
A + A0 0

0 I

]

Note: H defines an inner product for any symmetric and
positive definite preconditioner A0

⇒ can always apply Lanczos, MINRES in this inner product

denote: BP+
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Combination preconditioning

Final lemma above shows that if can find P3 and H3 with

αP−1
1 H1 + βP−1

2 H2 = P−T
3 H3

this gives a new preconditioner and symmetric bilinear form
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Combine Bramble-Pasciak and Benzi-Simoncini:

αP−1
1 H1 + βP−1

2 H2 =

[
(αA−1

0 + βI)A − (α + βγ)I (αA−1
0 + βI)BT

−βB −(α + βγ)I

]

One possibility for a splitting αP−1
1 H1 + βP−1

2 H2 is

P−T
3 =

[
αA−1

0 + βI 0
0 −βI

]

and

H3 =

[
A − (α + βγ)(αA−1

0 + βI)−1 BT

B α+βγ
β

I

]
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Combination preconditioning

Final lemma above shows that if can find P3 and H3 with

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3
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Combination preconditioning

Final lemma above shows that if can find P3 and H3 with

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

this gives a new preconditioner and symmetric bilinear form

Take P1, H1 as BP− and P2, H2 as BP+
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Combine BP− and BP+

αP−T
1 H1 + (1 − α)P−T

2 H2 =

[
A−1

0 A + (1 − 2α)I A−1
0 BT

0 (1 − 2α)I

]
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Combine BP− and BP+

αP−T
1 H1 + (1 − α)P−T

2 H2 =

[
A−1

0 A + (1 − 2α)I A−1
0 BT

0 (1 − 2α)I

]

can be split as

P−T
3 =

[
A−1

0 A−1
0 BT

0 (1 − 2α)I

]
, H3 =

[
A + (1 − 2α)A0 0

0 I

]

Recall P−1
3 A is self-adjoint in 〈·, ·〉H3

(α = 1 ↔ BP−, α = 0 ↔ BP+)
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Iterative method?

• MINRES (applicable when H3 is positive definite)
(Paige & Saunders (1975))

• ITFQMR — ideal transpose-free Quasi Minimum
Residuals

(Freund & Nachtigal (1995)) (applicable for symmetric
nonsingular H3 and related to BiCG: Rozloznik (2005))
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Combine BP- and BP+
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Combine BP- and BP+: another IFISS Stokes problem
example
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Summary

• iterative methods more reliable/descriptive convergence
theory/know what preconditioning is trying to achieve
when matrix is symmetric or self-adjoint
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Summary

• iterative methods more reliable/descriptive convergence
theory/know what preconditioning is trying to achieve
when matrix is symmetric or self-adjoint

• ‘isolated’ practical examples of self-adjointness in
non-standard inner products exist - in particular BP−

and the new BP+ method

• theory here allow ‘interpolation’ between such
examples, hence broadens the set of possible
application of CG or MINRES in non-standard inner
products

• application here to saddle-point matrices, but theory is
more general
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