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i Regularization, regularized least squares

= Consider an error contaminated ill-conditioned linear
system of equations

Ax~ b
= Tikhonov's regularization
min(|[b — Ax||; + Al Lx[[3)

L — regularization operator
A — regularization parameter



Assumptions behind regularized least

i squares solution

= The vector b is related to the unknown parameter
vector X by a linear relation: Ax =b + n

= The vector n consists of white Gaussian noise

= The unknown vector x satisfies a Gaussian prior
distribution.




i In reality

= The prior distribution of the unknown vector rarely
satisfies the Gaussian assumption, very often the
additive noise does not satisfy the Gaussian
assumption either.

= Least Mixed Norm (LMN) solution, Least Absolute
Deviation (LAD) solution



deviation

i Least mixed norm, least absolute

= Least squares
min||g — Hf[|3 + o RE].

= Least mixed norm, nonnegative least mixed norm
min||g — Hf|} + o Rfl;

= Least absolute deviation, nonnegative least absolute
deviation

min g — HE | + ol Rf]



Formulating the Nonnegative LAD
i problem as a linear programming problem

= Linear programming:

u=Hf — g v = afif
ut = max(u,0) u~ = max{—u,0)
vt = max(v,0) v~ = max({—v,0)

Then the nonnegative LAD problem can be stated as:

min 17t + 1 u~ + 14T + 17~

fut,u-,vt,v—

subject to
J Hf —g=u" —u~

aRf = vt — v~
u+, u V+, v ,f>=0



i The linear programming problem restated

H I I 0 0 e
'LfA:{a:R 0 0 I 1}’ b= 0}’
e e

ut 1

X= | u- and c=| 1

vT 1

vV 1

Then the linear programming problem can be

written as

minc?x subject to Ax=b, x>0

X



i Lagrangian function, optimality conditions

= The Lagrangian function:
Lx,As)=cx— AT (Ax—b) —sTx

= The optimality conditions:

 ATA+s—c |
F(x,A\s) = Ax —b =0 x>0, s>0
XS51

S = diag(s) X = diag(x)



i Interior point methods

= Interior point methods apply variants of Newton'’s
method for nonlinear system of equations.

= The basic Newton step is modified such that the
search directions are aimed at points on the central

0
F(xe,Arys7)=| 0 |, x>0, s:>0
71

T =0W

o € |0,1] is acentering parameter,

1 — x''s . :
y=— E r;8; = —— IS the duality measure.
T < - T2
=



i The Newton step

= The Newton step is computed by solving the linear

system:
0 AT ] AX —r,
A 0 0 AN | = | —1
S 0 X As —r,

wherer, = XS1—oplr, = Ax—b r, = 'ALT)\—I—S—C

= The linear system can be reduced to the following
form:

(D + HY (D) + D) 'H 4+ a*RY(D; + Di) 'R| Af =ty



‘L Saddle Point Systems

By elimmating As

Ax
AAX

(2.10)

Xl A
A 0

_fc
—T} i
where 1, =1, — X Ir,. Let D = §~12X /2 then (2.10) can be written as

Ax| |-r,
_I‘b .

AN

_D—E AT
{ A0




Formulating the nonnegative LMN
problem as a quadratic programming

i problem

= Quadratic programming:

let v = afRf
v = max(v,0)
v~ = max{—v,0)

Then the nonnegative LMN problem can be stated as:

min 17vt +17v™ + ||Hf — g|4

fovt,v—
subject to
aRf =vt — v,
v, v ,f>0.



The quadratic programming problem

i restated

s Let

G =

Then the quadratic programming problem can be

written as

1
min EKTG}{ +cf'x  subjectto Ax=b, x>0



i Lagrangian function, optimality conditions

= The Lagrangian function:

L(x,A,8) = %XTG:{—i— cT'x — A(Ax — b) — sTx,
= The optimality conditions:

Ax —b
X 51

F{x,A,s) =

Gx+c—ATXx—s

S = diag(s) X = diag(x)



programming

i Interior point method for quadratic

= Interior point methods can also be used to solve
quadratic programming problems.

= The Newton step is computed by solving the linear

system:
G —AT -] Ax —r,
A 0 0 AX | = | —r
S 0 X s —r,

= The linear system can be reduced to the following
form:

[2HTH + D7* + o*RT(DE + DY) 7'R] Af = ¥,



i Preconditioning the inner systems

The inner systems are symmetric positive definite,

and can be solved by Conjugate Gradient type
method.

The inner systems get ill-conditioned as the iterates
get close to the solution, preconditioners are needed
to accelerate convergence.

Factorized Sparse Inverse Preconditioners (FSIP)

= Let A be a SPD matrix, let A=C"C be its Cholesky
factorizatiolll — CL||7 P is a lower triangular matrix L with
certain sparsity pattern such that iS minimized.

Factorized Banded Inverse Preconditioners (FBIP)
= The preconditioner is banded



A computational example — the original

i image




A computational example — the observed
Images

20 40 60 80 100 120 20 40 60 80 100 120

Observed image with white Observed image with 50% of the
Gaussian noise pixels contaminated by white
Gaussian noise



A computational example — the least
squares restorations

100

1201

20 40 60 Sb 160 1é0
Least squares restoration of the
image that is contaminated by
white Gaussian noise

PSNR = 20.46

100

1201
]

20 40 60 80 100 120

Least squares restoration of the
image that only 50% of the pixels
are contaminated by noise
PSNR = 20.87




A computational example — the LMN and
LAD solutions

100

120+ ‘ !."

20 40 60 86 100 léO 20 40 60 80 10 lé(l)’
LMN solution of the image LAD solution of the image
that is contaminated by that only 50% of the pixels
white Gaussian noise are contaminated by noise

PSNR = 20.78 PSNR = 22.82



A computational example — convergence
of the interior point method for LMN

i solution
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A computational example — convergence
of the interior point method for LAD

i solution
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A computational example —
effectiveness of the FBIP

PD Itn | No Pre | Diag Pre | FSIP2 | FSIP3 | FSIP4
10 368 180 31 21 15
45.01 22.94 6.15 6.89 | 10.52

12 613 281 51 32 22
76.27 35.27 0.71 9.24 | 12.72

14 008 438 85 48 32
112.37 5528 | 16.12 | 13.35 | 15.86

16 1391 626 139 71 49
171.36 7827 | 2595 | 18.31 | 20.84

18 2202 989 225 123 67
265.25 119.56 | 40.32 | 29.99 | 26.55

20 | =3000 1814 408 228 120
- 222,30 | 7291 | 54.15 | 41.62




i Computational Results

PD Itn | No Pre | Diag Pre | FSIP2 | FSIP3 | FSIP4
10 839 G6Y i 24 14
79.10 64.95 1140 5.39 11.76

12 1406 1140 96 38 21
130.74 105.45 1716 | 11.94 13.40

14 2199 1672 129 52 28
208.95 164.74 22,31 | 14.61 15.54

16 | =3000 2206 175 73 39
- 22231 29.55 19.45 | 18.64

18 | =3000 =3000 266 106 54
- - 43.23 26.57 | 22.80

20 | =3000 =3000 378 142 T4
- - 59.50 32.80 | 28.19




Another computational example

20 40 60 80 100 120 20 40 60 80 100 120



i Results

PD Itn | NOR | BENZI | No Pre | Diag Pre | FSIP2 | FSIP3 | FSIP4
10 | >3000 205 644 544 48 22 15
N 161.78 78.68 68.72 | 1524 | 13.32 | 17.08

12 | >3000 483 982 804 51 26 21
- 237.70 | 125.92 105.53 | 1575 | 14.14 | 18.01

14 | >3000 1047 1603 1334 6U 3l 25
- 589.68 | 207.05 175.88 | 17.42 | 15.31 | 18.99

16 | >3000 1791 2452 1934 7T 43 34
- 969.84 | 305.14 242,51 | 2090 | 1847 | 22.14

18 | >3000 | >2000 | =3000 2607 106 54 41
- - - 339.06 | 25.85 | 20.87 | 25.11

20 | >3000 | >2000 | =>3000 =3000 170 85 i
- - - - 37.71 | 2818 | 2801




Application: Sparse Fisher
i Discriminant Method

election in microarray data. In the new algorithm, we calculate a weight for each gene and use the weight

values as an indicator to identify the subsets of relevant genes that categorize patient and normal samples
in two-class classification problems. This is achieved by including the weight sparsity term in the Fisher

objective function that is minimized in the discriminant process:

15wt — 2|3 + o|ul|;.

Here 5, is the within-class scatter matrix of the samples in a microarray data and z comes from the
between-class scatter matrix, u is the projection vector and « is the regularization parameter to control the
sparsity of u. Each entry of u represents a weight for each gene. An efficient [5-[; norm minimization
method is implemented to the above discriminant model to automatically compute the weights of all genes

in the samples



Nonconvex and Nonsmooth
$ Regularization

J(f) = O(Hf — g)+ pd(f), £ =0, ¢ =) " p(d]f)
i=1

Convex PFs
) p)=I
Non-convex PFs
(f2) )=t 0<a<l
(13)  #lt) =1 i|:|f|
(1) (1) lﬂg‘( it +1
(f5) (0)=0, ©(t)= 1ff;0

TABI_E 1.1
Non-smooth at zero PFs ¢ where a > 0 1s a parameter. Some references are [7, 55, 27, 28, 56,

39]



Property
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(a) All underlying £ (b) The relevant minimizers f

Fic. 1.1. Histograms for 10000 independent trials: T and f for w(t) = *Jm



s

(a) | 1 (b)

Fi1Gc. 6.16. (a) Observed image; (b) The restored image.

]



Continuation Method

The Newton search direction (Ay, AX, As) is computed by solving the system:

M +V20.(y) -BT -I Ay —T,
B 0 0 AN | = | -1y
] 0 Y As —r,

where

r.=My+c+VU.(y)— B\ —s,

r, =By, r,=YS51—-opul.
By eliminating As from the above equation, we obtain

M+V2U,+Y-'S BT [ Ay | [ -t
B 0 || -Aax |~

_rtl
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Fic. 6.9. {a) The original modified Shepp-Logan image with size 50 % 50; (b) the obtained image
after radon transform along the angles from 0 to 180 with the increasing of 6. The noise follows the
normal distribution with mean zero and deviation 0.05

.;:c;L] | o ‘[1‘}]

Fi1G. 6.10. Hestored Shepp-Logan images for PF (6.1) when the initial guess is a flat tmage:
0.5 x ones(50,50) (a) the restored tmage when £ = 1, PSNR = 25.82; (b) the restored image when
0— 1, PSNR = /1.96.



(a)

F1G. 6.11. Restored Shepp-Logan images for PF (6.1 ) when the initial guess is a random image
(a) the restored image when £ =1, PSNR = 20.23. {b) the restored image when ¢ =0— 1, PSNR
= 41.96.
#

FI1G. 6.12. The restored Shepp-Logan image with PF (t) = |t|. The wnitial guess 1s a flat
image, PSNR = 534.71.



i Concluding Remarks

= Saddle Point System Solvers
= Optimization Problems

= EXisting preconditioners does not
perform quite well

s Future research area
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