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Regularization, regularized least squares

Consider an error contaminated ill-conditioned linear 
system of equations

Tikhonov’s regularization

L – regularization operator
λ – regularization parameter



Assumptions behind regularized least 
squares solution

The vector b is related to the unknown parameter 
vector x by a linear relation: Ax = b + n
The vector n consists of white Gaussian noise
The unknown vector x satisfies a Gaussian prior 
distribution.



In reality

The prior distribution of the unknown vector rarely 
satisfies the Gaussian assumption, very often the 
additive noise does not satisfy the Gaussian 
assumption either.

Least Mixed Norm (LMN) solution, Least Absolute 
Deviation (LAD) solution



Least mixed norm, least absolute 
deviation

Least squares

Least mixed norm, nonnegative least mixed norm

Least absolute deviation, nonnegative least absolute 
deviation



Formulating the Nonnegative LAD 
problem as a linear programming problem

Linear programming:
Let
Let

Then the nonnegative LAD problem can be stated as:

subject to 



The linear programming problem restated

Let 

Then the linear programming problem can be 
written as



Lagrangian function, optimality conditions

The Lagrangian function:

The optimality conditions:

,

,



Interior point methods

Interior point methods apply variants of Newton’s 
method for nonlinear system of equations.
The basic Newton step is modified such that the 
search directions are aimed at points on the central 
path:

,

is a centering parameter,

is the duality measure.



The Newton step

The Newton step is computed by solving the linear 
system:

where                          ,                    ,
The linear system can be reduced to the following 
form:



Saddle Point Systems



Formulating the nonnegative LMN 
problem as a quadratic programming 
problem

Quadratic programming:
Let   
Let                           

Then the nonnegative LMN problem can be stated as:

subject to 



The quadratic programming problem 
restated

Let 

Then the quadratic programming problem can be 
written as



Lagrangian function, optimality conditions

The Lagrangian function:

The optimality conditions:

,

,



Interior point method for quadratic 
programming

Interior point methods can also be used to solve 
quadratic programming problems.
The Newton step is computed by solving the linear 
system:

The linear system can be reduced to the following 
form:



Preconditioning the inner systems

The inner systems are symmetric positive definite, 
and can be solved by Conjugate Gradient type 
method. 
The inner systems get ill-conditioned as the iterates 
get close to the solution, preconditioners are needed 
to accelerate convergence.
Factorized Sparse Inverse Preconditioners (FSIP)

Let A be a SPD matrix, let A=CTC be its Cholesky
factorization,  The FSIP is a lower triangular matrix L with 
certain sparsity pattern such that                   is minimized. 

Factorized Banded Inverse Preconditioners (FBIP)
The preconditioner is banded



A computational example – the original 
image
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A computational example – the observed 
images
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Observed image with white 
Gaussian noise

Observed image with 50% of the 
pixels contaminated by white 
Gaussian noise



A computational example – the least 
squares restorations
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Least squares restoration of the
image that only 50% of the pixels
are contaminated by noise
PSNR = 20.87

Least squares restoration of the
image that is contaminated by 
white Gaussian noise
PSNR = 20.46



A computational example – the LMN and 
LAD solutions
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LAD solution of the image 
that only 50% of the pixels
are contaminated by noise
PSNR = 22.82

LMN solution of the image
that is contaminated by 
white Gaussian noise
PSNR = 20.78



A computational example – convergence 
of the interior point method for LMN 
solution
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A computational example – convergence 
of the interior point method for LAD 
solution
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A computational example –
effectiveness of the FBIP



Computational Results



Another computational example
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Results



Application: Sparse Fisher 
Discriminant Method



Nonconvex and Nonsmooth
Regularization



Property





Continuation Method







Concluding Remarks

Saddle Point System Solvers
Optimization Problems 
Existing preconditioners does not 
perform quite well
Future research area
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