Preconditioning for Saddle Point Problems and Image Processing Applications

> Michael K. Ng Department of Mathematics Hong Kong Baptist University

Regularization, regularized least squares

 Consider an error contaminated ill-conditioned linear system of equations

$A\mathbf{x} \approx \mathbf{b}$

Tikhonov's regularization

$$\min_{\mathbf{x}}(\|\mathbf{b} - A\mathbf{x}\|_2^2 + \lambda \|L\mathbf{x}\|_2^2)$$

- L regularization operator
- λ regularization parameter

Assumptions behind regularized least squares solution

- The vector b is related to the unknown parameter vector x by a linear relation: Ax = b + n
- The vector n consists of white Gaussian noise
- The unknown vector x satisfies a Gaussian prior distribution.

In reality

- The prior distribution of the unknown vector rarely satisfies the Gaussian assumption, very often the additive noise does not satisfy the Gaussian assumption either.
 - Least Mixed Norm (LMN) solution, Least Absolute Deviation (LAD) solution

Least mixed norm, least absolute deviation

- Least squares $\min_{\mathbf{f}} \|\mathbf{g} - H\mathbf{f}\|_2^2 + \alpha \|R\mathbf{f}\|_2^2.$
- Least mixed norm, nonnegative least mixed norm $\min_{\mathbf{f}} \|\mathbf{g} H\mathbf{f}\|_2^2 + \alpha \|R\mathbf{f}\|_1$
- Least absolute deviation, nonnegative least absolute deviation $\min \|\mathbf{g} H\mathbf{f}\|_1 + \alpha \|R\mathbf{f}\|_1$

Formulating the Nonnegative LAD problem as a linear programming problem

• Linear programming: $\mathbf{u} = H\mathbf{f} - \mathbf{g}$ $\mathbf{v} = \alpha R\mathbf{f}$ $\mathbf{u}^+ = \max(\mathbf{u}, 0)$ $\mathbf{u}^- = \max(-\mathbf{u}, 0)$ $\mathbf{v}^+ = \max(\mathbf{v}, 0)$ $\mathbf{v}^- = \max(-\mathbf{v}, 0)$

Then the nonnegative LAD problem can be stated as:

$$\min_{\mathbf{f},\mathbf{u}^+,\mathbf{u}^-,\mathbf{v}^+,\mathbf{v}^-} \mathbf{1}^T \mathbf{u}^+ + \mathbf{1}^T \mathbf{u}^- + \mathbf{1}^T \mathbf{v}^+ + \mathbf{1}^T \mathbf{v}^-$$

subject to

$$H\mathbf{f} - \mathbf{g} = \mathbf{u}^{+} - \mathbf{u}^{-}$$
$$\alpha R\mathbf{f} = \mathbf{v}^{+} - \mathbf{v}^{-}$$
$$\mathbf{u}^{+}, \ \mathbf{u}^{-}, \ \mathbf{v}^{+}, \ \mathbf{v}^{-}, \ \mathbf{f} \ge 0$$

The linear programming problem restated

•
$$\mathbf{L}_{\mathbf{f}} A = \begin{bmatrix} H & -I & I & 0 & 0 \\ \alpha R & 0 & 0 & -I & I \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{g} \\ 0 \end{bmatrix},$$
$$\mathbf{x} = \begin{bmatrix} \mathbf{f} \\ \mathbf{u}^{+} \\ \mathbf{u}^{-} \\ \mathbf{v}^{+} \\ \mathbf{v}^{-} \end{bmatrix} \quad \text{and} \quad \mathbf{c} = \begin{bmatrix} 0 \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}.$$

Then the linear programming problem can be written as $\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge 0$

Lagrangian function, optimality conditions

• The Lagrangian function:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{s}) = \mathbf{c}^T \mathbf{x} - \boldsymbol{\lambda}^T (A\mathbf{x} - \mathbf{b}) - \mathbf{s}^T \mathbf{x}$$

The optimality conditions:

$$F(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{s}) = \begin{bmatrix} A^T \boldsymbol{\lambda} + \mathbf{s} - \mathbf{c} \\ A \mathbf{x} - \mathbf{b} \\ XS \mathbf{1} \end{bmatrix} = 0 \qquad \mathbf{x} \ge 0, \quad \mathbf{s} \ge 0$$

 $S = \operatorname{diag}(\mathbf{s}) \quad X = \operatorname{diag}(\mathbf{x})$

Interior point methods

- Interior point methods apply variants of Newton's method for nonlinear system of equations.
- The basic Newton step is modified such that the search directions are aimed at points on the central

$$F(\mathbf{x}_{ au}, oldsymbol{\lambda}_{ au}, \mathbf{s}_{ au}) = egin{bmatrix} 0 \ 0 \ au \mathbf{1} \end{bmatrix}, \quad \mathbf{x}_{ au} > 0, \quad \mathbf{s}_{ au} > 0$$

 $au=\sigma\mu$ $\sigma\in[0,1]~~$ is a centering parameter,

$$\mu = rac{1}{n}\sum_{i=1}^n x_i s_i = rac{\mathbf{x}^T \mathbf{s}}{n}$$
 is the duality measure.

The Newton step

The Newton step is computed by solving the linear system:

$$\left[egin{array}{ccc} 0 & A^T & I \ A & 0 & 0 \ S & 0 & X \end{array}
ight] \left[egin{array}{c} \Delta \mathbf{x} \ \Delta \mathbf{\lambda} \ \Delta \mathbf{s} \end{array}
ight] = \left[egin{array}{c} -\mathbf{r}_c \ -\mathbf{r}_b \ -\mathbf{r}_a \end{array}
ight]$$

where $\mathbf{r}_a = XS\mathbf{1} - \sigma\mu\mathbf{1} \mathbf{r}_b = A\mathbf{x} - \mathbf{b} \mathbf{r}_c = A^T \mathbf{\lambda} + \mathbf{s} - \mathbf{c}$

The linear system can be reduced to the following form:

 $\left[D_1^{-2} + H^T (D_2^2 + D_3^2)^{-1} H + \alpha^2 R^T (D_4^2 + D_5^2)^{-1} R\right] \Delta \mathbf{f} = \tilde{\mathbf{r}}_{c1}$

Saddle Point Systems

By eliminating $\triangle s$

(2.10)
$$\begin{bmatrix} -X^{-1}S & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} -\hat{\mathbf{r}}_c \\ -\mathbf{r}_b \end{bmatrix},$$

where $\hat{\mathbf{r}}_{c} = \mathbf{r}_{c} - X^{-1}\mathbf{r}_{a}$. Let $D = S^{-1/2}X^{1/2}$; then (2.10) can be written as $\begin{bmatrix} -D^{-2} & A^{T} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{\lambda} \end{bmatrix} = \begin{bmatrix} -\hat{\mathbf{r}}_{c} \\ -\mathbf{r}_{b} \end{bmatrix}.$

Formulating the nonnegative LMN problem as a quadratic programming problem

• Quadratic programming: Let $\mathbf{v} = \alpha R \mathbf{f}$ $\mathbf{v}^+ = \max(\mathbf{v}, 0)$ $\mathbf{v}^- = \max(-\mathbf{v}, 0)$

Then the nonnegative LMN problem can be stated as:

$$\min_{\mathbf{f},\mathbf{v}^+,\mathbf{v}^-} \mathbf{1}^T \mathbf{v}^+ + \mathbf{1}^T \mathbf{v}^- + \|H\mathbf{f} - \mathbf{g}\|_2^2$$

subject to

 $lpha R \mathbf{f} = \mathbf{v}^+ - \mathbf{v}^-,$ $\mathbf{v}^+, \mathbf{v}^-, \mathbf{f} \ge 0.$

The quadratic programming problem restated

Let

$$G = \begin{bmatrix} 2H^T H & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} \alpha R & -I & I \end{bmatrix},$$

$$\mathbf{b} = \mathbf{0}, \quad \mathbf{x} = \left[egin{array}{c} \mathbf{f} \\ \mathbf{v}^+ \\ \mathbf{v}^- \end{array}
ight] \quad ext{and} \quad \mathbf{c} = \left[egin{array}{c} -2H^T \mathbf{g} \\ \mathbf{1} \\ \mathbf{1} \end{array}
ight].$$

Then the quadratic programming problem can be written as

 $\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x} \quad \text{subject to} \quad A \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge 0$

Lagrangian function, optimality conditions

The Lagrangian function:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{s}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x} - \boldsymbol{\lambda}^T (A \mathbf{x} - \mathbf{b}) - \mathbf{s}^T \mathbf{x},$$

The optimality conditions:

$$F(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{s}) = \begin{bmatrix} G\mathbf{x} + \mathbf{c} - A^T \boldsymbol{\lambda} - \mathbf{s} \\ A\mathbf{x} - \mathbf{b} \\ XS\mathbf{1} \end{bmatrix} = 0 \qquad \mathbf{x} \ge 0, \quad \mathbf{s} \ge 0$$

 $S = \operatorname{diag}(\mathbf{s}) \quad X = \operatorname{diag}(\mathbf{x})$

Interior point method for quadratic programming

- Interior point methods can also be used to solve quadratic programming problems.
- The Newton step is computed by solving the linear system:

$$\left[egin{array}{cccc} G & -A^T & -I \ A & 0 & 0 \ S & 0 & X \end{array}
ight] \left[egin{array}{cccc} \Delta \mathbf{x} \ \Delta \mathbf{\lambda} \ \Delta \mathbf{s} \end{array}
ight] = \left[egin{array}{cccc} -\mathbf{r}_c \ -\mathbf{r}_b \ -\mathbf{r}_a \end{array}
ight]$$

The linear system can be reduced to the following form:

$$\left[2H^{T}H + D_{1}^{-2} + lpha^{2}R^{T}(D_{2}^{2} + D_{3}^{2})^{-1}R
ight] \Delta \mathbf{f} = - ilde{\mathbf{r}}_{c1}$$

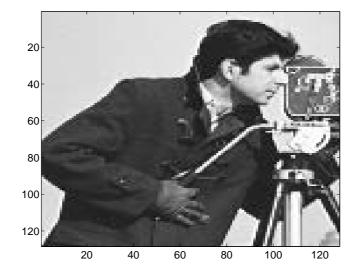
Preconditioning the inner systems

- The inner systems are symmetric positive definite, and can be solved by Conjugate Gradient type method.
- The inner systems get ill-conditioned as the iterates get close to the solution, preconditioners are needed to accelerate convergence.

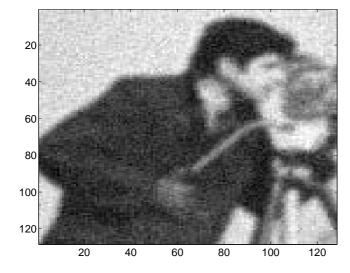
Factorized Sparse Inverse Preconditioners (FSIP)

- Let A be a SPD matrix, let $A = C^T C$ be its Cholesky factorizatio| $||I - CL||_F P$ is a lower triangular matrix L with certain sparsity pattern such that is minimized.
- Factorized Banded Inverse Preconditioners (FBIP)
 - The preconditioner is banded

A computational example – the original image



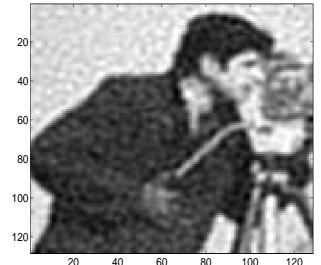
A computational example – the observed images



Observed image with white Gaussian noise

Observed image with 50% of the pixels contaminated by white Gaussian noise

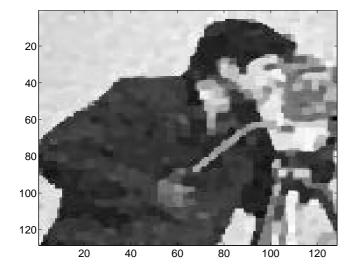
A computational example – the least squares restorations



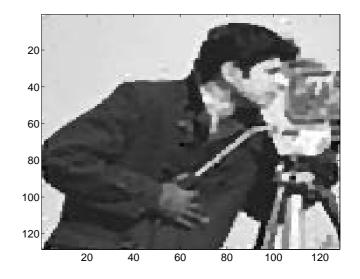
Least squares restoration of the image that is contaminated by white Gaussian noise PSNR = 20.46

Least squares restoration of the image that only 50% of the pixels are contaminated by noise PSNR = 20.87

A computational example – the LMN and LAD solutions

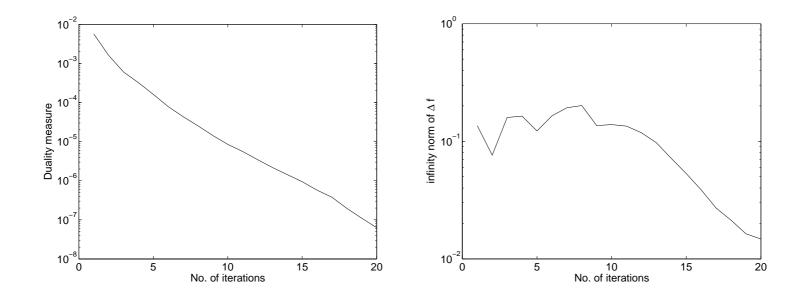


LMN solution of the image that is contaminated by white Gaussian noise PSNR = 20.78

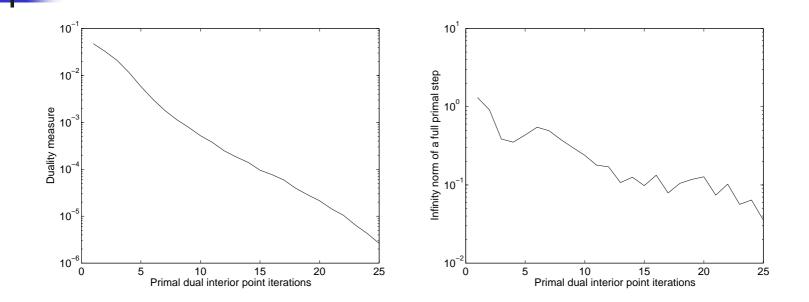


LAD solution of the image that only 50% of the pixels are contaminated by noise PSNR = 22.82

A computational example – convergence of the interior point method for LMN solution



A computational example – convergence of the interior point method for LAD solution



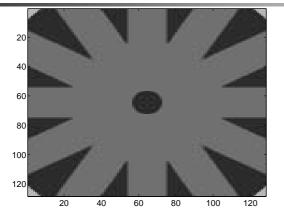
A computational example – effectiveness of the FBIP

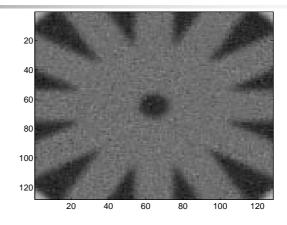
PD Itn	No Pre	Diag Pre	FSIP2	FSIP3	FSIP4
10	368	180	31	21	15
	45.01	22.94	6.15	6.89	10.52
12	618	281	51	32	22
	76.27	35.27	9.71	9.24	12.72
14	908	438	85	48	32
	112.37	55.28	16.12	13.35	15.86
16	1391	626	139	71	49
	171.36	78.27	25.95	18.31	20.84
18	2202	989	225	123	67
	265.25	119.56	40.32	29.99	26.55
20	>3000	1814	408	228	120
	-	222.30	72.91	54.15	41.62

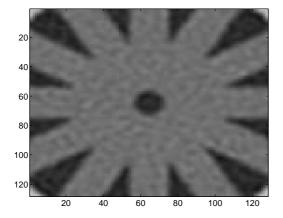
Computational Results

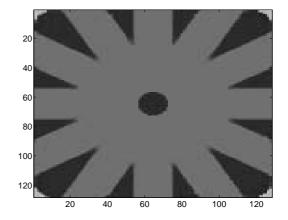
PD Itn	No Pre	Diag Pre	FSIP2	FSIP3	FSIP4
10	839	669	57	24	14
	79.10	64.95	11.40	9.39	11.76
12	1406	1140	96	38	21
	130.74	108.45	17.16	11.94	13.40
14	2199	1672	129	52	28
	208.98	164.74	22.31	14.61	15.54
16	>3000	2296	175	73	39
	_	222.31	29.55	19.45	18.64
18	>3000	>3000	266	106	54
	—	_	43.23	26.57	22.80
20	>3000	>3000	378	142	74
	—	—	59.50	32.89	28.19

Another computational example









Results

PD Itn	NOR	BENZI	No Pre	Diag Pre	FSIP2	FSIP3	FSIP4
10	>3000	295	644	544	48	22	18
	—	161.78	78.68	68.72	15.24	13.32	17.08
12	>3000	483	982	804	51	26	21
	—	237.70	125.92	105.53	15.75	14.14	18.01
14	>3000	1047	1603	1334	60	31	25
	—	589.68	207.05	175.88	17.42	15.31	18.99
16	>3000	1791	2452	1934	77	43	34
	—	969.84	305.14	242.51	20.90	18.47	22.14
18	>3000	>2000	>3000	2607	106	54	41
	—	_	_	339.06	25.85	20.87	25.11
20	>3000	>2000	>3000	>3000	170	85	58
	—	_	_	_	37.71	28.18	28.91

Application: Sparse Fisher Discriminant Method

selection in microarray data. In the new algorithm, we calculate a weight for each gene and use the weight values as an indicator to identify the subsets of relevant genes that categorize patient and normal samples in two-class classification problems. This is achieved by including the weight sparsity term in the Fisher objective function that is minimized in the discriminant process:

 $||S_w u - z||_2^2 + \alpha ||u||_1.$

Here S_w is the within-class scatter matrix of the samples in a microarray data and z comes from the between-class scatter matrix, u is the projection vector and α is the regularization parameter to control the sparsity of u. Each entry of u represents a weight for each gene. An efficient l_2 - l_1 norm minimization method is implemented to the above discriminant model to automatically compute the weights of all genes in the samples

Nonconvex and Nonsmooth Regularization

$$J(\mathbf{f}) = \Theta(H\mathbf{f} - \mathbf{g}) + \beta \Phi(\mathbf{f}), \quad \mathbf{f} \ge 0, \quad \Phi(\mathbf{f}) = \sum_{i=1}^{r} \varphi(\mathbf{d}_i^T \mathbf{f})$$

Convex PFs
(f1)
$$\varphi(t) = |t|$$

Non-convex PFs
(f2) $\varphi(t) = |t|^{\alpha}, \ 0 < \alpha < 1$
(f3) $\varphi(t) = \frac{\alpha |t|}{1 + \alpha |t|}$
(f4) $\varphi(t) = \log (\alpha |t| + 1)$
(f5) $\varphi(0) = 0, \ \varphi(t) = 1 \text{ if } t \neq 0$
TABLE 1.1

Non-smooth at zero PFs φ where $\alpha > 0$ is a parameter. Some references are [7, 55, 27, 28, 56, 39]

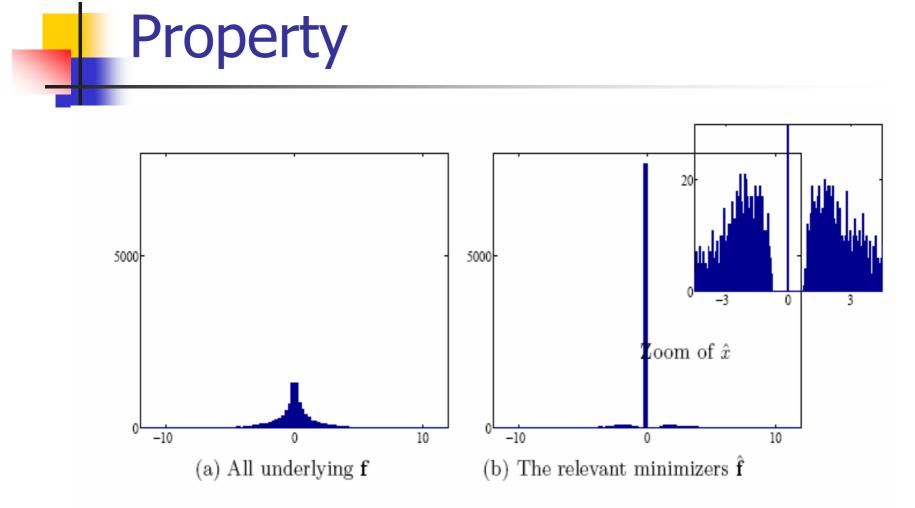


FIG. 1.1. Histograms for 10 000 independent trials: \mathbf{f} and $\hat{\mathbf{f}}$ for $\varphi(t) = \sqrt{|t|}$.

 $\ensuremath{\operatorname{Fig.}}$ 6.15. The original cameraman image

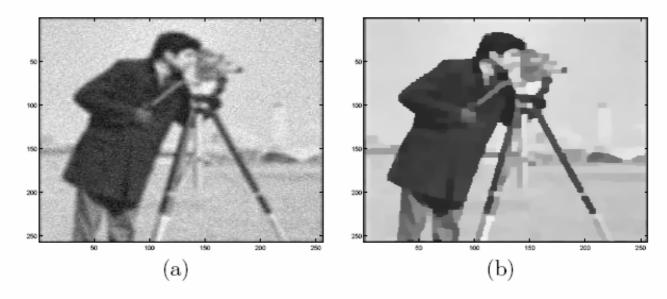


FIG. 6.16. (a) Observed image; (b) The restored image.

Continuation Method

The Newton search direction $(\Delta \mathbf{y}, \Delta \lambda, \Delta \mathbf{s})$ is computed by solving the system:

$$\begin{bmatrix} M + \nabla^2 \Psi_{\varepsilon}(\mathbf{y}) & -B^T & -I \\ B & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta \mathbf{y} \\ \Delta \lambda \\ \Delta \mathbf{s} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_c \\ -\mathbf{r}_b \\ -\mathbf{r}_a \end{bmatrix}$$

where

$$\mathbf{r}_c = M\mathbf{y} + c + \nabla \Psi_{\varepsilon}(\mathbf{y}) - B^T \boldsymbol{\lambda} - \mathbf{s},$$

$$\mathbf{r}_b = B\mathbf{y}, \quad \mathbf{r}_a = YS\mathbf{1} - \sigma\mu\mathbf{1}.$$

By eliminating Δs from the above equation, we obtain

$$\begin{bmatrix} M + \nabla^2 \Psi_{\varepsilon} + Y^{-1}S & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{y} \\ -\Delta \lambda \end{bmatrix} = \begin{bmatrix} -\hat{\mathbf{r}}_c \\ -\mathbf{r}_b \end{bmatrix}$$

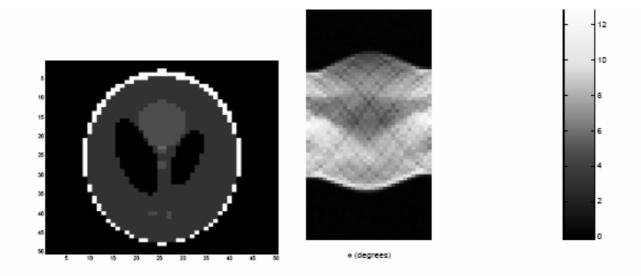


FIG. 6.9. (a) The original modified Shepp-Logan image with size 50×50 ; (b) the obtained image after radon transform along the angles from 0 to 180 with the increasing of 6. The noise follows the normal distribution with mean zero and deviation 0.05

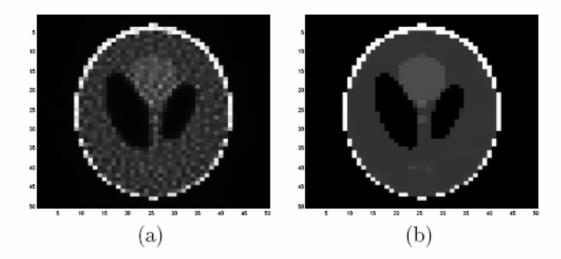


FIG. 6.10. Restored Shepp-Logan images for PF (6.1) when the initial guess is a flat image: $0.5 \times ones(50, 50)$ (a) the restored image when $\varepsilon = 1$, PSNR = 25.82; (b) the restored image when $\varepsilon = 0 \rightarrow 1$, PSNR = 41.96.

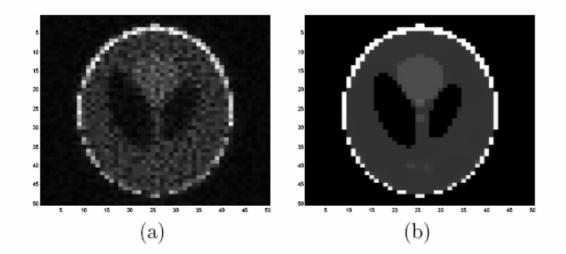


FIG. 6.11. Restored Shepp-Logan images for PF (6.1) when the initial guess is a random image (a) the restored image when $\varepsilon = 1$, PSNR = 20.23. (b) the restored image when $\varepsilon = 0 \rightarrow 1$, PSNR = 41.96.

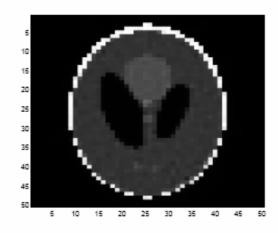


FIG. 6.12. The restored Shepp-Logan image with PF $\psi(t) = |t|$. The initial guess is a flat image, PSNR = 34.71.

Concluding Remarks

- Saddle Point System Solvers
- Optimization Problems
- Existing preconditioners does not perform quite well
- Future research area