Year | Month |
2023 | Jan Feb Mar Apr May Jun Jul Aug Oct |
2022 | Jan Feb Mar Apr May Jun Jul Aug Oct Nov Dec |
2021 | Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |
2020 | Jan May Jun Jul Aug Sep Oct Nov Dec |
2019 | Jan Feb Mar Apr May Jun Jul Aug Oct Nov |
Title: | Discontinuous Galerkin Method for Convection Dominated Partial Differential Equations |
Speaker: | Prof Chi-Wang Shu, Division of Applied Mathematics, Brown University, USA |
Time/Place: | 10:00 - 11:00 Zoom, (Meeting ID: 959 8217 5924) |
Abstract: | Discontinuous Galerkin (DG) method is a finite element method with features from high resolution finite difference and finite volume schemes such as approximate Riemann solvers and nonlinear limiters. It was originally designed for solving hyperbolic conservation laws but has been generalized later to solve higher order convection dominated partial differential equations (PDEs) such as convection diffusion equations and convection dispersion equations. The DG method has been widely applied, in areas such as computational fluid dynamics, computational electromagnetism, and semiconductor device simulations, just to name a few. In this talk we will give a general survey of the DG method, emphasizing its designing principles and main ingredients. We will also describe some of the recent developments in DG methods. |
We organize conferences and workshops every year. Hope we can see you in future.
Learn MoreProf. M. Cheng, Dr. Y. S. Hon, Dr. K. F. Lam, Prof. L. Ling, Dr. T. Tong and Prof. L. Zhu have been awarded research grants by Hong Kong Research Grant Council (RGC) — congratulations!
Learn MoreFollow HKBU Math