On A Property Of Laplace Transforms Of Some Probability Densities

Katsuo Takano

Department of Mathematics, Ibaraki University, Japan

ktaka@mx.ibaraki.ac.jp
It is known that all of probability distributions with density of normed product of the Cauchy densities such as

$$
f(a, b ; x)=\frac{c}{\left(a^{2}+x^{2}\right)\left(b^{2}+x^{2}\right)}, \quad(0<a<b)
$$

are infinitely divisible. But it seems that it is not known if a probability distriution with density of normed product of the multi-dimensional Cauchy densities is infinitely divisible or not. In this talk we show a conjecture on the infinite divisiblity of some probability distributions with density of normed product of odd dimensional Cauchy densities, namely,

$$
\begin{equation*}
f(a, b ; x)=\frac{c}{\left(a^{2}+|x|^{2}\right)^{(d+1) / 2}\left(b^{2}+|x|^{2}\right)^{(d+1) / 2}}, \tag{1}
\end{equation*}
$$

where c is a normalised constant and

$$
0<a<b ; \quad x=\left(x_{1}, x_{2}, \cdots, x_{d}\right) \in \mathbf{R}^{d} .
$$

In this talk we assume the dimension d is an odd integer. We should note that the density $f(a, b ; x)$ can not be decomposed to a sum of partial fractions in the same way as in the 1-dimensional case and the speaker shows that we can overcome this difficulty. Making use of the formula

$$
\begin{equation*}
K_{\nu}(z)=\frac{1}{2}\left(\frac{1}{2} z\right)^{\nu} \int_{0}^{\infty} \exp \left\{-t-\frac{z^{2}}{4 t}\right\} \frac{d t}{t^{\nu+1}}, \tag{2}
\end{equation*}
$$

we obtain a Laplace-Stieltjes transform for the general odd dimensional case,

$$
\begin{align*}
& \zeta(d ; s)=\frac{c \pi^{d / 2}}{\left\{\left(b^{2}-a^{2}\right)^{l+1}\right.} \Sigma_{j=0}^{l} \frac{(-1)^{2 l-j}(l+j)!}{\left(b^{2}-a^{2}\right)^{j}}\binom{l}{j} 2^{j+1 / 2} . \\
& \left\{a^{2 j-1} \frac{K_{(j-1)+1 / 2}(2 a \sqrt{s})}{(2 a \sqrt{s})^{j-1+1 / 2}}+(-1)^{l+1+j} b^{2 j-1} \frac{K_{(j-1)+1 / 2}(2 b \sqrt{s})}{(2 b \sqrt{s})^{j-1+1 / 2}}\right\} . \tag{3}
\end{align*}
$$

