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This paper discusses high efficiency finite element discretization scheme
for non-selfadjoint elliptic differential operator eigenvalue problems. It used
Rayleigh quotient accelerate method to non-selfadjoint problems.

Defined a generalized Rayleigh quotient and on the foundation built a
new two-grid discretization scheme. According to the indication of theo-
retical analysis and numerical experiments, with this scheme in this paper,
first use finite element to solve an eigenvalue problem and a linear equation
on a relatively coarse grid K

H , then solve l (l is ascent of finite element
eigenvalue λH) linear equations which have the same coefficient matrix on
the fine grid K

h, and finally compute the generalized Rayleigh quotient.
The resulting solution still maintains the asymptotically optimal accuracy
which used the finite element to solve eigenvalue prolem on the fine grid K

h

directly. Compared to the exist schemes now, it is a high efficiency.
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