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Large and sparse complex valued linear systems of algebraic equations arise in many

applications. Sometimes the underlying matrices are complex symmetric, i.e., non Her-

mitian but have a symmetric pattern. A typical example for this category is the complex

Helmholtz equation, time-dependent Schrödinger equation, inverse scattering problems,

generalized eigenvalue problems and many others.

Let us write the underlying complex linear system in the form

(A + iB)(x + iy) = (b + ic).

Complex symmetric linear systems will have A and B real symmetric matrices, which are

assumed here to be large and sparse and i =
√
−1. We focus on preconditioned iterations

applied on the equivalent real formulation (see, e.g., [6] and [7] for other formulations)
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We exploit the similarities between the above form and generalized saddle point problems

[3] to introduce and analyze several block preconditioners. In particular, we consider

block diagonal, perturbations of block diagonal, block triangular as well as one based on

symmetric and skew-symmetric splitting [2,5]
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or

M = H + S.

Real formulations have been considered in several works (see, e.g., [1,4,6]) because there

are several good packages which work in real arithmetics. It has been observed in [7]

that, in general, iterative solvers show often an unfavorable convergence behavior for the

transformed problem with respect to the original one. However, we experienced that

preconditioning can be very beneficial.
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