Complementarity Problems with Band Structure

<u>Götz Alefeld</u> Karlsruhe Institute of Technology (KIT), Germany Zhengyu Wang Nanjing University, China

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a given mapping. A complementarity problem CP(F) is to find a vector x^* such that

 $x^* \ge 0,$ $F(x^*) \ge 0,$ $(x^*)^T F(x^*) = 0.$

In applications the mapping F has very often the form

 $F(x) = Mx + \varphi(x),$

where $M \in \mathbb{R}^{n \times n}$ and where φ is a nonlinear mapping.

In this talk we do not make any assumptions concerning the appearance of the components of the vector $x = (x_i)$ in the components φ_i of φ . In the applications, however, we specialize the mapping φ to a so-called band mapping, where for each *i* only a limited number of components of *x*, concentrated around x_i , appear. These mappings have in a natural sense a certain bandwidth, which is similarly defined as for matrices. They appear if certain free boundary problems are solved numerically. We compute error bounds for CP(F).