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In this talk, we present a preconditioner for least squares problems min ‖b−Ax‖2, where

A can be matrices with any shape or rank. When A is rank deficient, our preconditioner

will be rank deficient too. The preconditioner itself is a sparse approximation to the

Moore-Penrose inverse of the coefficient matrix A.

Greville’s method [1] is an old method for computing the Moore-Penrose inverse of a

matrix A. We first write A in the following summation form,

A =
n

∑

i=1

aie
T
i ,

where ai is the ith column of A, ei is the ith column of an identity matrix of order m.

Further define

Ai =

i
∑

k=1

aie
T
i , i = 1, . . . , n,

and if we denote A0 = 0m×n, then Ai = Ai−1 + aie
T
i , i = 1, . . . , n. Thus every Ai,

i = 1, . . . , n is a rank-one update of Ai−1. Noticing that A
†
0

= 0n×m, we can use the

following formula to compute the Moore-Penrose inverse of Ai, and in the end we obtain

A†
n, which is A†.

A
†
i =

{

A
†
i−1

+ (ei − A
†
i−1

ai)((I − Ai−1A
†
i−1

)ai)
† if ai 6∈ R(Ai−1)

A
†
i−1

+ 1

σi
(ei − A

†
i−1

ai)(−A
†
i−1

ai)
T A

†
i−1

if ai ∈ R(Ai−1)
,

where σi = 1 + ‖A†
i−1

ai‖
2

2
. We can judge if ai ∈ R(Ai−1) or not by observing vector

u := (I − Ai−1A
†
i−1

)ai, since

ai 6∈ R(Ai−1) ⇔ u = (I − Ai−1A
†
i−1

)ai = 0,

ai ∈ R(Ai−1) ⇔ u = (I − Ai−1A
†
i−1

)ai = 0.

This method was proposed by Greville in the 1960s[1].



From Greville’s method, a factorization for the Moore-Penrose inverse of A can be

obtained. If we define vectors ki, fi and vi as

ki = A
†
i−1

ai,

ui = ai − Ai−1ki = (I − Ai−1A
†
i−1

)ai,

σi = 1 + ‖ki‖
2

2
,

fi =

{

‖ui‖
2

2
if ai 6∈ R(Ai−1)

σi if ai ∈ R(Ai−1)
,

vi =

{

ui if ai 6∈ R(Ai−1)

(A†
i−1

)T ki if ai ∈ R(Ai−1)
,

we can express A
†
i in a unified form for general matrices as A

†
i = A

†
i−1

+ 1

fi
(ei − ki)v

T
i ,

hence

A† =

n
∑

i=1

1

fi

(ei − ki)v
T
i .

If we denote

K = [k1, . . . , kn], V = [v1, . . . , vn], F = Diag{f1, . . . , fn},

we obtain a matrix factorization of A† as follows.

Theorem 1 Let A ∈ Rm×n and rank(A) ≤ min{m, n}. Using the above notations, the

Moore-Penrose inverse of A has the following factorization

A† = (I − K)F−1V T .

Here I is the identity matrix of order n, K is a strict upper triangular matrix, F is a

diagonal matrix, whose diagonal elements are all positive.

If A is full column rank, then

V = A(I − K)

A† = (I − K)F−1(I − K)T AT .

We perform an incomplete version of Greville’s method, so that we can construct an

approximate Moore-Penrose inverse of A, maintaining the sparsity of the preconditioner

and saving computations.

Algorithm 1 Greville Preconditioning Algorithm

1. set K = 0n×n

2. for i = 1 : n

3. u = ai − Ai−1ki

4. if ‖u‖ is small

5. fi = ‖u‖2

2

6. vi = u

7. else



8. fi = ‖ki‖
2

2
+ 1

9. vi = (Mi−1)
T ki =

∑i−1

p=1

1

fp
vp(ep − kp)

T ki

10. end if

11. for j = i + 1, . . . , n

12. kj = kj +
vT

i aj

fi
(ei − ki)

13. perform numerical droppings on kj

14. end for

15. end for

16. K = [k1, . . . , kn], F = Diag{f1, . . . , fn}, V = [v1, . . . , vn] such that A†
≈ (I −

K)F−1V T .

Consider the least squares problem,

min
x∈Rn

‖b − Ax‖2, (1)

where A ∈ Rm×n, b ∈ Rm. In [2], Hayami et al. proposed using use GMRES [3] to

solve least squares problems by using some preconditioners. Using our preconditioner

M ∈ Rn×m and we precondition (1) from the left, we can transform problem (1) to

min
x∈Rn

‖Mb − MAx‖2.

On the other hand, we can also precondition problem (1) from the right and transform

the problem (1) to

min
y∈Rm

‖b − AMy‖2.

Numerical examples will be presented in the talk.
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