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Linear systems with large differences between coefficients, called “discontinuous coef-

ficients”, arise in many cases in which partial differential equations (PDEs) model phys-

ical phenomena involving heterogeneous media. The standard approach to solving such

problems is to use domain decomposition (DD) techniques, with domain boundaries con-

forming to the boundaries between the different media. This approach can be difficult

to implement when the geometry of the domain boundaries is complicated or the grid

is unstructured. This work examines the simple preconditioning technique of scaling the

equations by dividing each equation by the Lp-norm of its coefficients. This precondition-

ing is called geometric scaling (GS). GS is a particular form of a diagonal preconditioner.

In the literature, diagonal scaling is usually applied to both sides of the system matrix

in order to preserve symmetry and enable the use of the conjugate gradient (CG). This

work is restricted to nonsymmetric systems.

It has been long been known that diagonal scaling improves the condition number of the

system matrix and the convergence properties of some algorithms; see [9, 11]. Gambolati

et al. [2] use the least square logarithm (LSL) scaling on the rows and the columns of the

system matrix for a certain problem in geomechanics with discontinuous coefficients.

However, it seems that there is no study of the general usefulness of row scaling for dis-

continuous coefficients. We examine several nonsymmetric problems derived from PDEs

with discontinuous coefficients and small to moderate convection terms. It is shown that

GS improves the convergence properties of some solution methods applied to these prob-

lems. The solution methods that we tested are restarted GMRES and Bi-CGSTAB, with

and without the ILUT preconditioner. These four algorithm/preconditioner combinations

were tested on both the original and the scaled systems, and it is shown that GS improves

the convergence properties of these methods.

Tests were done on the following four nonsymmetric problems:

(1) Problem F2DB from Saad [7, §3.7].

(2) Example 2 from van der Vorst [10], to which we added a convection term.

(3) Example 4 from van der Vorst [10].

(4) A problem from Graham and Hagger [6], to which we added a convection term.

Problems 2 and 4 were originally symmetric, but the extra convection term turned them

into nonsymmetric problems.



Sample results are shown for Problem 1 in Table 1. Three relative residual (rel-res)

criteria were prescribed, and both the time and the number of iterations to reach the

goal are shown. In cases of stagnation, the table shows the relative residual achieved.

GMRES was restarted after ten iterations, and ILUT was used with drop tolerance = 0

and fill-in = 1. All tests were done with the AZTEC package [8], in which GMRES is

implemented with a double classical Gram-Schmidt orthogonalization step. GS was used

with the L2-norm, but the L1-norm produced similar results.

Table 1: No. of iterations and runtimes for Problem 1. Grid size = 128 × 128.
No. of iterations and time (in sec.)

Method rel-res = 10−4 rel-res = 10−7 rel-res = 10−10

Bi-CGSTAB no conv. no conv. no conv.

with GS 91 (0.30) 299 (0.99) 361 (1.19)

Bi-CGSTAB+ILUT 31 (0.23) 107 (0.67) 142 (0.88)

with GS 30 (0.23) 90 (0.59) 130 (0.81)

GMRES(10) converged to 3.8 × 10−2

with GS 265 (0.85) converged to 1.1 × 10−5

GMRES(10)+ILUT converged to 3.9 × 10−3

with GS 39 (0.23) converged to 1.1 × 10−5

The effects of GS can be summarized as follows: in most cases, when the tested method

converges to the specified accuracy criterion, GS speeds up the convergence. In many

cases, when the tested method stagnates on the original system, it converges on the

scaled system. When GMRES (with and without ILUT) stagnates before reaching the

prescribed convergence goal, GS postpones the stage at which stagnation sets in, and

enables convergence to a level that is acceptable for most practical applications.

These results do not imply that GS is the “best” preconditioner for these problems,

or that it competes with DD methods in terms of runtime efficiency. Every particular

problem has its own specific most efficient algorithm/preconditioner/DD combination.

However, the results indicate that GS is a simple, generally useful preconditioner for

discontinuous coefficients. In some practical situations, it may save the search for a

complicated DD method and/or algorithm/preconditioner. Another advantage of GS is

that it is inherently parallel.

The effect of GS on the distribution of the eigenvalues was also studied. It is gener-

ally accepted that a large accumulation of eigenvalues near the origin is detrimental to

convergence. GS “pushes” many eigenvalues away from the origin. When the eigenvalue

range is divided into 100 equal intervals, GS reduces the number of eigenvalues in the first

interval (percentile) by one to three orders of magnitude.

GS is useful when the convection terms are small to moderate. It was shown in pre-

vious work that for strongly convection-dominated systems, Björck and Elfving’s CGMN

algorithm [1, 5] and its block-parallel version CARP-CG [4] (which is a CG-acceleration

of CARP [3]) provide useful solution methods. It will shown in future work that these



algorithms also perform well when, in addition to large convection terms, the coefficients

are discontinuous. This is probably due to the fact that GS, with the L2-norm, in inher-

ent in these algorithms. Note that these methods also converge with small to moderate

convection terms, but they are less efficient than the Bi-CGSTAB/GMRES/ILUT (with

GS) methods.
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