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P. Hénon
INRIA Bordeaux Sud-Ouest and LaBRI, France

J. Gaidamour

LaBRI, CNRS and INRIA Bordeaux, Sud-Ouest, France

Nowaday, three dimensional numerical simulations often require a tremendous amount

of resource. On one hands, direct methods can be mandatory to solve very ill-conditioned

systems. But for large 3D simulations, they are constrained by prohibitive memory re-

quirements and they also need a high amount of floating point operations. Iterative

methods on the other hand require much less memory and are more scalable in general.

Methods such as algebraic multigrids or multilevel solvers are optimal for some problems:

a linear complexity in term of memory and number of operations can be obtained on ellip-

tic problems for example but they lack adaptability in the general case. We will present

an hybrid solver that try to combine the assets of direct methods and iterative methods.

More precisely, we will give some algorithms to build a scalable hybrid direct/iterative

solver based on a Schur complement approach. Our method is based on a domain decom-

position of the matrix adjacency graph. We define a special ordering and partitioning of

the interface between the domain in order to compute a robust ILU preconditioner of the

Schur complement.

Consider the matrix A of a linear system where we distinguish two different sets of

unknowns B and C, then A can be factored in the following manner:
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where LB.UB is an exact factorization of AB and S is the matrix of the Schur complement:

S = AC − E.U−1

B
.L−1

B
.F . In the following, we will denote W = E.U−1

B
and G = L−1

B
F .

Using this decomposition the linear system A.x = r is equivalent to the system of equa-

tions:

AB.zB = rB

S.xC = rC − E.zB

AB.xB = rB − F.xC

where xB , xC , rB and rC are the part of x and r corresponding to the B and C sets of

unknowns and zB is a temporary vector. Thus, it can be solved in three steps: (1) zB =

U−1

B
.(L−1

B
.rB); (2) Use an iterative method to get xC ; (3) xB = U−1

B
.(L−1

B
.(rB − F.xC)).

In our case, we reordered the matrix according to the Hierarchical Interface Decom-

position (HID) we have described in the paper [1]: it consists in partitioning the set of

unknowns of the interface into graph components named ”connectors” that are grouped

in ”levels”. A level of connectors plays the role of separators for the immediate inferior



level. An illustration of this ordering and partitioning is given in figure 1: the bottom

right part of the matrix correspond to the global Schur complement structure.

Figure 1: The HID ordering is illustrated on a partition of 6 subdomains.
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The unknowns listed in the left part of the matrix (the B set) correspond to the interior

vertices of the domain partition, and those in the right part of the matrix (the C set)

correspond to the overlaping vertices reordered according to the HID. Hence, AB is a

block diagonal matrix where each block is a sparse matrix corresponding to the interior

of a subdomain.

To obtain an incomplete factorization of S, we allow fill-in only in the Schur comple-

ment system: that is to say inside the block pattern illustrated in figure 1. This fill-in

pattern ensures that the connectivity between the domains will remain the same in the

factored Schur matrix than in the original A matrix. It is an important ingredient in our

method: the incomplete Schur factorization is global but the fill-in pattern ensures that it

can be viewed from the local part of the Schur complement inside each domain. Thus we

keep a high degree of parallelism while being more robust than with a local precondition-

ing of each local Schur complement matrix (like we would do with an additive Schwarz

preconditioner of the Schur complement).

Another important aspect in our method is to avoid as much as possible the high

memory consumption required to compute the Schur complement preconditioner. To

this end, we will present different strategies based on a fine coupling between supernodal

algorithm (coming from direct factorization) and block ILUT algorithms (see [2]). In

particular, we will show that the best combination of right and left looking algorithm

depends on the approximation used to compute the Schur complement preconditioner.

The Figure 2 shows a comparison between our hybrid solver implemented in HIPS [3]

and the additive Schwarz method implemented in PETSc (with MUMPS as local direct

solver). The test cases are MHD1 (485, 597 unknowns and 24, 233, 141 non-zeros) an



Figure 2: Comparison between additive Schwarz method and HIPS on two irregular test cases
(Haltere and MHD1)
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unsymmetric real matrix (3D magneto-hydrodynamic problem) and Haltere (1, 288, 825

unknowns and 10, 476, 775 non-zeros) a symmetric complex matrix (3D electromagnetism

problem).

As we can see on these cases, the number of iterations of HIPS is much more robust then

the additive Schwarz method. These cases illustrate our choice of multiple subdomains by

processors parallelization scheme: a better trade-off memory / time can be obtained with

subdomains of small sizes in regards to the problem dimension. Consequently in many

cases the corresponding number of subdomains is greater than the number of processors

reasonably needed to solve the linear system.

In our talk, we will present more results and comparisons and also parallel results of

our solver on thousand of processors. All the algorithms presented are implemented in

HIPS that is freely downloadable on http://hips.gforge.inria.fr/
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