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This talk will address new regularized preconditioner that can be obtained by using a

few steps of the Lanczos bidiagonalization and more detailed can be found in [1].

This talk concerns with the computation of a meaningful approximate of least square

solution of large scale discrete ill-posed problems of the form

Ax = b,

by CGLS iterative method, where A is typically ill-conditioned and the right-hand side

vector b contaminated by an error such that b = b̂ + e. Here e and b̂ denote the noise and

unknown error-free right hand side vectors, respectively. These problems typically arise

from discretization of Fredholm integral equations of the first kind in, e.g., geophysics, or

image deblurring and are often referred to as linear discrete ill-posed problems.

For large scale ill-posed problems, iterative methods, such as CGLS, are the most

popular regularization methods. In fact, CGLS is a semiconvergent method: For some

k, in the first k iterations, the method converges to the solution x̂, and then suddenly

starts to diverge and the noise begins to enter the solution. Hence this is the time that

the iteration must be stopped to prevent the noise components to interfere. This shows

that CGLS method has regularization property.

However, iterative methods, such as CGLS, have slow rate of convergence for ill-posed

problems. So, for speeding up the rate of convergence the use of a suitable preconditioner

is needed. But the concept of a preconditioner for discrete ill-posed problems is not

the same as that of the standard preconditioners. The standard preconditioners try to

speed up the convergence by clustering the whole singular values of preconditioned system

around 1, while in the context of ill-posed problems one only needs to take care of the large

singular values. So, a preconditioner is needed to be introduced to improve the position of

the large magnitude part of the singular value spectrum and leave the remaining singular

values unchanged.

In this talk we introduce a new regularized preconditioner that can be obtained by us-

ing a few steps of the Lanczos bidiagonalization and it improves the large singular values

around 1 and leaves the others unchanged. In contrast to some special structured precon-

ditioners such as circulant and Kronecker product approximations which are proposed for

special structured matrices such as Toeplitz and circulant and ... matrices, construction

of the new preconditioner is not based on any particular structure of the matrices, and so

it presents itself as a general purpose alternative that can be used in special structured

matrices as well.



We show that after k ≪ n steps of the Lanczos bidiagonalization one can construct a

regularized inverse preconditioner such as
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which V k, Uk are orthogonal matrices and Bk ∈ R(k+1)×k is bidiagonal matrix that obtaind

in k’th step of Lanczos bidiagonalization.

According to characteristic of ill-posed problems the standard preconditioners cannot

be used in ill-posed problems because by the first few applications of these precondition-

ers the signal and noise subspaces will be mixed up and the solution is contaminated

by the noise. So in these problems, only the large singular values must be taken into

consideration, and we must introduce a preconditioner to improve the large magnitude

part of the singular value spectrum and leave the remaining singular values unchanged.

For example, consider A = UΣV T as the singular value decomposition of A, where U

and V are orthogonal matrices and Σ = diag(σ1, . . . , σn). Then AT A = V Σ2V T and for a

suitable k
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(
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)

V T ,

can be used as inverse regularized preconditioner of AT A = AT b, where Σ1 = diag(σ1, . . . , σk),

Σ2 = diag(σk+1, . . . , σn) and I =

(

I1
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)

. In this case the preconditioned system be-

comes

PATA = V
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2

)

V T .

This shows that P has improved the large singular values of AT A and has no influence

on the small ones. So this preconditioner does not mix the noise and signal subspaces of

the problem and has a regularizing effect.

In first view, the construction of this preconditioner seems to be very expensive and

difficult to implement, because the computation of all singular vectors in large scale

problems is not easily feasible and recommendable. But we now show that by using the

orthogonality of the matrix V , a version of this preconditioner can be obtained that its

construction is not expensive. In the first step, let V = [V1, V2], where V1 = [v1, . . . , vk],

V2 = [vk+1, . . . , vn]. Then the closed form of the preconditioner P can be written as

P = V1Σ
−2
1 V T
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T

2 .

Now from the orthogonality of V one obtains V2V
T

2 = I − V1V
T

1 , which in turn gives
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1 V T

1 + (I − V1V
T

1 ).

This shows that for constructing P one needs only to use V1 and Σ1. On the other hand,

since in ill-posed problems the dimension of signal subspace is small, then its corresponding

subspace V1 has a small dimension (index) k. Incidentally, It can be shown that application



of k steps of Lanczos bidiagonalization provides some good approximation of P can be

obtained as

P ≈ V k(B
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) = M.

which V k, Uk are orthogonal matrices and Bk is the bidiagonal matrix that obtained

in the k’th step of Lanczos bidiagonalization. This shows that after k steps of Lanczos

bidiagonalization one can construct the regularized inverse preconditioner
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),

in O(kn2) or about O(n2) operations, since k is very small in comparison with n. By

the way at every step of preconditioned iterative method it is needed to compute Mx for

some x ∈ Rn. For this preconditioner, Mx can be computed only with O(kn) ≈ O(n)

operations.

We investigated the performance of our new preconditioner on some test problems from

first kind fredholm integral equations and also on some image restoration test problems.

Also in special structure BTTB matrices the construction and application costs of this

preconditioner per iteration is roughly the same or effectively less than commonly used

preconditioners such as circulant and Kronecker product approximation.
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