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We present a preconditioning technique based on an approximate structured factoriza-

tion method which is efficient, robust, and also relatively insensitive to ill conditioning,

high frequencies, or wave numbers for some discretized PDEs. The factorization fully

integrates graphical sparse matrix techniques, rank structures of fill-in, and automatic

robustness enhancement techniques. The factorization has controllable accuracy and can

work as an effective black-box preconditioner.

In iterative methods for solving large discretized PDEs arising from practical problems,

classical preconditioners such as incomplete factorization or orthogonalization methods

can break down due to numerical instability. In this work, we present a reliable and

effective preconditioner based on structured data compression with any specified accuracy.

Consider a symmetric positive definite matrix A arising from the discretization of

certain PDEs. A is usually large and sparse. In the Cholesky factorization A = LL
T , new

nonzeros or fill-in are introduced into L. One way to reduce fill-in is to reorder the rows and

columns of A. For example, for an N ×N regular mesh, the factorization with the nested

dissection ordering [8] and its generalizations take O(n3/2) flops and O(n log n) storage,

where n = N2 is the order of A. For two-dimensional problems, these are shown to be

lower bounds for exact factorizations with any ordering [10] (ignoring special techniques

such as Strassen’s algorithm). Nest dissection uses separators to recursively divide the

mesh into subregions.

A direct factorization with nested dissection is still expensive when used as a precon-

ditioner. In this work, we compute structured approximate factorizations of A based on

a rank property of the problems. It has been indicated in [1, 2, 3, 9, 14, etc.] that for

some PDEs such as elliptic equations, during the direct factorization of A, the fill-in has a

low-rank property, or, the off-diagonal blocks have small numerical ranks. This property

can be used to improve the efficiency of the factorization. Rank structured matrices such

as quasiseparable or semiseparable matrices [7, 13] can be used to approximate the dense

intermediate matrices. The factorization can then provide a structured preconditioner.

Here, we organize the factorization with a supernodal multifrontal method together

with the nest dissection ordering of mesh points. The multifrontal method is a very

important direct methods for sparse matrix solutions [6, 12]. It keeps the propagation of

information local between nodes and their parents. The supernodal version multifrontal

method we use has nice data locality and takes good advantage of dense matrix operations.

The factorization follows an elimination tree of the separators. The intermediate matrices

are called frontal matrices and update matrices [6]. A frontal matrix is formed before the



elimination of each separator and carries the information of the separator and its upper

level neighbors. An update matrix is the Schur complement after the partial factorization

of a frontal matrix. If the problem has the low-rank property, the frontal matrices can be

approximated with rank structured matrices such as semiseparable matrices.

In [14], semiseparable matrices are used to approximate all intermediate matrices. This

makes the assembly of structured matrices extremely complicated. The algorithm in [14]

needs a careful implementation to ensure high efficiency. In this work, we simply form

the dense intermediate matrices first and then approximately factorize them into rank

structured matrices. The algorithm in [15] is used. After the factorization, the Schur

complement matrix (update matrix) is still a regular dense matrix. Thus, standard matrix

assembly is used in the multifrontal process. That is, all frontal and update matrices are

in dense forms, but the factors are structured. This makes the algorithm much simpler

than the one in [14].

Furthermore, the algorithm in [14] may suffer from the problem of breakdown, or the

lose of positive definiteness, especially when a large tolerance is used in the structured ap-

proximation. Here, when directly factorizing dense frontal matrices, we use a robustness

technique where Schur complements are automatically compensated. This compensation

is done implicitly during the approximation of off-diagonal blocks. Thus, the low-rank

approximation improves not only the efficiency but also the reliability. The total cost of

this approximate factorization is only O(rn log n), where r is the maximum off-diagonal

numerical rank. This has an extra log n factor compared to the complexity of the algo-

rithm in [14]. However, the computation time is still very competitive due to the dense

block operations. In addition, even for problems where the low-rank property is not very

significant, our approximate factorization with a relatively large tolerance can still pro-

vide attractive preconditioning results with satisfactory condition bounds. That is, the

preconditioner does not need highly strict low-rank structural requirement to be effective

like many other structured algorithms.

The semiseparable structure we use for the factors is a tree structured hierarchically

semiseparable (HSS) matrix [4, 5]. Thus, the overall Cholesky factor is given by two layers

of tree structures, an outer elimination tree of separators, and an inner HSS tree corre-

sponding to each separator. The preconditioner has a good potential to be parallelized.

We tested the structured preconditioner on various problems including elliptic problems,

linear elasticity equations, Helmholtz equations, Maxwell equations, etc. Preliminary nu-

merical results indicate that the preconditioner is relatively insensitive to frequency, wave

numbers, etc. Comparisons with other methods and tools such as Hypre [11] demonstrate

the effectiveness of this preconditioner. The factorization algorithm works as a black-

box preconditioner and is also easy to use. It can work on A directly without the mesh

information.
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