
A Block Approximate Inverse With Cutoff Preconditioner For
Semi-Sparse Linear Systems

Ikuro Yamazaki
Graduate School of Systems and Information Engineering, University of Tsukuba, Japan

yamazaki@mma.cs.tsukuba.ac.jp

Masayuki Okada
Department of Middleware & Platform Software, Hitachi, Ltd., Japan

okada@mma.cs.tsukuba.ac.jp

Hiroto Tadano, Tetsuya Sakurai
Department of Computer Science, University of Tsukuba, Japan

tadano@cs.tsukuba.ac.jp, sakurai@cs.tsukuba.ac.jp

Keita Teranishi

Department of Cray, Inc., USA

keita@cray.com

1 Introduction

In the recent nano-science simulations, the calculation of the energy often involves a

solution of large sparse linear systems Ax = b, where A ∈ Cn×n is poorly-conditioned and

relatively dense (a few hundred nonzero entries per row). For the solution of such linear

systems on distributed memory multiprocessors, Krylov subspace methods preconditioned

with sparse approximate inverse based on Frobenius norm minimization (SAI) appears

very attractive because of the good parallel efficiency in both preconditioner construction

and application. However, SAI is typically less effective at accelerating the convergence

than the conventional preconditioning methods such as incomplete factors. In addition,

SAI requires a huge computational cost in its construction when a large number of nonzero

entries are kept in the approximate inverse matrix. We attempt to overcome these per-

formance bottlenecks using a blocked version of Frobenius norm minimization to mitigate

the side effect of the minimization process applied to individual columns of the approxi-

mate inverse. We also apply different drop-threshold schemes to achieve a huge reduction

the computational costs of preconditioner construction and application at the cost of a

small increase in iteration counts.

In the presentation, we are going to demonstrate how our approach improves the per-

formance of SAI preconditioning.

2 SAI preconditioner and its block variant

In SAI preconditioner, the preconditioning matrix M = [m1, m2, · · · , mn] ≈ A−1 is

constructed by solving n independent least square problems:

min
mk

‖Amk − ek‖
2

2
, k = 1, 2, · · · , n

where ek ∈ Rn is a k-th unit vector.

Block SAI preconditioner is proposed by Barnard and Grote [3] in order to improve the

accuracy of the preconditioning matrix. In Block SAI preconditioner, the preconditioning

matrix M = [M1, M2, · · · , M⌈n/l⌉] is constructed by solving ⌈n/l⌉ independent least square

problems:

min
Mk

‖AMk − Ek‖
2

2
, k = 1, 2, · · · , ⌈n/l⌉

where l is a block size, Ek is a submatrix of the identity matrix I such that I =

[E1, E2, · · · , E⌈n/l⌉]. The sparsity pattern of the preconditioning matrix M is decided

by the following strategy:

A′ = [a′
ij] a′

ij =

{

1, (|aij| > ε or i = j)

0, otherwise

spy(A′) = spy(M)

where ε is a real value and ”spy” denotes the sparsity pattern. This method is similar to

ParaSails [2].

3 Block SAI with Cutoff (BSAIC) preconditioner

In our preconditioning, the Cutoff strategy is applied to the coefficient matrix A in

order to reduce the computation time of least square problems which appear in Block

SAI. Firstly, the approximate coefficient matrix Ac is generated by the following Cutoff

strategy:

Ac = [ãij] ãij =

{

aij, (|aij| > θ or i = j)

0, otherwise

where θ is a real value. Then, least square problems with the approximate matrix Ac

min
Mk

‖AcMk − Ek‖
2

2
, k = 1, 2, · · · , ⌈n/l⌉

are solved. The matrix M = [M1, M2, · · · , M⌈n/l⌉] is employed as the preconditioning

matrix. We call this preconditioner BSAIC preconditioner.

4 Numerical experiments

In this section, BSAIC preconditioner is compared with SAI and Block SAI by numer-

ical experiments. All experiments were carried out by MATLAB 7.4 on MacBook (CPU:

Intel Core 2 Duo 2.0GHz, Memory: 2.0Gbytes, OS: Mac OS 10.5.6). The test problem

was solved by the preconditioned BiCGSTAB method. The maximum iteration counts

were set to 1,000, and the stopping criterion for the relative residual was 10−10. The

initial guess x0 was set to 0 and all elements of b were set to 1. In this experiment, the

value of ε and the block size l were set to 10−4 and 20, respectively.

The test matrix was derived from the computation of the molecular orbitals of DNA.

The matrix size was 1,980 and the number of nonzero elements was 3,490,478. The

pattern of nonzero elements of the coefficient matrix and molecular illustration of DNA

are presented in Figures 1 and 2, respectively.

Table 1 shows the results for DNA. SAI and Block SAI took about 1,200 seconds and

315 seconds, respectively. By contrast, BSAIC took 24 seconds when θ = 1.0 × 10−2.

References

Figure 1: The pattern of nonzero elements in A. Figure 2: Molecular illustration of DNA.

Table 1: Results for DNA.
The number Wall clock time [sec]

Preconditioner of iterations Preconditioning Iteration Total

SAI 70 1192.46 13.09 1205.55

Block SAI 30 308.27 6.09 314.36

θ = 1.0 × 10−4 30 48.96 6.03 54.99

θ = 1.0 × 10−3 53 18.97 10.88 29.85

BSAIC θ = 1.0 × 10−2 95 4.79 19.27 24.06

θ = 1.1 × 10−2 162 4.34 30.81 35.15

θ = 1.2 × 10−2 166 4.01 31.77 35.78

θ = 1.5 × 10−2 301 3.42 58.62 62.04

[1] M. Benzi, and M. Tuma: A sparse approximate inverse preconditioner for nonsymmetric

linear systems. SIAM J. Sci. Comput, 19:968–994, 1998.

[2] E. Chow: Parallel implementation and practical use of sparse approximate inverse pre-

conditioners with a priori sparsity patterns. Int. J. High Perf. Comput. Appl., 15:56–74,

2001.

[3] S. Barnard and M. Grote: A block version of the SPAI preconditioner. in Proc. of the

9th SIAM conf. on Parallel Process. for Sci. Comput, San Antonio, TX, 1999.

