Modified Hermitian And Skew-Hermitian Splitting Preconditioner For Saddle Point Problems

Jun-Feng Yin

Department of Mathematics, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China yinjf@tongji.edu.cn

Consider saddle point problem of the form

$$\begin{bmatrix} A & B^* \\ -B & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix} \quad \text{or} \quad \mathcal{A}x = b$$

where A is nonsymmetric, a modified Hermitian/skew-Hermitian splitting (MHSS) preconditioner,

$$\mathcal{P} = \frac{1}{\alpha + \beta} (\alpha I + \mathcal{H})(\beta I + \mathcal{S}), \qquad \mathcal{H} = \begin{pmatrix} H & 0 \\ 0 & 0 \end{pmatrix}, \qquad \mathcal{S} = \begin{pmatrix} S & B^* \\ -B & 0 \end{pmatrix}$$

is presented for the Krylov subspace solution method where H and S is Hermitian and skew-Hermitian part of matrix A; see [1, 2] for details.

Let η and $x = [u, v]^T \neq 0$ be eigenvalue of $\mathcal{P}^{-1}\mathcal{A}$ and the corresponding eigenvector respectively, they satisfy

$$(\mathcal{H} + \mathcal{S})x = \frac{\eta}{\alpha + \beta}(\alpha I + \mathcal{H})(\beta I + \mathcal{S})x.$$

Denote $\Re(\eta)$ and $\Im(\eta)$ be the real and imaginary part of η . If $u \neq 0$, v = 0, theoretical analysis shows that,

$$g(\lambda_{\min}(H)) \le \Re(\eta) \le g(\lambda_{\max}(H))$$
$$g(\lambda_{\min}(S/i)) \le \Im(\eta) \le g(\lambda_{\min}(S/i))$$

where

$$g(x) = \frac{(\alpha + \beta)}{\alpha} - \frac{(\alpha + \beta)\beta}{\alpha(\beta + \alpha x/(\alpha + x))}.$$

If $u \neq 0, v \neq 0$, we show that $\left|\frac{\eta \alpha \beta}{\alpha + \beta - \eta \alpha}\right| < 1$ if and only if

_

$$\frac{a^2}{\frac{1+c}{1-c}} + \frac{b^2}{\frac{1-c}{1+c}} < 1$$

where

$$a = \frac{u^* K^* H K u}{u^* K^* L u}, \qquad b = \frac{u^* K^* (S/i) K u}{u^* K^* L u}, \qquad c = \frac{u^* K^* B^* B u}{u^* K^* L u}$$

In Tables 1 and 2, the optimal parameters, number of iteration and CPU time are listed for preconditioned BiCGSTAB and GMRES method for discrete Navier-Stokes equation of the form

$$-\nu \nabla u + \mu \nabla u + \nabla p = f \text{ in } \Omega$$
$$\nabla \cdot u = f \text{ on } \Omega.$$

Numerical results further verify that our preconditioner is efficient and better than standard HSS preconditioner.

		HSS	3	MHSS			
μ	α^*	IT	CPU	α^*	β^*	IT	CPU
10	5	13	8.99	5	170	8	5.68
50	17	22.5	15.74	5	70	9.5	6.74
100	30	28	19.51	5	40	12.5	8.85
500	52	25	17.51	5	30	10.5	7.59

Table 1: Numerical results of preconditioned BiCGSTAB.

ſ		HSS			MHSS			
	μ	α^*	IT	CPU	α^*	β^*	IT	CPU
	10	3	15	6.06	5	20	12	5.06
	50	10	28	10.46	5	40	14	5.81
	100	12	33	12.46	5	40	15	6.22
Ī	500	40	28	10.70	20	50	24	9.13

Table 2: Numerical results of preconditioned GMRES.

This work was supported by Program for Young Excellent Talents in Tongji University, and the National Natural Science Foundation of China (Grant No. 10801106).

References

- Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24(2003), pp. 603–626.
- [2] M. Benzi, A. J. Wathen, Some Preconditioning Techniques for Saddle Point Problems, Model Order Reduction: Theory, Research Aspects and Appl., 13(2008), pp. 195–211.