
Chapter 4

Radian

4.1 Introduction

Radian is a way to cut and measure an angle, which is more reasonable to use than degree due to the

arc length of circle (will be explained below). It is a unit of measurement of angles equal to about 57.3o,

equivalent to the angle subtended at the centre of a circle by an arc equal in length to the radius.

4.2 Why Is a Circle 360◦?

The Sumerians watched the Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, and

Saturn), primarily for omens. They did not try to understand the motions physically. They did, however,

notice the circular track of the Sun’s annual path across the sky and knew that it took about 360 days to

complete one year’s circuit. Consequently, they divided the circular path into 360 degrees to track each day’s

passage of the Sun’s whole journey. This probably happened about 2400 BC.

That’s how we got a 360-degree circle. Around 1500 BC, the Egyptians divided the day into 24 hours, though

the hours varied with the seasons originally. Greek astronomers made the hours equal. About 300 to 100

BC, the Babylonians subdivided the hour into base-60 fractions: 60 minutes in an hour and 60 seconds in a

minute. The base 60 of their number system lives on in our time and angle divisions. ∗

4.3 Why Radian over Degree?

Students typically learn about degrees before they learn about radians, which brings up the question: Why

learn about radians if degrees are good enough for measuring angles? The radian is defined to be the ratio

of the length of the arc of a circle s to the length of the radius of the circle r, where each length is measured

in the same unit. Therefore, when you divide s by r to get the radian measure of the angle, the units for

the two lengths cancel, and you end up with a measure that has no units, i.e.

θ =
s

r
.

∗http://math.stackexchange.com/questions/340467/why-is-a-full-circle-360-degrees
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When s is the entire circumference of the circle, the corresponding angle is that of the entire circle. Since

the circumference of a circle is s = 2πr, the angle of a full circle is
2πr

r
= 2π.

Unless there is a good reason, one is free to use any measure whatsoever for angles, such as degrees, radians,

or one of the less common ones. There is a good reason to use radian over degree.

If you are working with the derivative of a trigonometric function, then it is preferable to use radian

measure for angles, because then derivative formulas (and limit formulas) are easier. For example, using

radians, the derivative formulas for sine and cosine are:

d

dθ
sin θ = cos θ

and
d

dθ
cos θ = − sin θ.

However, if degrees are used, the derivative formulas for sine and cosine are:

d

dθ
sin θ◦ =

π

180
cos θ◦

and
d

dθ
cos θ◦ = − π

180
sin θ◦.

Derivative will be discussed in later chapters. Without knowing what it is, just observe the formulas now.

The latter pair of formulas are a pain because of the additional factors, therefore, we use radians whenever

we are dealing with derivatives of trigonometric functions.

4.4 Convert Degree to Radian

If θ is an angle in degrees while t is an angle in radians, then

t =
πθ

180
.

It is obvious to see that radian of a semi-circle (180o) is equal to π. Then, for easy calculation, we calculate

the other special angles based on such a fact, e.g.: radian of a circle (360o) is equal to two times a semi-circle

which is 2π. More can be seen from the following graph.
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4.5 Circle and Arc

The arc length is the distance along the curved line making up the arc of a circle. †. And the arc length s

of a circle is given by

s = r · θ

and the area A of a sector of a circle is given by

A =
1

2
r2θ.

Example 4.1. Find the area A of the shaded region.

Area of the shaded part and the triangle

=
1

2
· 42(π − π

3
)

=
16π

3

Area of the triangle

=
1

2
· 42 sin(

π

2
)

= 4π ·
√

3

2

= 2
√

3π

Therefore, area of the shaded part

=
16π

3
− 2
√

3π.

N

4.6 Exercises

Convert the following radians (degrees) to degrees (radians).

†http://www.mathopenref.com/arclength.html
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1.
π

3
radians

2.
3π

4
radians

3.
π

10
radians

4.
7π

4
radians

5.
π

6
radians

6. 0.6 radians

7. 120o

8. 135o

9. 15o

10. 45o

11. 49o

12. 17o

Determine the angle (in radians) subtended at the centre of a circle of radius 3cm by each of the following

arcs:

13. arc of length 6 cm

14. arc of length 3π cm

15. arc of length 1.5 cm

16. arc of length 6π cm

17. Suppose we have a circle of radius 10 cm and an arc of length 15 cm. Find the angle θ, the area of the

sector OAB and the area of the minor shaded segment.

18. A sector a circle is bounded by two radii r = 5 cm and an arc s.

(a) Determine the length of the arc when the angle at the center is
π

2
radians.

(b) Calculate the area of question (a).

(c) A sector of this circle has an area of 50 cm2. What is the angle (in radians) at the centre of this

sector?

19. Consider the circle shown below. Calculate the angle θ in degrees.

20. Find the arc length of P̂QR.
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21. ÂB and ĈD both have an angle measure of 30o, but their arc lengths are not the same. OB = 4 and

BD = 2.

(a) What are the arc lengths of ÂB and ĈD?

(b) What is the ratio of the arc length to the radius for both of these arcs? Explain.

(c) What are the areas of the sectors AOB and COD?

22. The concentric circles all have centre A. The measure of the central common angle ∠A is 45o. The arc

lengths are given as follows.

(a) Find the radius of each circle.

(b) Determine the ratio of the arc length to the radius of each circle.

23. Find the area of the shaded part of the circle of radius 2.

24. The radius of the following circle is 36 cm, and the ∠ABC = 60o.

(a) What is the arc length of ÂC?

(b) What is the radian measure of the central angle?

25. In the figure, TP and TQ are tangents to the circle with centre O at P and Q respectively. If

∠POT = 60o and TO = 8 cm, find the area of the shaded region.



Chapter 5

Functions

A function relates an input to an output. And there are different kinds of functions that have different types

of input and of output. For example, a human-being can input nearly any kind of food, while dogs can only

intake unsweetened dog food. In this chapter, we will go through the varieties of function, examining the

characteristics of function by using the example y = x2.

5.1 Domain, Codomain and Range

A function f on a set D into a set S is a rule that assigns a unique element f(x) in S to each element x in

D. Domain, co-domain and range are special names for what can go into, and what can come out

of a function:

• What can go into a function is called the Domain

• What may possibly come out of a function is called the Co-domain

• What actually comes out of a function is called the Range

y = f(x)

where the set of all possible input values for x is called the domain of the function, the set of permissible

outputs for y is called the co-domain, and the set of all actual outputs for y is called the range of the function.

We denote a function f with domain X and codomain Y as

f : X → Y.

6
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Note: The co-domain of a function is a set of values that includes the range, but may also include additional

values beyond those in the range. Co-domains can be useful when the range is difficult to specify exactly,

but a larger set of numbers that includes the entire range can be specified. For example, a co-domain could

start out as the set of all real numbers R, and then be gradually reduced in size as sets of values that the

function will never produce are figured out. ∗

Example 5.1. Find the domain and the range of the function

y = f(x) = x2

where x ∈ [1, 3].

The domain of f is given as D(f) = [1, 3]. Note that the function is strictly increasing for x ∈ [1, 3], and so

the range of f(x) is R(f) = [f(1), f(3)] = [1, 9]. N

Example 5.2. More examples are shown below.

f(x) = x

Domain: (−∞,∞)

Range: (−∞,∞)

f(x) = x3

Domain: (−∞,∞)

Range: (−∞,∞)

f(x) = |x|
Domain: (−∞,∞)

Range: (0,∞)

f(x) =
√
x

Domain: (0,∞)

Range: (0,∞)

∗https://mathmaine.wordpress.com/2013/06/24/domain-and-range/
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f(x) =
1

x
Domain: (−∞, 0)

⋃
(0,∞)

Range: (−∞, 0)
⋃

(0,∞)

N

With the basic concept of what a function is, we can further investigate the properties of functions.

5.2 Odd and Even Function

A function f : A→ B is called an even function if

f(x) = f(−x) for all x ∈ A.

A function f : A→ B is called an odd function if

−f(x) = f(−x) for all x ∈ A.

Example 5.3. Again let us consider the function f(x) = x2. For any x ∈ R,

f(−x) = (−x)2 = x2 = f(x).

Therefore f(x) is an even function. N

5.3 Injective and Surjective Function

Let f :A→ By = f(x) be a function.

1. If for any a, b in A, f(a) = f(b)⇒ a = b, f is said to be injective.

2. If for any b in B, there exists a in A such that f(a) = b, f is said to be surjective.

3. If a function is both injective and surjective, it is said to be bijective.
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Example 5.4. Verify whether the function f(x) = x2 is injective or surjective on real numbers.

To check the injectivity, consider a and −a, where a is non-zero,

f(−a) = (−a)2

= a2

= f(a).

Therefore, it is not injective.

To check the surjectivity, it is easily proved not surjective by a counter example.Since f(x) = x2 > 0 for all

x, there does not exist a number c such that

f(c) = −1

. Therefore, it is not surjective. N

5.4 Inverse function

A function tells you what y is if you know what x is. The inverse of a function will tell you what x has to

be to get that value of y. The domain of f is the range of f−1 and the range of f is the domain of f−1.

Example 5.5. Suppose

y = 3x− 2.

First, we let x be the subject.
y + 2

3
= x

Once we have “x =”, switch x and y, then you will have the inverse function.

y =
x+ 2

3

To find the domain and range of the inverse, just swap the domain and range from the original function. N
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Example 5.6. Find the inverse of the function y = x2 on x ≥ 0.

y = x2

±√y = x

y = ±
√
x

For x ≥ 0, we choose y = +
√
x as the inverse function. Please noted that inverse function has to be

unique. If the function y = x2 is defined on x ∈ R, there are two inverse functions y =
√
x and y = −

√
x

which contradicts the definition of an inverse function. In this case, the inverse function does not exist. N

5.4.1 To Prove an Inverse Function

If a function f : X → Y is bijective, its inverse function f−1 : Y → X exists. We say the function f is

invertible and the function f−1 is unique.

There is an easy and simple method to verify whether an inverse is a function, called the horizontal line

test, remember that it is very possible that a function may have an inverse but at the same time not a

function.

If the horizontal line intersects the graph of a function in all places at exactly one point, then the given

function should have an inverse that is also a function. We say, this function passes the horizontal line test.

Here are some examples of functions that pass the horizontal line test: †

f(x) = −x+ 2 f(x) =
√
x+ 2 f(x) =

1

x+ 1

Alternatively, here are some examples that fail the test:

f(x) = x2 − 2 f(x) = |x| f(x) =
√

7− x2

Example 5.7. Again let us consider f(x) = x2.

†https://www.chilimath.com/algebra/intermediate/test/horizontal-line-test.html
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According to the graph, there exists 2 points x =
√

2 and x = −
√

2 such that f(x) = 2.

Therefore, the function fails the horizontal line test and the inverse function does not exist. N

5.5 Exercise

1. Find the Domain and Range. Also, state whether each set of ordered pairs is a function or not.

(a) {(−6,−6), (6, 1), (−1,−8), (9, 4), (−8, 2)}

(b) {(−7, 3), (9, 4), (3,−7), (6,−4), (6,−1)}

(c) {(−7, 9), (8,−2), (−7,−4), (−9, 8), (−4, 7)}

2. Find the domain and the range of function

(a) y =
x

x2 + 1
, where x ∈ R.

(b) f : Q→ Q, defined by f(x) =
x

2

(c) g : R→ R, defined by g(x) = x2

(d) h : R→ R, defined by h(x, y) = x+ yi.

(e) y = f(x) =
√

9− x2 + 1.

3. In each part find the domain and the range of the given function. Then for each of the functions that

has an inverse function, state the domain and range of the inverse function.

(a) f(x) = x2 − 6x+ 13

(b) g(x) = ln(x+ 2)

(c) h(x) =
√

1− x

(d) k(x) =
x+ 2

x− 3

4. Prove the bijection of the following functions.

(a) g : R→ R, defined by g(x) = 2f(x) + 3

(b) g : R→ R, defined by g(x) = x3

(c) g : R→ R, defined by g(x) = x+ |x|

(d) g : N→ N, defined by f(x)=

2n+ 1 if n is even

2n if n is odd

(e) g : N→ Z, defined by f(n) = (−1)n2n+
1

2
[(−1)n − 1]



CHAPTER 5. FUNCTIONS 12

(f) g : 0, 1, 2, 3→ N
⋃

0, defined by g(x) = 2x− x2

(g) g : [0, 1]→ [−4,−1], defined by g(x) = −3x− 1

(h) g : R2 → R, defined by g(x, y) = x2 + y2

5. Determine, if possible, the inverse function of the followings.

(a) f(x) = 5x− 2

(b) f(x) = 2(x− 3)2 − 5, x ≥ 3

(c) f(x) = x2 − 4x+ 6

(d) f(x) = (2x+ 8)3

(e) f : R→ R, defined by f(x) = 8x3 − 2

(f) f : (1, 2)→ (0, 1), defined by f(x) = x− [x]

6. Let a, b ∈ R and let f be the function Z → Z defined by f(x) = ax+ b. For which values of a and b is

f an surjective function? For which values of a and b is f an injective function?

7. Let A = 1, 2, 3, 4, 5. The function f is defined on A by

f : A→ N : x 7→ x3 − 5x2 + 3x+ 5

(a) By trial-and-error, find the maximum and minimum values of f .

(b) State whether f is injective. Give a reason for your answer.



Chapter 6

Trigonometric Identities

6.1 Introduction

In geometry, we have learnt some elementary trigonometric identities, which are very useful in tackling

problems of many topics. More useful identities will be discussed in this chapter for more advanced problems.

6.2 Imaginary Number

Imaginary number, is a number that when squared gives a negative result. Normally if you square any

real number you always obtain a positive or zero result. So how can we square a number and get a negative

result? Because we “imagine” that we can, and it turns out that such a number is actually useful and can

solve real problems. The unit imaginary numbers (the same as “1” for real numbers) is

i =
√
−1

.

6.3 Trigonometric Identities by Euler’s Formula

There are so many Trigonometric Identities that it is unwise to memorize them all by spoon-feeding. Instead,

we can derive the identities by using Euler’s Formula. An Euler’s Formula is given by

eix = cosx+ i sinx,

where i is the imaginary number.

Let’s try proving sin2 x+ cos2 x = 1.

Proof. Suppose that

eix = cosx+ i sinx

13
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and

e−ix = cos(−x) + i sin(−x) = cosx− i sinx.

We multiply both the equations, then

eix−ix = (cosx+ i sinx)(cosx− i sinx)

e0 = cos2 x− i cosx sinx+ i sinx cosx− i2 sin2 x

1 = cos2 x+ sin2 x.

The proof is complete.

�

After experimenting with Euler’s Formula, you can get the following results:

• Double Angle Formulas

sin(2θ) = 2 sin θ cos θ

cos(2θ) = 2 cos2 θ − 1 = 1− 2 sin2 θ

tan(2θ) =
2 tan θ

1− tan2 θ

• Sum and Difference Formulas

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

tan(α± β) =
tanα± tanβ

1∓ tanα tanβ

• Product to Sum Formulas

sinα sinβ =
1

2
[cos(α− β)− cos(α+ β)]

cosα cosβ =
1

2
[cos(α− β) + cos(α+ β)]

sinα cosβ =
1

2
[sin(α+ β) + sin(α− β)]

cosα sinβ =
1

2
[sin(α+ β)− sin(α− β)]

• Sum to Product Formulas

sinα+ sinβ = 2sin(
α+ β

2
) cos(

α− β
2

)

sinα− sinβ = 2cos(
α+ β

2
) sin(

α− β
2

)

cosα+ cosβ = 2cos(
α+ β

2
) cos(

α− β
2

)

cosα− cosβ = −2sin(
α+ β

2
) sin(

α− β
2

)

6.4 Inverse Trigonometric Functions

The inverse trigonometric functions are the inverse functions of the trigonometric functions, written cos−1 x,

sin−1 x, tan−1 x, i.e.

sin(sin−1(x)) = x.

cos(cos−1(x)) = x.

tan(tan−1(x)) = x.

Remark: “-1” in an inverse trigonometric function is NOT an exponent and so,

cos−1 x 6= 1

cosx
.
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For different inverse trigonometric functions, they have different domains and ranges.

6.5 Exercises

1. Prove, by Euler’s Formula, that cos(2θ) = cos2 θ − sin2 θ.

2. Prove, by Euler’s Formula, that cos(α+ β) = cosα+ cosβ − sinα sinβ.

3. Find sin 3x in terms of sinx.

4. Find cos 4x in terms of cosx.

5. Solve the equation sin 2x = sinx,−π ≤ x ≤ π.

6. Prove the following trigonometric identities.

(a) cos(x+
5π

6
) = −

√
3 cosx+ sinx

2
.

(b) tan(x− 3π

4
) =

tanx+ 1

1− tanx
.

7. Prove the following trigonometric identities.

(a) cos(x+
π

6
)− sin(x+

2π

3
) = 0.

(b) cos(x+ y) cos(x− y) = (cosx cos y)2 − (sinx sin y)2.

8. Complete both sections with the picture below.
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(a) Show that tanB =
tanA+ tanC

1− tanA tanC
.

(b) If A = 32o, B = 89o, what is the value of C?

9. Evaluate, if possible

(a) cot(sin−1 2) and sin(tan−1 2).

(b) sin(cot−1(−1

2
)) and cos(cot−1(−1

2
)).

10. Solve the following equations for 0 ≤ x ≤ π.

(a) tan 2x− tanx = 0

(b) 4 sin2 x− 2 cos2 x+ cos 2x = 0

(c) cos 3x = cosx

(d) 4 sin
(π

4
+ x
)

cos

(
3π

4
− x
)

= 1

11. (a) Prove that
sec 2A+ tan 2A+ 1

sec 2A+ sec 2A− 1
= cotA.

(b) Hence, solve the equation
sec 2A+ tan 2A+ 1

sec 2A+ tan 2A− 1
= 1 for 0 ≤ A ≤ π.

(c) i. Show that sin 2θ = sin(90o − 3θ) when θ = 18o.

ii. Using the identity cos 3A = 4 cos3A− 3 cosA, express sin 18o in surd form.

12. (a) Express 2 cos

(
5π

8
+ θ

)
in terms of cos 2θ.

(b) Hence, solve the equation 2 cos

(
x+

3π

8

)
cos

(
x+

5π

8

)
= 0 for 0 ≤ x ≤ π.

13. (a) Prove that cos 3x = 4 cos3 x− 3 cosx.

(b) Hence, solve the equation cos 4x+ 6 cos2 x− 8 cos4 x = 1 for 0 ≤ x ≤ π.

14. (a) Express sin
(
x− π

3

)
in terms of sinx and cosx.

(b) Hence, solve the equation sinx−
√

3 cosx = 1 for 0 ≤ x ≤ π.

15. (a) Prove that tan2 θ + cot2 θ =
4

sin2 θ
− 2, where 0 ≤ θ ≤ π

2
.

(b) Hence. find the least value of tan2 θ + cot2 θ.

16. A and B are two unequal acute angles.

(a) Prove that
sin 2A− sin 2B

cos 2A− cos 2B
= − cot(A+B).

(b) If
√

3 sinA cosA− sin2A =
√

3 sinB cosB − sin2B, find the value of cot(2A+ 2B) in surd form.

17. Prove by mathematical induction that

cosA+ cos 3A+ cos 5A+ · · ·+ cos(2n− 1)A =
sin 2nA

2 sinA

for all positive integers n, where sinA 6= 0.
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18. HKCEE 1998 Additional Mathematics Paper 2 Q7

Show that sin
(

3x+
π

4

)
cos
(

3x− π

4

)
=

1 + sin 6x

2
.

19. HKCEE 2002 Additional Mathematics Q8

Given 0 < x <
π

2
. Show that

tanx− sin2 x

tanx+ sin2 x
=

4

2 + sin 2x
− 1.

Hence, or otherwise, find the least value of
tanx− sin2 x

tanx+ sin2 x
.

20. HKCEE 2003 Additional Mathematics Q10

Given two acute angles α and β.

(a) Show that
sinα+ sinβ

cosα+ cosβ
= tan

(
α+ β

2

)
.

(b) If 3 sinα− 4 cosα = 4 cosβ − 3 sinβ, find the value of tan(α+ β).



Chapter 7

Vector

In everyday life, we always encounter different varieties of quantities, and there are mainly two different

kind of quantities: scalars and vectors. Scalar is the measurement of a medium strictly in magnitude (size),

like time, weight, height, the number of teeth etc., while vector is a measurement that refers to both the

magnitude of the medium as well as the direction of the movement the medium has taken, like velocity, force

etc.

7.1 Introduction

A vector,
−−→
AB is represented by a directed line segment from an initial point A to a terminal point B. The

magnitude (or length) of
−−→
AB is denoted by use‖

−−→
AB‖.

In the figure, we call it a vector from the tail A to the head B.

For scalar, we say two numbers are the same if their magnitudes are the same, like 4 and 4, 3.14159 and π.

For vector, the two vectors have to be the same in magnitude and direction in order to be the same. i.e. if

AB = CD and AB//CD, then
−−→
AB =

−−→
CD.

7.2 Definition

7.2.1 Zero Vector

A vector with zero magnitude is called a zero vector. It is usually denoted by 0. E.g.
−→
AA is a zero vector.

18
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7.2.2 Unit Vector

A vector v with magnitude of 1 unit is called a unit vector. It is usually denoted by v̂. Unit vector is usually

used to indicate direction. We shall have further discussion about it later.

7.2.3 Negative Vector

Given a vector v, the negative vector of v, denoted by −v, is a vector with the same magnified as v but in

the opposite direction of v. E.g.
−−→
BA is the negative vector of

−−→
AB, i.e.

−−→
BA = −

−−→
AB.

7.3 Operation

Like normal scalar, we can also do addition, subtraction and multiplication on vector, except that we cannot

do division on vectors.

7.3.1 Addition

Triangle Law of Addition

The length of the line shows its magnitude and the arrowhead points in the direction. We can add two

vectors by joining them head-to-tail.

Example 7.1. A plane is flying along, pointing North, but there is a wind coming from the North-West as

shown below.

The two vectors (the velocity caused by the propeller, and the velocity of the wine) result in a slightly slower

ground speed heading a little East of North.
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If you watched the plane from the ground, you will see that the plane is not actually going straight, but

slipping sideway a little.∗ N

Parallelogram Law of Addition

Draw the vectors so that their initial points coincide. Then draw lines to form a complete parallelogram.

The diagonal from the initial point to the opposite vertex of the parallelogram is the resultant. †

In the figure, v=
−−→
AD and u=

−−→
AB.

Consider the parallelogram ABCD. Because
−−→
AB =

−−→
DC, therefore

v + u =
−−→
AD +

−−→
AB

=
−−→
AD +

−−→
DC

=
−→
AC

7.3.2 Subtraction

The subtraction of a vector b from another vector a, denoted by a − b, is defined as a − b = a + (−b),

where −b is the negative vector of b. Then process the two vectors with the head-to-tail method and treat

it like an addition, there you go.

7.3.3 Scalar multiplication

Scalar multiplication refers to the multiplication of a vector by a constant λ, producing a vector in the

same (for λ > 0) or opposite (for λ < 0) direction but of different length. If the constant λ is zero, the vector

becomes zero as well. E.g. 2v has the same direction but double magnitude of v.

∗https://www.mathsisfun.com/algebra/vectors.html
†http://hotmath.com/hotmath_help/topics/adding-and-subtracting-vectors.html
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7.4 Rule of Vectors

We have just studied the basic operations on vectors. Next, let us investigate the properties of vectors

operations. With the help of these properties, we can manipulate the vectors operations more easily.

For any vectors a, b and c, and scalars λ, µ, λ1 and µ1, the following properties hold.

1. a + b = b + a

2. a + (b + c) = (a + b) + c

3. a + 0 = a

4. 0a = 0

5. λ(µa) = (λµ)a

6. (λ+ µ)a = λa + µa

7. λ(a + b) = λa + λb

8. a = kb if and only if a // b

9. Suppose a and b are non-zero and are not parallel to each other.

(a) If λa + λ1b = 0, then λ = λ1 = 0

(b) If λa + µb = λ1a + µ1b,, then λ = λ1 and µ = µ1.

(c) If (λa + µb)//(λ1a + µ1b), then
λ

λ1
=

µ

µ1
.

Proof. To prove rule 9(a), suppose a and b are non-zero and are not parallel to each other.

λa + µb = λ1a + µ1b

λa− λ1a = µ1b− µb

(λ− λ1)a = −(µ− µ1)b
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Without loss of generality, assume that λ− λ1 6= 0. Then a = −µ− µ1

λ− λ1
From the equation, we can see a and b are parallel which contradicts to the given condition that a and b

are not parallel to each other.

The assumptions that λ− λ1 6= 0 or µ− µ1 6= 0 are wrong.

Hence, λ = λ1 and µ = µ1.

The proof is thus complete. The rest are left for student exercises.

�

Example 7.2. In the figure, ABC is a triangle and D is the mid-point of AC. Prove that

−−→
BD =

1

2
(
−−→
BA+

−−→
BC).

Since D is the mid-point of AC,
−−→
AD =

1

2

−→
AC.

L.H.S. =
−−→
BD

=
−−→
BA+

−−→
AD

=
−−→
BA+

1

2

−→
AC

=
−−→
BA+

1

2
(
−−→
AB +

−−→
BC)

=
−−→
BA+

1

2
(−
−−→
BA+

−−→
BC)

=
1

2

−−→
BA+

1

2

−−→
BC

=
1

2
(
−−→
BA+

−−→
BC)

N
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7.5 Point of Division

In the figure, let the position vectors of P1, P2 and R with respect to a reference point O be a,b and p

respectively. If p divides the line segment P1P2 in the ratio m : n, we can express p in terms of a and b as

p =
na +mb

m+ n
,

Let us prove the above result.

Proof. Since
−−→
P1R and

−−→
RP2 are in the same direction, and P1R : RP2 = m : n,

n
−−→
P1R = m

−−→
RP2

n(p− a) = m(b− p)

(m+ n)p = na +mb

p =
na +mb

m+ n

�

Example 7.3. In the figure, P is the mid-point of OD and it divides CB in the ratio 1 : 3. Let the

position vectors of A and B with respect to O be a and b respectively. D divides AB in the ratio 1 : m and
−−→
OC = n

−→
OA.

(a) Express
−−→
OD in terms of a,b and m.

(b) Express
−−→
OP in terms of a,b and n.
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(c) Hence, find AD : DB.

(a)
−−→
OD =

m
−→
OA+

−−→
OB

1 +m
=
ma + b

1 +m

(b)
−−→
OP =

3
−−→
OC +

−−→
OB

1 + 3
=

3n
−→
OA+

−−→
OB

4
=

3na + b

4

(c) Since P is the mid-point of OD,

−−→
OP =

1

2

−−→
OD

3na + b

4
=

ma + b

2(1 +m)
.

Compare the components in the direction of b.

1

4
=

1

2(1 +m)

m = 1

∴ AD : DB = 1 : 1

N

7.6 Representation of Vectors in Cartesian Form

For any vector v, if v = a + b, where a and b are not parallel to each other, then a and b are called the

components of v.

In a rectangular coordinate plane, the unit vectors along the positive x-axis and the positive y-axis are

denoted by i and j respectively.

Every point P (x, y) on a cartesian plane can be represented by a vector
−−→
OP with respect to the origin O in

terms of i and j. i.e.
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−−→
OP = xi + yj

By Pythagoras’ theorem, the magnitude of
−−→
OP can be expressed as

‖
−−→
OP‖ =

√
x2 + y2

The direction of
−−→
OP is specified by angle θ which is measure anti-clockwise from the positive x-axis to

−−→
OP .

Then

tan θ =
y

x
, cos θ =

x√
x2 + y2

, sin θ =
y√

x2 + y2
.

Example 7.4. It is given that
−−→
AB = 2i− j and

−−→
CD = −

−−→
AB. (a)If the coordinates of A are (1, 4), find the

coordinates of B; (b)if the coordinates of D are (3, 1), find the coordinates of C.

(a)

−→
OA = i + 4j
−−→
AB =

−−→
OB −

−→
OA

−−→
OB =

−→
OA+

−−→
AB

= (i + 4j) + (2i− j)

= (1 + 2)i + (4− 1)j

= 3i + 3j

Therefore, the coordinates of B are (3, 3).

(b)

−−→
OD = 3i + j
−−→
CD =

−−→
OD −

−−→
OC

−
−−→
AB =

−−→
OD −

−−→
OC

−−→
OC =

−−→
OD +

−−→
AB

= (3i + j) + (2i− j)

= 5i

Therefore, the coordinates of C are (5, 0). N
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7.7 Scalar Product

7.7.1 Definition

The scalar product of two vectors a and b, denoted by a · b, is defined as

a · b = ‖a‖‖b‖ cos θ

where θ is the angle between a and b with 0 ≤ θ ≤ π. Recall that ‖a‖ represents the magnitude of a.

Note:

1. a · b is read as “a dot b”. The symbol “·” cannot be omitted or replaced by “×”.

2. The scalar product is also called the dot product.

3. The result of a scalar product is a scalar, not a vector.

4. If one of the vectors a and b is a zero vector, then a · b = 0.

Example 7.5. If k is any positive number, what is the size of the angle between the vectors a = ki + kj

and b = −3i + 4j?

By scalar product, ab = (−3)× k + 4× k = k

‖a‖ =
√
k2 + k2 =

√
2k, ‖b‖ =

√
(−3)2 + 42 = 5.

Then by the formula,

a · b = ‖a‖‖b‖ cos θ

k =
√

2k · 5 · cos θ

⇒ cos θ =
1

5
√

2

⇒ θ = cos−1
1

5
√

2
= 0.455π.

N

7.7.2 Properties of Scalar Product

For any vectors a,b and c, and scalar λ, the following are true.

1. a · b = b · a

2. a · (λb) = (λa) · b = λ(a · b)

3. a · (b + c) = a · b + a · c

4. a · a = ‖a‖2 ≥ 0

5. a · a = 0 if and only if a = 0

6. ‖a‖‖b‖ ≥ ‖a · b‖

7. ‖a-b‖2 = ‖a‖2 + ‖b‖2 − 2(a · b)
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7.7.3 Scalar Product in the Rectangular Coordinate System

In two-dimensional space, we denote i as the vertical (y-axis) unit vector and j as the horizontal (x-axis)

unit vector. They are perpendicular to each other. Therefore,

i · i = ‖i‖‖i‖ cos 0 = 1 j · j = ‖j‖‖j‖ cos 0 = 1 i · j = ‖i‖‖j‖ cos
π

2
= 0.

Consider two vectors a = a1i + a2j and b = b1i + b2j in two-dimensional space. Then

a · b = (a1i + a2j) · (b1i + b2j)

= (a1b1)(i · i) + (a1b2 + a2b1)(i · j) + (a2b2)(j · j)

= a1b1 + a2b2.

Example 7.6. Determine whether or not the vectors 2i + 4j and −i +
1

2
j are perpendicular.

(2i + 4j) · (−i +
1

2
j) = (2)(−1) + (4)(

1

2
)

= −2 + 2

= 0

Since they are non-zero vectors, and their scalar product is zero, we deduce that they must be perpendicular.

N

Exercises‡

1. Given
−→
OA = 3i− 2j,

−−→
OB = −i + j

(a) Find the unit vector in the direction of
−−→
AB.

(b) If P is a point such that
−→
AP = m

−−→
AB, express

−−→
OP in terms of m.

2.

In the figure,
−→
OA = i + 3j,

−−→
OB = 4i− 3j. C is a point on AB such that

AC

CB
= r.

(a) Express
−−→
OC in terms of r.

‡HKCEE 1980-2001
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(b) Find the value of r if OC is perpendicular to AB. Hence, find the coordinates of C.

3. The angle between the two vectors i + j and (c+ 4)i + (c− 4)j is θ, where cos θ = −3

5
. Find the value

of the constant c.

4.

In the figure, ‖
−−→
AB‖ = 3, ‖

−→
AC‖ = 1 and ∠CAB =

π

3
. Find

(a)
−−→
AB ·

−→
AC,

(b) ‖
−−→
AB + 2

−→
AC‖.

5. Let a = 3i + 4j, b = 8i + 6j and c = 2i + kj where k is a constant. Find a · c and b · c in terms of k. If

c makes equal angles with a and b, evaluate k.

6. Let
−→
OA = i + 3j,

−−→
OB = 4i− j and C be a point dividing AB internally in the ratio k : 1.

(a) Express
−−→
OC in terms of k, i and j.

(b) If OC is perpendicular to AB, find the value of k.

7. Given
−→
OA = 5j,

−−→
OB = −i + 7j. P is a point such that

−→
AP = t

−−→
AB.

(a) Express
−−→
OP in terms of t.

(b) If OP is perpendicular to AB, find

i. the value of t.

ii.
−−→
OP .

8.

In the figure, OAD is a triangle and B is the mid-point of OD. The line OE cuts the line AB at C

such that AC : CB = 3 : 1. Let
−→
OA = a and

−−→
OB = b.
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(a) Express
−−→
OC in terms of a and b.

(b) i. Let OC : CE = k : 1. Express
−−→
OE in terms of k, a and b.

ii. Let AE : ED = m : 1. Express
−−→
OE in terms of m, a and b. Hence, find k and m.

9. Given
−→
OA = 5i− j,

−−→
OB = −3i + 5j and APB is a straight line.

(a) Find
−−→
AB and ‖

−−→
AB‖

(b) If ‖
−→
AP‖ = 4, find

−→
AP .

10. Given
−→
OA = 3i− 2j,

−−→
OB = i + j. C is a point such that ∠ABC is a right angle.

(a) Find
−−→
AB.

(b) Find
−−→
AB ·

−−→
AB and

−−→
AB ·

−−→
BC. Hence, find

−−→
AB ·

−→
AC.

11. P,Q and R are points on a plane such that
−−→
OP = i + 2j,

−−→
OQ = 3i + j and

−→
PR = −3i− 2j, where O is

the origin.

(a) Find
−−→
PQ and ‖

−−→
PQ‖.

(b) Find the value of cos∠QPR.

12. Let
−−→
OP = 2i + 3j and

−−→
OQ = −6i + 4j. Let R be a point on PQ such that PR : RQ = k : 1, where

k > 0.

(a) Express
−−→
OR in terms of k, i and j

(b) Express
−−→
OP ·

−−→
OR and

−−→
OQ ·

−−→
OR in terms of k.

(c) Find the value of k such that OR bisects ∠POQ.

13. Given
−→
OA = 4i + 3j and C is a point on OA such that ‖

−−→
OC‖ =

16

5
.

(a) Find the unit vector in the direction of
−→
OA. Hence, find

−−→
OC.

(b) If
−−→
OB = i + 4j, show that BC is perpendicular to OA.

14. Let a and b be two vectors such that a = 2i + 4j, ‖b‖ =
√

5 and cosθ =
4

5
, where θ is the angle

between a and b.

(a) Find ‖a‖.

(b) Find a · b.

(c) If b = mi + nj, find the values of m and n.

15.
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In the figure, ABCD is a square with
−−→
AB = i and

−−→
AD = j. P and Q are respectively points on AB

and BC produced with BP = k and CQ = m. AQ and DP intersect at E and ∠QEP = θ.

(a) By calculating
−→
AQ ·

−−→
DP , find cosθ in terms of m and k.

(b) Given that
DE

EP
=

1

4
.

i. Express
−→
AE in terms of k.

ii. Let
AE

AQ
= r. Express

−→
AE in terms of r and m.

iii. If θ =
π

2
, use the above results to find the values of k, m and r.

16.

In the figure, 4OBA is a right-angled at B. OB is produced to C such that OB = BC. CD is

drawn in the direction of OA such that CD = kOA. P is a point on AD such that CP//BA. Let
−→
OA = a,

−−→
OB = b and

−−→
DP = λ

−−→
DA.

(a) i. Express
−−→
OD and

−−→
DA in terms of a,b and k.

ii. Find
−−→
BA in terms of a,b and express

−−→
CP in terms of a,b, λ and k. Hence, find λ in terms of

k.

(b) i. Show that a · b = OB2

ii. If OB =
1

4
OA, show that

−−→
OD ·

−−→
DA = (−16k2 + 12k− 2)OB2. Hence, find the values of k and

λ if OD ⊥ DA.

17.

In the figure, OACB is a trapezium with OB//AC and AC = 2OB. P and Q are points on OA and

BC respectively such that OP =
1

2
OA and BQ =

1

3
BC. Let

−→
OA = a and

−−→
OB = b.
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(a) Express
−→
OA,
−−→
BC and

−−→
OQ in terms of a and b.

(b) OC intersects PQ at the point R. Let PR : RQ = h : 1− h.

i. Express
−−→
OR in terms of a,b and h.

ii. If
−−→
OR = k

−−→
OC, find h and k.

(c) OB and PQ are produced to meet T and
−→
OT = λb.

i. Express
−−→
PQ in terms of a and b and express

−→
PT in terms of a, b and λ.

ii. Hence, or otherwise, find the value of λ.

18.

In the figure, R is a point on BC such that BR : RC = m : 1. Q is a point on AC. BQ intersects AR

at P .
−→
OA = 4i + j,

−−→
OB = i + 4j,

−−→
OC = 7i + 7j and

−−→
BQ = 5i + j.

(a) i. Find
−−→
AB and

−→
AC.

ii. Express
−→
AR in terms of m, i and j.

(b) Suppose AR is perpendicular to BC.

i. Show that m =
1

4
.

ii. Find ∠QPR.

iii. If
−−→
BQ = λ

−−→
BA+ µ

−−→
BC, find the values of λ and µ.

iv. If AP : PR = n : 1, express
−−→
BP in terms of n, i and j. Hence, find the value of n.

19. A,B and C are three points on a plane such that
−→
OA = i+2j,

−−→
OB = −6i−2j and

−−→
AB−

−−→
BC = −12i+6j,

where O is the origin.

(a) Find
−−→
AB and

−−→
OC.

(b) X is a point on the plane such that
−−→
AX = k

−−→
OX.

i. Express
−−→
OX in terms of k, i and j.

ii. If OX ⊥ BX, find the value of k and hence find
−−→
AX +

−−→
BX +

−−→
CX. Furthermore, if M is the

mid-point of BC, find
−−→
AM and hence show that X lies on AM .

20.
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In the figure, M is the mid-point of AB and D is a point on OA such that OD : DA = 1 : 2, OM

intersects BD at K. Let
−→
OA = a and

−−→
OB = b.

(a) i. Express
−−→
OM and

−−→
OD in terms of a and b.

ii. Suppose BK : KD = λ : 1− λ. Express
−−→
OK in terms of a,b and λ. Let

−−→
OK = µ

−−→
OM . Find

the values of λ and µ.

(b) Suppose a = 12i and b = 2i + 8j.

i. Find
−−→
OM and

−−→
DB in terms of i and j.

ii. Evaluate
−−→
OM ·

−−→
DB and hence find ∠BKM .

iii. Suppose P is the point on OB such that OP : PB = 1 : 2. Find
−→
AP and

−−→
AK, and hence

show that A,K,P are collinear.

21. A,B and C are three points on a plane such that
−→
OA = 3i− j,

−−→
BC = 7i + j and

−−→
OC = xi + yj, where

O is the origin.

(a) Find
−→
CA,
−−→
OB and

−−→
AB in terms of x, y, i and j.

(b) Given
−−→
AB ·

−−→
BC = 4

−−→
BC ·

−→
CA

i. Show that y = 30− 7x.

ii. If ‖
−−→
BC‖ =

√
5‖
−→
CA‖ and x, y are positive,

A. find x and y,

B. show that CA is perpendicular to AB,

C. show that O lies on AB.

22.
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In the figure, OA=2, OB = 3 and ∠AOB =
π

3
. D is a point on OB such that AD is perpendicular to

OB. Let
−→
OA = a,

−−→
OB = b.

(a) Find a · a and b · b.

(b) Find the length of OD. Hence, express
−−→
OD in terms of b.

(c) Let H be a point on AD such that AH : HD = 1 : k and
−−→
OH is perpendicular to

−−→
AB.

i. Express
−−→
OH in terms of k, a and b. Hence, find the value of k.

ii. OH produced meets AB at a point C. Let AC : CB = 1 : m and OH : HC = 1 : n.

A. Express
−−→
OC in terms of m, a and b.

B. Express
−−→
OC in terms of n, a and b.

C. Hence, find m and n.
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23.

In the figure, OAB is a triangle, P,Q are two points on AB such that AP : PB = PQ : QB = r : 1,

where r > 0. T is a point on OB such that OT : TB = 1 : r. Let
−→
OA = a and

−→
OA = b.

(a) Express
−−→
OP and

−−→
OQ in terms of r, a and b.

(b) Express
−→
OT in terms of r and b. Hence, show that

−→
TQ =

a + (r2 + r − 1)b

(r + 1)2
.

(c) Find the value(s) of r such that
−→
OA is parallel to

−→
TQ.

(d) Suppose OA = 2, OB = 16 and ∠AOB =
π

3
.

i. Find a · a and a · b.

ii. Find the value(s) of r such that
−→
OA is perpendicular to

−→
TQ.

24.

In the figure, D is the mid-point of OB and C is a point on AB such that AC : CB = 2 : 1. OC is

produced to a point E such that OC : CE = 1 : k. Let
−→
OA = a and

−−→
OB = b.

(a) Express
−−→
OC and

−−→
DA in terms of a and b.

(b) Show that
−−→
BE =

k + 1

3
a +

2k − 1

3
b.

(c) Find the value of k such that
−−→
BE is parallel to

−−→
DA.
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(d) Given ‖a‖ = 1, ‖b‖ = 2 and ∠BOA =
π

3
.

i. Find a · b.

ii. Find the value of k such that
−−→
BE is perpendicular to

−−→
OE. Hence, find the distance of B from

OC.

25. Let a,b be two vectors such that a = 3i + 4j and ‖b‖ = 4. The angle between a and b is
π

3
.

(a) Find ‖a‖.

(b) Find a · b.

(c) If the vector (ma + b) is perpendicular to b, find the value of m.

26.

In the figure,
−→
OA = i,

−−→
OB = j. C is a point on OA produced such that AC = k, where k > 0. D is a

point on BC such that BD : DC = 1 : 2.

(a) Show that
−−→
OD =

1 + k

3
i +

2

3
j.

(b) If
−−→
OD is a unit vector, find

i. k,

ii. ∠BOD, giving your answer correct to the nearest degree.
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Determinant and Matrix

8.1 Matrices

A matrix is a rectangular table of the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 .

A matrix is said to be of dimension m × n when it has m rows and n columns. This method of describing

the size of a matrix is necessary in order to avoid all confusion between two matrices containing the same

amount of entries. For example, a matrix of dimension 3× 4 has 3 rows and 4 columns. It would be distinct

from a matrix 4 × 3, that has 4 rows and 3 columns, even if it also has 12 entries. A matrix is said to be

square when it has the same number of rows and columns.

The elements are matrix entries aij , that are identified by their position. The element a32 would be the

entry located on the third row and the second column of matrix A. This notation is essential in order to

distinguish the elements of the matrix. The element a23, distinct from a32, is situated on the second row

and the third column of the matrix A.∗

Example 8.1. Consider the matrix

A =

(
1 9 −13

20 5 −6

)
,

the dimension of matrix A is 2× 3 with a11 = 1, a12 = 9, a13 = −13, a21 = 20, a22 = 5 and a23 = −6. N

Matrices which have a single row are called row vectors, and those which have a single column are called

column vectors. A matrix with an infinite number of rows or columns (or both) is called an infinite matrix†.

8.1.1 Special matrices

We will introduce some matrices with special patterns in the array of numbers first.

∗http://www.hec.ca/en/cam/help/topics/Matrix_determinants.pdf
†https://en.wikipedia.org/wiki/Matrix_(mathematics)

36
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1. Zero matrix. All elements are 0, for example,

(
0 0 0

0 0 0

)
,


0 0

0 0

0 0

 .

2. Diagonal matrix. A square matrix whose elements not on the main diagonal are all 0, for example,(
1 0

0 6

)
,


4 0 0

0 −1 0

0 0 7

 .

3. Identity matrix. A diagonal matrix whose elements on the main diagonal are all 1. Usually, it is

denoted by I, for example,

(
1 0

0 1

)
,


1 0 0

0 1 0

0 0 1

 .

4. Scalar matrix. A diagonal matrix whose elements on the main diagonal are the same, for example,(
6 0

0 6

)
,


−4 0 0

0 −4 0

0 0 −4

 .

8.2 Basic operations of matrix

There are a number of basic operations that can be applied to modify matrices, called matrix addition, scalar

multiplication, transposition, matrix multiplication.

8.2.1 Matrix addition‡

Matrix addition is the operation of adding two matrices by adding the corresponding entries together. Two

matrices must have an equal number of rows and columns to be added. The sum of two matrices A and B

will be a matrix which has the same number of rows and columns as do A and B. The sum of A and B,

denoted by A+B, is computed by adding corresponding elements of A and B.

Similarly, we can also subtract one matrix from another, as long as they have the same dimensions. A− B
is computed by subtracting corresponding elements of A and B, and has the same dimensions as A and B.

A±B =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn

±

b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
...

...

bm1 bm2 · · · bmn

 =


a11 ± b11 a12 ± b12 · · · a1n ± b1n
a21 ± b21 a22 ± b22 · · · a2n ± b2n

...
...

. . .
...

am1 ± bm1 am2 ± bm2 · · · amn ± bmn


Example 8.2. 

1 3

1 0

1 2

+


0 0

7 5

2 1

 =


1 3

8 5

3 3

 .

N
‡https://en.wikipedia.org/wiki/Matrix_addition
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Example 8.3. 
1 3

1 0

1 2

−


0 0

7 5

2 1

 =


1 3

−6 −5

−1 1

 .

N

8.2.2 Scalar multiplication

The product cA of a scalar number c and a matrix A is computed by multiplying every entry of A by c.

This operation is called scalar multiplication.

c ·A = c ·


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n
...

...
. . .

...

cam1 cam2 · · · camn


Example 8.4.

2 ·

(
1 8 −3

4 −2 5

)
=

(
2 16 −6

8 −4 10

)
N

8.2.3 Transposition

The transpose of a matrix A gives another matrix AT by performing any one of the following equivalent

actions:

1. Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain AT .

2. Write the rows of A as the columns of AT .

3. Write the columns of A as the rows of AT .

Formally, the ith row, jth column element of A is the jth row, ith column element of AT . If A is an m× n
matrix, then AT is an n×m matrix.

Example 8.5. (
1 2

)T
=

(
1

2

)
N

Example 8.6. (
1 2

3 4

)T

=

(
1 3

2 4

)
N

Example 8.7. 
1 2

3 4

5 6


T

=

(
1 3 5

2 4 6

)

N
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8.2.4 Matrix multiplication

Multiplication of two matrices is defined as the number of columns of the left matrix is the same as the

number of rows of the right matrix. If A is an m × n matrix and B is an n × p matrix, then their matrix

product AB is the m× p matrix whose entries are given by the dot product of the corresponding row of A

and the corresponding column of B, i.e.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 , B =


b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bn1 bn2 · · · bnp


Then,

AB =


(AB)11 (AB)12 · · · (AB)1p

(AB)21 (AB)22 · · · (AB)2p
...

...
. . .

...

(AB)m1 (AB)m2 · · · (AB)mp

 where (AB)ij =
n∑

k=1

aikbkj .

Example 8.8.

(
2 3 4

1 0 0

)
0 1000

1 100

0 10

 =

(
2 · 0 + 3 · 1 + 4 · 0 2 · 1000 + 3 · 100 + 4 · 10

1 · 0 + 0 · 1 + 0 · 0 1 · 1000 + 0 · 100 + 0 · 10

)
=

(
3 2340

0 1000

)

N

Example 8.9.

A =


a b c

p q r

u v w

 , B =


d e f

h i j

x y z



AB =


a b c

p q r

u v w



d e f

h i j

x y z

 =


ad+ bh+ cx ae+ bi+ cy af + bj + cz

pd+ qh+ rx pe+ qi+ ry pf + qj + rz

ud+ vh+ wx ue+ vi+ wy uf + vj + wz


N

Matrix multiplication satisfies the rules (AB)C = A(BC) (associativity), and (A+B)C = AC+BC as well

as C(A+B)=CA+ CB (left and right distributivity). The product AB may be defined without BA being

defined, namely if A and B are m × n and n × k matrices respectively and m 6= k. Even if both products

are defined, they need not to be equal. That is, in general, matrix multiplication is not commutative. i.e.,

AB 6= BA,

Let us look at the following counter example and verify this result.

Example 8.10. (
1 2

3 4

)(
0 1

0 0

)
=

(
0 1

0 3

)
,
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whereas (
0 1

0 0

)(
1 2

3 4

)
=

(
3 4

0 0

)
.

N

8.3 Inverse of matrices

Consider the following matrix equation:
a1 b1 c1

a2 b2 c2

a3 b3 c3



x

y

z

 =


d1

d2

d3

 .

The above matrix representation is equivalent to
a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

.

Now, we denote

A =


a1 b1 c1

a2 b2 c2

a3 b3 c3

 , x =


x

y

z

 and B =


d1

d2

d3

 .

Then, we have

Ax = B.

If there exists matrix Q such that QA = I, where I is the identity matrix, then

Ax = B

QAx = QB

Ix = QB

x = QB

If Q can be found, x (the matrix of the unknowns) can be solved easily.

Definition 1.1 Let A be an n×n square matrix. If there exists an n×n matrix Q such that AQ = QA = I

where I is the n× n identity matrix, then Q is called the inverse matrix of A and is written as Q = A−1. In

this case, A is said to be an invertible matrix or a non-singular matrix.

Before we move on to the methods of finding A−1, we need to introduce determinant first.

8.3.1 Determinants and their expansion

Definition 1.2 The determinant of order 2 of the square matrix A is defined by the relation

det(A) =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a21a12.
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The result is obtained by multiplying opposite elements and by calculating the difference between these two

products.

Example 8.11. Given the matrix

A =

(
2 1

3 −2

)
.

The determinant of A is given by

det(A) =

∣∣∣∣∣2 1

3 −2

∣∣∣∣∣ = 2(−2)− 1(3) = −7.

N

Definition 1.3 The determinant of order 3 of the square matrix A is defined by the relation

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a12
∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ .
This is referred to the expansion of the determinant by the first row. In expanding determinants by any row

(or column), each element aij of the row (or column) is multiplied by a determinant formed by excluding

the row and column of the element concerned together with an appropriate sign (−1)i+j . These reduced

determinants together with the sign are called the cofactor of aij and are denoted by Aij , i.e.,

Aij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

. . .
...

...
. . .

...

ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n

...
. . .

...
...

. . .
...

am,1 · · · am,j−1 am,j+1 · · · am,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The expansion of a 3× 3 determinant by the first row can then be defined by:

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = a11A11 + a12A12 + a13A13,

where A11 =

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ , A12 = −

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣ and A13 =

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣.
Note that some books may present a method of expansion for the 3× 3 determinant which is known as the

Sarrus’ rule. However, that rule is only applicable to 3×3 determinant and sometimes students may wrongly

generalize that rule to higher order determinant. In this review, we leave out this definition in order to avoid

confusion.
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Example 8.12. Evaluate ∣∣∣∣∣ 6 7

−5 8

∣∣∣∣∣ and

∣∣∣∣∣∣∣∣
1 3 −2

2 −3 2

1 4 0

∣∣∣∣∣∣∣∣ .
∣∣∣∣∣ 6 7

−5 8

∣∣∣∣∣ = 6× 8− 7× (−5)

= 83∣∣∣∣∣∣∣∣
1 3 −2

2 −3 2

1 4 0

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣−3 2

4 0

∣∣∣∣∣− 3

∣∣∣∣∣2 2

1 0

∣∣∣∣∣+ (−2)

∣∣∣∣∣2 −3

1 4

∣∣∣∣∣
= (−3× 0− 2× 4)− 3(2× 0− 2× 1)− 2 [2× 4− (−3)× 1]

= −24

N

Example 8.13. Find the value(s) of x if

∣∣∣∣∣∣∣∣
x −4 0

1 2 x

−1 4 0

∣∣∣∣∣∣∣∣ = 0. By expanding along the third column, we have

0

∣∣∣∣∣ 1 2

−1 4

∣∣∣∣∣− x
∣∣∣∣∣ x −4

−1 4

∣∣∣∣∣+ 0

∣∣∣∣∣x −4

1 2

∣∣∣∣∣ = 0

−x(4x− 4) = 0

x = 0 or − 1.

N

8.3.2 Properties of determinants

Sometimes, we may need much effort to evaluate some complicated determinants. However, there are a num-

ber of useful properties of determinants that can be used to simplify the process of expanding determinants

of order 3 or higher.

1. Interchanging rows and columns does not change the value of the determinant.∣∣∣∣∣∣∣∣
a1 b1 c3

a2 b2 c3

a3 b3 c3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣
2. Interchanging any two columns changes the sign of the value of the determinant.∣∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
c1 b1 a1

c2 b2 a2

c3 b3 a3

∣∣∣∣∣∣∣∣
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3. If each element of any column is multiplied by a constant k, the value of the determinant is multiplied

by k. ∣∣∣∣∣∣∣∣
a1 kb1 c1

a2 kb2 c2

a3 kb3 c3

∣∣∣∣∣∣∣∣ = k

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
In particular, if each element of a column is 0 (i.e. k = 0), the value of the determinant is 0.∣∣∣∣∣∣∣∣

a1 0 c1

a2 0 c2

a3 0 c3

∣∣∣∣∣∣∣∣ = 0

4. If the corresponding elements of two columns are in proportion, the value of the determinant is 0.∣∣∣∣∣∣∣∣
a1 b1 kb1

a2 b2 kb2

a3 b3 kb3

∣∣∣∣∣∣∣∣ = 0

In particular, if the corresponding elements of two columns are equal (i.e. k = 1), the value of the

determinant is 0.

5. If each element of a column can be expressed as the sum of two numbers, the determinant can be

expressed as the sum of two determinants.∣∣∣∣∣∣∣∣
a1 + p b1 c1

a2 + q b2 c2

a3 + r b3 c3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
p b1 c1

q b2 c2

r b3 c3

∣∣∣∣∣∣∣∣
6. If a multiple of any column is added to another column, the value of the determinant does not change.∣∣∣∣∣∣∣∣

a1 + kb1 b1 c1

a2 + kb2 b2 c2

a3 + kb3 b3 c3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
Properties 2 to 6 still hold when the operations on columns are changed to operations on rows. We can

prove the above properties by expanding the determinants. We will prove property 2 and property 5. The

proofs of the other properties are left to our students as an exercise.

Proof.

L.H.S. =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
= a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2

R.H.S. = −

∣∣∣∣∣∣∣∣
c1 b1 a1

c2 b2 a2

c3 b3 a3

∣∣∣∣∣∣∣∣
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= −(−a1b2c3 − a3b1c2 − a2b3c1 + a3b2c1 + a1b3c2 + a2b1c3)

= a1b2c3 + a2b3c1 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2

i.e.

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
c1 b1 a1

c2 b2 a2

c3 b3 a3

∣∣∣∣∣∣∣∣
�

Proof.∣∣∣∣∣∣∣∣
a1 + p b1 c1

a2 + q b2 c2

a3 + r b3 c3

∣∣∣∣∣∣∣∣ = (a1 + p)b2c3 + (a2 + q)b3c1 + (a3 + r)b1c2 − (a3 + r)b2c1 − (a2 + q)b1c3 − (a1 + p)b3c2

= (a1b2c3 + a2b3c1 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2)

+ (pb2c3 + qb3c1 + rb1c2 − rb2c1 − qb1c3 − pb3c2)

=

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
p b1 c1

q b2 c2

r b3 c3

∣∣∣∣∣∣∣∣
i.e.

∣∣∣∣∣∣∣∣
a1 + p b1 c1

a2 + q b2 c2

a3 + r b3 c3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
p b1 c1

q b2 c2

r b3 c3

∣∣∣∣∣∣∣∣
�

Example 8.14. Evaluate

∣∣∣∣∣∣∣∣
3 −7 1

2 −7 1

4 −13 4

∣∣∣∣∣∣∣∣ .∣∣∣∣∣∣∣∣
3 −7 1

2 −7 1

4 −13 4

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0

2 −7 1

4 −13 4

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣−7 1

13 4

∣∣∣∣∣
= −28 + 13

= −15

In this example, we use property 6 to simplify our calculation. The 1st and the 2nd rows have two equal

elements −7 and −1. We replace the 1st row by the sum of it and the 2nd row so that only one of the

elements of the new 1st row is non-zero. We can use the symbols R1 + (−1)R2 → R1 to represent the above

process, where Ri denotes the ith row. N
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Example 8.15. Evaluate

∣∣∣∣∣∣∣∣
13 4 5

6 1 2

12 −3 3

∣∣∣∣∣∣∣∣ .∣∣∣∣∣∣∣∣
13 4 5

6 1 2

12 −3 3

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣∣
13 4 5

6 1 2

4 −1 1

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣
29 4 5

10 1 2

0 −1 1

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣
29 4 9

10 1 3

0 −1 0

∣∣∣∣∣∣∣∣
= 3× [−(−1)]

∣∣∣∣∣29 9

10 3

∣∣∣∣∣
= 3(87− 90)

= −9

In our first step, we take out the common factor 3 of the elements of the 3rd row. In our second step, we

have C1 + 4C2 → C1 where Ci denotes the ith column. In our third step, we have C3 + C2 → C3. N

Example 8.16. Let ∆ =

∣∣∣∣∣∣∣∣
bc a a2

ca b b2

ab c c2

∣∣∣∣∣∣∣∣. Show that ∆ =

∣∣∣∣∣b2 − a2 b3 − a3

c2 − a2 c3 − a3

∣∣∣∣∣, where a, b and c are non-zero real

numbers.

abc∆ =

∣∣∣∣∣∣∣∣
abc a2 a3

abc b2 b3

abc c2 c3

∣∣∣∣∣∣∣∣
= abc

∣∣∣∣∣∣∣∣
1 a2 a3

1 b2 b3

1 c2 c3

∣∣∣∣∣∣∣∣
∆ =

∣∣∣∣∣∣∣∣
1 a2 a3

1 b2 b3

1 c2 c3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 a2 a3

0 b2 − a2 b3 − a3

0 c2 − a2 c3 − a3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣b2 − a2 b3 − a3

c2 − a2 c3 − a3

∣∣∣∣∣
In this example, we first multiply the 1st, 2nd and 3rd rows of the determinant by a, b and c respectively
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to obtain a column with identical element (abc). Then, we reduce two elements of this column to zero by

R2 −R1 → R2 and R3 −R1 → R3. Finally, we expand the resulting first column of the determinant. N

Example 8.17. Factorize

∣∣∣∣∣∣∣∣
a a x

a x a

x a a

∣∣∣∣∣∣∣∣ .∣∣∣∣∣∣∣∣
a a x

a x a

x a a

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
2a+ x 2a+ x 2a+ x

a x a

x a a

∣∣∣∣∣∣∣∣
= (2a+ x)

∣∣∣∣∣∣∣∣
1 1 1

a x a

x a a

∣∣∣∣∣∣∣∣
= (2a+ x)

∣∣∣∣∣∣∣∣
1 0 0

a x− a 0

x a− x a− x

∣∣∣∣∣∣∣∣
= (2a+ x)

∣∣∣∣∣x− a 0

a− x a− x

∣∣∣∣∣
= −(2a+ x)(x− a)2

In this example, we first perform R1 + R2 + R3 → R1. Then, we take out the common factor (2a+ x) and

perform C2 −C1 → C2, C3 −C1 → C3 in the third step. Finally, we expand the determinant by the 1st row

to obtain the result. N

We can now move on to discuss the methods of finding inverse matrix.

1. Using Direct Method

Let

(
a b

c d

)
be an inverse matrix of

(
p q

r s

)
. Then,

(
a b

c d

)(
p q

r s

)
=

(
1 0

0 1

)
.

By expanding the matrices, we have: 

pa+ rb = 1

qa+ sb = 0

pc+ rd = 0

qc+ sd = 1

.

Then, we can solve the above equation to find a, b, c and d.

Example 8.18. Let A =

(
1 5

2 2

)
. Find A−1.
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Let A−1 be

(
a b

c d

)
. Then,

(
a b

c d

)(
1 5

2 2

)
=

(
1 0

0 1

)


a+ 2b = 1

5a+ 2b = 0

c+ 2d = 0

5c+ 2d = 1

.

On solving the above equations, we have a = −1

4
, b =

5

8
, c =

1

4
, d = −1

8
. Hence, we have

A−1 =

−
1

4

5

8
1

4
−1

8

 .

N

This method works well for a 2× 2 matrix because it is simple. In finding the inverse matrix of a 3× 3

matrix, we have to set up 9 equations. This may be tedious. In this case, the inverse matrix of a 3× 3

matrix can be found by the following method which involves determinants.

2. Using Determinants

Let A be an n× n matrix. Given that the cofactor of aij is Aij , the transpose of the matrix (Aij)n×n
is called the adjoint matrix of A and is denoted by adj(A). Consider a 3× 3 matrix A.

adj(A) =


A11 A12 A13

A21 A22 A23

A31 A32 A33


T

=


A11 A21 A31

A12 A22 A32

A13 A23 A33



Example 8.19. Let A =

(
−1 3

−2 4

)
. Then, adj(A) =

(
4 −(−2)

−3 −1

)T

=

(
4 −3

2 −1

)
N

The inverse matrix of a 3× 3 matrix can be found by the following relation:

If det(A) 6= 0, then A−1 =
1

det(A)
adj(A)

Let us prove this theorem by considering a 3× 3 matrix A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

, where det(A) 6= 0.

Proof. Let C = (cij)3×3 and C = A · adj(A) =


a11 a12 a13

a21 a22 a23

a31 a32 a33



A11 A21 A31

A12 A22 A32

A13 A23 A33

 .

c11 = a11A11 + a12A12 + a13A13 = det(A)

c22 = a21A21 + a22A22 + a23A23 = det(A)
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c33 = a31A31 + a32A32 + a33A33 = det(A)

c12 = a11A21 + a12A22 + a13A23

= −a11

(
a12 a13

a32 a33

)
+ a12

(
a11 a13

a31 a33

)
− a13

(
a11 a12

a31 a32

)
= −a11a12a33 + a11a13a32 + a12a11a33 − a12a13a31 − a13a11a32 + a13a12a31

= 0

Similarly, c13, c21, c23, c31, c32 can be shown to be all 0.

A · adj(A) =


det(A) 0 0

0 det(A) 0

0 0 det(A)



= det(A)


1 0 0

0 1 0

0 0 1


A · 1

det(A)
adj(A) = I

Similarly, we can show that
1

det(A)
adj(A) ·A = I

i.e. A−1 =
1

det(A)
adj(A).

For square matrix of order n × n, where n is an integer greater than 1, the same result can be

obtained. �

In general, we usually use the determinant method rather than the direct method to find the inverse of an

matrix due to the complexity of direct method in solving system of linear equations.

Example 8.20. Find the inverse matrix of A =

(
3 5

1 2

)
and B =


2 1 3

3 2 1

1 3 2

 .

det(A) = 3× 2− 5× 1

= 1

adj(A) =

(
2 −1

−5 3

)T

=

(
2 −5

−1 3

)

A−1 =
1

1

(
2 −5

−1 3

)

=

(
2 −5

−1 3

)

det(B) = 2

∣∣∣∣∣2 1

3 2

∣∣∣∣∣− 1

∣∣∣∣∣3 1

1 2

∣∣∣∣∣+ 3

∣∣∣∣∣3 2

1 3

∣∣∣∣∣
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= 2(4− 3)− (6− 1) + 3(9− 2)

= 18

adj(B) =



∣∣∣∣∣2 1

3 2

∣∣∣∣∣ −

∣∣∣∣∣3 1

1 2

∣∣∣∣∣
∣∣∣∣∣3 2

1 3

∣∣∣∣∣
−

∣∣∣∣∣1 3

3 2

∣∣∣∣∣
∣∣∣∣∣2 3

1 2

∣∣∣∣∣ −

∣∣∣∣∣2 1

1 3

∣∣∣∣∣∣∣∣∣∣1 3

2 1

∣∣∣∣∣ −

∣∣∣∣∣2 3

3 1

∣∣∣∣∣
∣∣∣∣∣2 1

3 2

∣∣∣∣∣



T

=


1 −5 7

7 1 −5

−5 7 1


T

=


1 7 −5

−5 1 7

7 −5 1



B−1 =
1

18


1 7 −5

−5 1 7

7 −5 1


N

Example 8.21. Let A =


1 0 0

8 −3 2

20 −10 6

.

Show that A2 = 3A− 2I, where I is the 3× 3 identity matrix. Hence, find A−1.

A2 =


1 0 0

8 −3 2

20 −10 6




1 0 0

8 −3 2

20 −10 6



=


1 0 0

24 −11 6

60 −30 16



=


3 0 0

24 −9 6

60 −30 18

− 2


1 0 0

0 1 0

0 0 1



= 3


1 0 0

8 −3 2

20 −10 6

− 2


1 0 0

0 1 0

0 0 1


= 3A− 2I

A2 = 3A− 2I

A−1A2 = A−1(3A− 2I)

A = 3I − 2A−1
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A−1 =
1

2
(3I −A)

=
1

2




3 0 0

0 3 0

0 0 3

−


1 0 0

8 −3 2

20 −10 6




=


1 0 0

−4 3 −1

−10 5 −3

2


N

Example 8.22. Let A =

(
1 −1

2 4

)
and B =

(
−1 1

1 −2

)
. Find B−1 and B−1AB. Hence, find An.

det(B) = 1

adj(B) =

(
−2 −1

−1 −1

)T

=

(
−2 −1

−1 −1

)

B−1 =

(
−2 −1

−1 −1

)

B−1AB =

(
−2 −1

−1 −1

)(
1 −1

2 4

)(
−1 1

1 −2

)

=

(
−4 −2

−3 −3

)(
−1 1

1 −2

)

=

(
2 0

0 3

)

Now, B−1AB =

(
2 0

0 3

)

(B−1AB)n =

(
2 0

0 3

)n

(B−1AB)(B−1AB) · · · (B−1AB)︸ ︷︷ ︸
n factors

=

(
2n 0

0 3n

)

B−1AnB =

(
2n 0

0 3n

)

An = B

(
2n 0

0 3n

)
B−1

=

(
−1 1

1 −2

)(
2n 0

0 3n

)(
−2 −1

−1 −1

)

=

(
−2n 3n

2n −2 · 3n

)(
−2 −1

−1 −1

)
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=

(
2n+1 − 3n 2n − 3n

−2n+1 + 2 · 3n −2n + 2 · 3n

)

N

8.3.3 Properties of inverse matrices

After we have learnt how to find inverse matrices. Let us discuss some properties of inverse matrices.

Suppose the inverse matrices A and B are A−1 and B−1 respectively, and k is a non-zero scalar. For the

examples in the following properties, let A =

(
3 5

1 2

)
and B =

(
5 3

3 2

)
. Then A−1 =

(
2 −5

−1 3

)
and

B−1 =

(
2 −3

−3 5

)
.

1. (
A−1

)−1
= A

For example, (
A−1

)−1
=

(
2 −5

−1 3

)−1
=

(
3 5

1 2

)
= A.

2.

(An)
−1

=
(
A−1

)n
For example, suppose n = 2,

(
A2
)−1

=

((
3 5

1 2

)(
3 5

1 2

))−1
=

(
14 25

5 9

)−1
=

(
9 −25

−5 14

)
and

(
A−1

)2
=

(
2 −5

−1 3

)2

=

(
9 −25

−5 14

)
.

3. (
AT
)−1

=
(
A−1

)T
For example,

(
AT
)−1

=

(
3 1

5 2

)−1
=

(
2 −1

−5 3

)
and

(
A−1

)T
=

(
2 −5

−1 3

)
=

(
2 −1

−5 3

)
.

4. (
kA−1

)
= k−1A−1

For example, suppose k = 3,

(
3A−1

)
=

(
9 15

3 6

)−1
=

1

3

(
2 −5

−1 3

)
and 3−1A−1 =

1

3

(
2 −5

−1 3

)
.

5.

(AB)
−1

= B−1A−1
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For example,

(AB)
−1

=

((
3 5

1 2

)(
5 3

3 2

))−1
=

(
30 19

11 7

)−1
=

(
7 −19

−11 30

)

and

B−1A−1 =

(
2 −3

−3 5

)(
2 −5

−1 3

)
=

(
7 −19

−11 30

)
.

6. ∣∣A−1∣∣ = |A|−1

For example, ∣∣A−1∣∣ =

∣∣∣∣∣ 2 −5

−1 3

∣∣∣∣∣ = 1 and |A|−1 =
1∣∣∣∣∣3 5

1 2

∣∣∣∣∣
= 1.

The above properties can be proved by using the definition of inverse matrices. Let us prove property 5 and

the proofs of the other properties are left to students as an exercise.

Proof.

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1

= I

(B−1A−1)(AB) = B−1(A−1A)B

= B−1IB

= B−1B

= I

i.e. (AB)−1 = B−1A−1

�

Example 8.23. Let A =

(
2 0

1 −2

)
.

(a) Find A2 and A−1.

(b) Find An, where n is a positive integer.

(c) Hence, find
(
A−1

)2008
and

(
A−1

)2009
.

(a)

A2 =

(
2 0

1 −2

)(
2 0

1 −2

)
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=

(
4 0

0 4

)
det(A) = −4

adj(A) =

(
−2 0

−1 2

)

i.e. A−1 =
1

−4

(
−2 0

−1 2

)

=


1

2
0

1

4
−1

2



(b)

A2 = 4

(
1 0

0 1

)
= 22I

When n is even, n = 2k for some positive integer k.

An = A2k

=
(
A2
)k

= (22I)k

= 22kIk

= 2nI, where I is the 2× 2 identity matrix.

When n is odd, n = 2k + 1 for some positive integer k.

An = A2k+1

= A2k ·A

= 22kI ·A

= 2n−1A

(c) (
A−1

)2008
=

(
A2008

)−1
=

(
22008I

)−1
= 2−2008I−1

=

(
2−2008 0

0 2−2008

)
(
A−1

)2009
=

(
A2009

)−1
=

(
22008A

)−1
= 2−2008A−1
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= 2−2008


1

2
0

1

4
−1

2


=

(
2−2009 0

2−2010 −2−2009

)

N

Exercises

1. Evaluate

∣∣∣∣∣∣∣∣
2 10 4

4 5 3

7 10 3

∣∣∣∣∣∣∣∣.

2. Evaluate

∣∣∣∣∣∣∣∣
−2 3 −1

4 6 7

8 −9 5

∣∣∣∣∣∣∣∣.

3. Evaluate

∣∣∣∣∣∣∣∣
−2 −2 4

−2 8 −2

4 −2 −2

∣∣∣∣∣∣∣∣.

4. Evaluate

∣∣∣∣∣∣∣∣
8 2 4

5 7 3

1
1

4

1

2

∣∣∣∣∣∣∣∣.

5.

∣∣∣∣∣∣∣∣
1 1 1

x 5 2

x2 25 4

∣∣∣∣∣∣∣∣ = 6, find the value(s) of x.

6.

∣∣∣∣∣∣∣∣
−2 7 49

14 x x2

−7 2 4

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1

49 1 4

0 −8 −20

∣∣∣∣∣∣∣∣, find the value(s) of x.

7. Prove that

∣∣∣∣∣∣∣∣
a2 b2 (a+ b)2

a2 (a+ c)2 c2

(b+ c)2 b2 c2

∣∣∣∣∣∣∣∣ = −2abc(a+ b+ c)3.

8. (a) Prove that

∣∣∣∣∣∣∣∣
a c b

b a c

b+ c a+ b a+ c

∣∣∣∣∣∣∣∣ = (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc).

(b) Hence. evaluate

∣∣∣∣∣∣∣∣
−4 8 10

5 −2 4

9 3 2

∣∣∣∣∣∣∣∣.



CHAPTER 8. DETERMINANT AND MATRIX 55

9. If

(
−5 1 −2

−3 4 −1

)
x

0

y

 =

(
−4

−3

)
, find the values of x and y.

10. Let P =


0 1 1

−1 0 1

−1 −1 0

. Show that P 3 + 3P = 0.

11. Let A =


1 −1 1

0 2 −1

0 0 1

. Prove that A−A3 + 2A2 is a scalar matrix.

12. Let P =


1 2 2

3 0 1

−1 2 2

 and Q =


−2 0 2

−7 4 5

6 −4 −6


(a) Prove that PQ is a scalar matrix.

(b) It is given that det(P ) = −4. Using the result of (a), find det(Q) without expansion.

13. Let

(
8 6

−3 −3

)
.

(a) Prove that det(I +A) = 0.

(b) Hence, show that det(I −A4) = 0.

14. Let X =


3 0 0

1 3 1

0 0 3

.

(a) Show that (X − 2I)(4I −X) = I, where I is the 3× 3 identity matrix.

(b) Hence, show that −X2 + 6X − 9I = 0.

15. Let A =


−2 2 0

0 −2 0

0 −1 −2

.

(a) Show that A2 + 4A+ 4I = 0, where I is the 3× 3 identity matrix.

(b) Show that (−I −A)(A+ 3I) = I.

16. Let A =

(
1 1

−1 1

)
, B =

(
0 1

1 0

)
and X =

(
a

b

)
.

(a) Find BAX.

(b) Let V = BAX. If V T

(
1 −1

1 0

)
V = 0, express b in terms of a.
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17. Let A =

∣∣∣∣∣∣∣∣
15 6 −2

−10 −3 2

−10 −8 3

∣∣∣∣∣∣∣∣ and B =

∣∣∣∣∣∣∣∣
18 10 −2

−15 −9 1

−5 1 −1

∣∣∣∣∣∣∣∣.
(a) Show that A2 −B2 − I = 0.

(b) Show that AB = BA.

(c) Hence, find the inverse matrix of


33 16 −4

−25 −12 3

−15 −7 2

.

18. Let P 3 − P 2 + P − I = 0, where P is a 2× 2 matrix and I is the 2× 2 identity matrix.

(a) Prove that P has an inverse, and find P−1 in terms of P .

(b) Show that

i. P 4 = I,

ii. (P−1)3 − (P−1)2 + P−1 − I = 0.

19. Let A =

(
−2 2

−1 2

)
.

(a) Find A2 and A−1.

(b) Find An, where n is a positive integer.

(c) Hence, find (A−1)1000.

20. Let P =

(
a b

c d

)
, where a, b, c and d are real numbers. Suppose det(P ) = 0. Prove, by mathematical

induction, that Pn+1 = (a+ d)nP for any positive integer n.

21. (a) If A is an invertible matrix and A−1 = AT , prove that |A| = ±1.

(b) Let B =


1 −6 82

6 1 59

−82 −59 1

.

i. Using the result of (a), show that det(I −B) = 0.

ii. Hence, find the value of det(I −B4).

22. Let A =


1 −1 1

2 0 −2

−1 1 2

.

(a) Show that A3 − 3A2 + 7A = 6I.

(b) Show that A2 − 3A+ 7I is a multiple of A−1.

(c) Using the result of (b), find A−1.

23. Let P =

 2 1

−4

3
−1

3

 and Q =

(
1 −3

−1 4

)
. Find
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(a) Q−1,

(b) Q−1PQ,

(c) Pn, where n is a positive integer.

24. (a) If

∣∣∣∣∣m+ 1 −1

−2 m

∣∣∣∣∣ = 0, find the values of m.

(b) Let m1 and m2 be the values obtained in (a) where m1 < m2. If

(
m1 + 1 −1

−2 m1

)1

3

a

 =

0

0


and

(
m2 + 1 −1

−2 m2

)2

3

b

 =

0

0

, find the values of a and b.

(c) Let A =

1

3

2

3

b a

 where a and b are the values obtained in (b). Evaluate An, where n is a

positive integer.

(d) Prove that A−1

(
−7 2

4 0

)
A is a matrix of the form

(
k1 0

0 k2

)
, where k1 and k2 are real numbers.

(e) Evaluate

(
−7 2

4 0

)100

.


