
Chapter 12

Indefinite Integral∗

Most of the mathematical operations have inverse operations. The inverse operation of differentiation is

called integration. For example, describing a process at the given moment knowing the speed of the process

at that moment.

12.1 Integration - reverse of differentiation

Consider the function F (x) = 3x2. Suppose we write its derivative as f(x), that is f(x) =
dF

dx
. It is easy to

see that f(x) = 6x. This process is illustrated in the following figure.

Suppose now that we try to differentiate F (x) = 3x2 + 6 instead. Clearly, the answer to this question is

again the function 6x. We say that F (x) = 3x2 or F (x) = 3x2 + 6 is the antiderivative of f(x) = 6x.

We can see that an antiderivative is not uniquely determined because the antiderivatives of 6x can also be

3x2 +
√

3, 3x2 − π and any function of the form 3x2 + C, where C is an arbitrary constant.

The reason why all of these functions have the same derivative is that the constant term disappeared after

differentiation. So, more generally, if F (x) is an antiderivative of f(x), then the antiderivative of f(x) is also

every function F (x) + C, where C is whatever constant.

Example 12.1.

(a) Let F (x) = e2x + cosx, find
dF

dx
.

∗http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-intrevdiff-2009-1.pdf
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CHAPTER 12. INDEFINITE INTEGRAL 2

(b) Write down several antiderivatives of f(x) = 2e2x − sinx.

(a)
dF

dx
= e2x · 2− sinx = 2e2x − sinx.

(b) We can deduce from (a) that an antiderivative of 2e2x − sinx is e2x + cosx. All other antiderivatives

of f(x) = 2e2x − sinx will take the form F (x) + C where C is a constant. So, the following can all be the

antiderivatives of f(x):

e2x + cosx− 7, e2x + cosx− 15, e2x + cosx, e2x + cosx+ 3.

N

From these examples, we have the following definition.

12.2 Indefinite Integral

If the function F (x) is an antiderivative of f(x), then the expression F (x) + C, where C is an arbitrary

constant, is called the indefinite integral of f(x) with respect to x and is denoted by
∫
f(x) dx, i.e.,∫

f(x) dx = F (x) + C.

The function f(x) is called the integrand,

∫
the integral sign, x is called the variable of integration and C

the constant of integration.

Example 12.2.

Find

∫
3x2 dx.†

Let y = x3, then
dy

dx
= 3x2. Hence, we verify that

∫
3x2 dx = x3. In general, adding any constant C to x3

gives the same derivative. Hence, the integral of the function y = 3x2 is given by∫
3x2 dx = x3 + C.

N

Example 12.3.

Find

∫
1

x
dx.

Since
d

dx
lnx =

1

x
,

Hence ∫
dx

x
= lnx+ C.

N
†http://www.maths.manchester.ac.uk/~tv/Teaching/1C2/2013/1-integrals.pdf
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Example 12.4.

Let n be an integer not equal to −1. Find

∫
xn dx.

Since
d

dx
xn+1 = (n+ 1)xn.

Hence ∫
(n+ 1)xn dx = xn+1 + C1,

dividing (n+ 1) and adding an arbitrary constant gives∫
xn dx =

1

n+ 1
xn+1 + C

. N

Example 12.5. Find

∫
cosx dx.

Since
d

dx
sinx = cosx,

Hence ∫
cosx dx = sinx+ C.

N

12.2.1 Basic Properties of Indefinite Integrals

Since integration is the reverse process of differentiation, we can derive some basic properties of indefinite

integrals from differentiation.

1.

∫
kf(x) dx = k

∫
f(x) dx, where k is a constant.

2.

∫
f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx

Proof. Suppose F (x) is the antiderivative of f(x), i.e.,
d

dx
F (x) = f(x).

d

dx
[kF (x)] = k

d

dx
F (x)

= kf(x)

By the definition of indefinite integral,∫
kf(x) dx = kF (x) + C1.

On the other hand,

k

∫
f(x) dx = k [F (x) + C]

= kF (x) + C2.

Since C1 and C2 are arbitary constants,∫
kf(x) dx = k

∫
f(x) dx.

�
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Proof. Suppose F (x) and G(x) are the antiderivative of f(x) and g(x) respectively. i.e.,
d

dx
F (x) = f(x)

and
d

dx
G(x) = g(x).

d

dx
[F (x)±G(x)] =

d

dx
F (x)± d

dx
G(x)

= f(x)± g(x)

By the definition of indefinite integral,∫
[f(x)± g(x)] dx = F (x)±G(x) + C

= F (x) + C1 ±G(x) + C2

=

∫
f(x) dx±

∫
g(x) dx.

�

12.2.2 Table of basic Integrals

Similar to our examples 1.2 to 1.5, by reversing our lists of derivatives and rules, we will have a list of

elementary integrals results as shown in the following table‡:

Example 12.6.

Find

∫
(2x− 3√

x
) dx. ∫

(2x− 3√
x

) dx = 2

∫
xdx− 3

∫
x−

1
2 dx

= 2

(
x2

2

)
− 3

x 1
2

1

2

+ C

‡http://www.math.hkbu.edu.hk/~felix_kwok/2016/chapter5_notes1.pdf
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= x2 − 6x
1
2 + C

N

Example 12.7.

Find

∫
x2 + 6

x2
dx.

∫
x2 + 6

x2
dx =

∫
(1 +

6

x2
) dx

=

∫
(1 + 6x−2) dx

= x− 6

x
+ C

N

Example 12.8.

Find

∫
secx(cosx+ tanx) dx.

∫
secx(cosx+ tanx) dx =

∫
(secx cosx+ secx tanx) dx

=

∫
(1 + secx tanx) dx

= x+ secx+ C

N

Example 12.9.

Find

∫
(6x2 +

1

x
− ex) dx.

∫
(6x2 +

1

x
− ex) dx = 6

(
x3

3

)
+ ln |x| − ex + C

= 2x3 + ln |x| − ex + C

N

Example 12.10.

Find

∫
1

1− sin2 x
dx.

∫
1

1− sin2 x
dx =

∫
1

cos2 x
dx

=

∫
sec2 x dx

= tanx+ C

N
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Example 12.11.

Find

∫
1 + cos θ

1− cos θ
dθ

∫
1 + cos θ

1− cos θ
dθ =

∫
1 + cos θ

1− cos θ
× 1 + cos θ

1 + cos θ
dθ

=

∫
1 + 2 cos θ + cos2 θ

sin2 θ
dθ

=

∫
(csc2 θ + 2 cot θ csc θ + cot2 θ) dθ

= − cot θ − 2 csc θ +

∫
(csc2 θ − 1) dθ

= −2 cot θ − 2 csc θ − θ + C

N

12.3 Integration by Substitution

Some indefinite integrals like

∫ √
x+ 1 dx cannot be found directly by using the basic integration table.

In this case, we may transform the indefinite integral into another indefinite integral that we know how to

integrate. This method is known as integration by substitution. In general, we have:

If F (u) is the antiderivative of f(u), i.e. F ′(u) = f(u), and u = g(x) is a differentiable function of x, then

we have ∫
f [g(x)]g′(x)dx =

∫
f(u)du = F (u) + C.

Proof. Since F (u) is an antiderivative of f(u). We have

∫
f(u) du = F (u) + C.

By the chain rule,

d

dx
F (u) =

dF (u)

du
· du
dx

= f(u) · g′(x)

= f [g(x)] g′(x).

By the definition of indefinite integral,∫
f [g(x)]g′(x) dx = F (u) + C.

Hence, ∫
f [g(x)]g′(x)dx =

∫
f(u)du = F (u) + C.

�

Example 12.12.

Find

∫
x
√
x+ 1 dx.
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Let u = x+ 1. Then du = dx∫
x
√
x+ 1 dx =

∫
(u− 1)(

√
u) du

=

∫
(u

3
2 − u 1

2 ) du

=
2

5
u

5
2 − 2

3
u

3
2 + C

=
2

5
(x+ 1)

5
2 − 2

3
(x+ 1)

3
2 + C

N

Example 12.13.

Find

∫
2x− 5√

x2 − 5x+ 3
dx.

Let u = x2 − 5x+ 3. Then du = (2x− 5)dx∫
2x− 5√

x2 − 5x+ 3
dx =

∫
1√
u
du

= 2
√
u+ C

= 2
√
x2 − 5x+ 3 + C

N

Example 12.14.

Find

∫
e−

x
4 dx.

Let u = −x
4

. Then, du = −1

4
dx or −4 du = dx∫

e−
x
4 dx =

∫
eu(−4) du

= −4eu + C

= −4e−
x
4 + C

N
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Example 12.15.

Find

∫
x2 − 2 lnx

x
dx.

Let u = lnx. Then, du =
1

x
dx

∫
x2 − 2 lnx

x
dx =

∫
(x− 2 lnx

x
) dx

=
x2

2
− 2

∫
u du

=
x2

2
− 2

(
u2

2

)
+ C

=
x2

2
− (lnx)2 + C

N

Example 12.16.

Find

∫
x2 csc2(1− x3) dx.

Let u = 1− x3. Then, du = −3x2 dx or −1

3
du = x2 dx∫

x2 csc2(1− x3) dx =

∫
−1

3
csc2 u du

= −1

3
(− cotu) + C

=
1

3
cot(1− x3) + C

N

Example 12.17.

Find

∫
cos θ

(sin θ + 1)2
dθ.

Let u = sin θ + 1. Then, du = cos θ dθ∫
cos θ

(sin θ + 1)2
dθ =

∫
1

u2
du

= − 1

u
+ C

= − 1

sin θ + 1
+ C

N

12.3.1 Integration involving
√
a2 − x2,

√
x2 − a2 and

√
a2 + x2

In many cases, the shortest method of integrating such expressions:
√
a2 − x2,

√
x2 − a2 and

√
a2 + x2 where

a > 0, is to change the variable as follows:
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1. For integrands involving
√
a2 − x2. We use the substitution

x = a sin θ,−π
2
≤ θ ≤ π

2
.

2. For integrands involving
√
x2 − a2. We use the substitution

x = a sec θ, 0 ≤ θ ≤ π, θ 6= π

2
.

3. For integrands involving
√
a2 + x2. We use the substitution

x = a tan θ,−π
2
< θ <

π

2
.

In each of the above cases, the radical sign in the integrand will be eliminated.

Example 12.18.

Find

∫
dx√

4− x2
.

Let x = 2 sin θ. Then, dx = 2 cos θ dθ. ∫
dx√

4− x2
=

∫
2 cos θ dθ

2 cos θ

= θ + C

= sin−1
x

2
+ C

N

Example 12.19.

Find

∫ √
x2 − 9

3x
dx.

Let x = 3 sec θ. Then, dx = 3 sec θ tan θ dθ.∫ √
x2 − 9

3x
dx =

∫
3 tan θ

9 sec θ
(3 sec θ tan θ) dθ

=

∫
tan2 θ dθ

=

∫
(sec2 θ − 1) dθ

= tan θ − θ + C

=

√
x2 − 9

3
− cos−1

3

x
+ C (By drawing right-angled triangle and using pythagorean theorem)

N

Example 12.20.

Find

∫
x2

1 + x2
dx.

let x = tan θ. Then, dx = sec2 θ dθ.∫
x2

1 + x2
dx =

∫
tan2 θ

sec2 θ
(sec2 θ) dθ
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=

∫
tan2 θ dθ

= tan θ − θ + C

= x− tan−1 x+ C

N

12.4 Integration by Parts

If u(x) and v(x) are differentiable functions of x, then∫
u(x)d(v(x)) = u(x)v(x)−

∫
v(x)d(u(x)).

Proof.

Since

[u(x)v(x)]
′

= u(x)v′(x) + v(x)u′(x).

Hence

u(x)v′(x) = [u(x)v(x)]
′ − v(x)u′(x).

Then, ∫
u(x)v′(x) dx =

∫
[u(x)v(x)]

′
dx−

∫
v(x)u′(x) dx.

i.e., ∫
u(x)d(v(x)) = u(x)v(x)−

∫
v(x)d(u(x))

�

Some integrals such as
∫

lnx dx,
∫
x cosx dx and

∫
ex sinx dx cannot be found by the techniques we have

learnt before. We shall use the above method (integration by parts) to find these types of integrals.

Example 12.21.

Find

∫
x4 lnx dx.

∫
x4 lnx dx =

∫
lnx d(

x5

5
)

= (lnx)(
x5

5
)−

∫
x5

5
d(lnx)

=
1

5
x5 lnx− 1

5

∫
x4 dx

=
1

5
x5 lnx− x5

25
+ C

N
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Example 12.22.

Find

∫
x2ex dx.

∫
x2ex dx =

∫
x2 d(ex)

= x2ex −
∫
ex d(x2)

= x2ex − 2

∫
xex dx

= x2ex − 2

∫
x d(ex)

= x2ex − 2xex + 2

∫
ex dx

= x2ex − 2xex + 2ex + C

N

Example 12.23.

Find

∫
x2 sin 2x dx.

∫
x2 sin 2x dx = −1

2

∫
x2 d(cos 2x)

= −1

2
x2 cos 2x+

1

2

∫
cos 2x d(x2)

= −1

2
x2 cos 2x+

∫
x cos 2x dx

= −1

2
x2 cos 2x+

1

2

∫
x d(sin 2x)

= −1

2
x2 cos 2x+

1

2
x sin 2x− 1

2

∫
sin 2x dx

= −1

2
x2 cos 2x+

1

2
x sin 2x+

1

4
cos 2x+ C

N

Example 12.24.

Find

∫
e2x sinx dx.

∫
e2x sinx dx =

∫
e2x d(− cosx)

= −e2x cosx+ 2

∫
e2x cosx dx

= −e2x cosx+ 2

∫
e2x d(sinx)

= −e2x cosx+ 2

[
e2x sinx− 2

∫
e2x sinx dx

]
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= −e2x cosx+ 2e2x sinx− 4

∫
e2x sinx dx

Hence,

5

∫
e2x sinx dx = −e2x cosx+ 2e2x sinx+ C1∫
e2x sinx dx =

1

5
(−e2x cosx+ 2e2x sinx) + C

N

Exercises

1. Find

∫
(x− 3)(x+ 2)(1− 2x) dx.

2. Find

∫
2ex − 3

√
x

3
dx.

3. Find

∫
(sec θ + csc θ)(sec θ − csc θ) dθ.

4. Find

∫
1− cos2 x

tanx cosx
dx.

5. Find

∫
(cos3 x+ sin3 x cotx) dx.

6. Find

∫
1− csc4 x

cot2 x
dx.

7. Find

∫ √
x− lnx

x
dx.

8. Find

∫
cosx sin2 x dx.

9. Find

∫
x3e−2x dx.

10. Find

∫
e2x

3
√
ex + 1

dx.

11. Find

∫
cos3 x sin4 x dx.

12. Find

∫
tan2 θ sec6 θ dθ.

13. Find

∫
dx

(9− x2)
3
2

.

14. Find

∫
dx

(x+ 1)
√
x2 − 1

.

15. Find

∫
dx

x2
√

4x2 − 1
.

16. Find

∫
x5

x2
√
x2 + 1

dx.
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17. Find

∫
dx

2x2 + 2x+ 1
.

18. Find

∫
x sin 3x sin 4x dx.

19. Find

∫
sin(lnx) dx.

20. Find

∫
e−2x sin 2x dx.

21. (a) Find

∫
dx

x2 + 1
.

(b) Using the substitution u = ex and the result of (a),find

∫
dx

ex + e−x
.

(c) Using the result of (a), find

∫
dx

x2 +
√

2x+
3

2

.

22. (a) Find

∫
tan6 xdx.

(b) Using the result of (a), find

∫
(x2 − 1)

5
2

x
dx.

23. (a) Show that
d

dx
tan

x

2
=

1

1 + cosx
.

(b) Using (a), or otherwise, find

∫
x+ sinx

1 + cosx
dx.

24. (a) Prove that

∫
secx dx = ln |secx+ tanx|+ C

(b) Using the result of (a), evaluate

∫
sec

x

2
dx and

∫
sec3

x

2
dx.



Chapter 13

Definite Integral

We have introduced all the skills and procedures of finding indefinite integral. Now, we are able to ‘anti-

differentiate’ a wide range of elementary functions. We have to master all the skills of indefinite integral

before we move on to this chapter.

In this chapter, we deal with definite integral. The main difference between definite and indefinite integral is

the existence of upper and lower limits. Usually, we denote the upper limit by b and lower limit by a. The

notation of definite integral is

∫ b

a

f(x) dx.

13.1 Definition of Definite Integrals

For a function f defined on [a, b], a partition P of [a, b] into a collection of n subintervals

[x0, x1], [x1, x2], ..., [xn−1, xn],

and for each k = 1, 2, ..., n, a point ξk in [xk−1, xk], the sum under graph is given by

f(ξ1)(x1 − x0) + f(ξ2)(x2 − x1) + ...+ f(ξn)(xn − xn−1)

or in summation notation
n∑
k=1

f(ξk)(xk − xk−1) =

n∑
k=1

f(ξk)∆x.

Usually, we will take P to be n regular partition (i.e. ∆x =
b− a
n

). This is called Riemann sum of the

function f . Notice that as n tends to infinity, the sum would be a more and more accurate representation

of the area under graph.

The definite integral of f from a to b is defined to be∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ξk)(
b− a
n

).

14
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Example 13.1.

Compute the integral

∫ 4

0

x3 dx by computing Riemann sums for a regular partition.

Notice that a = 0, b = 4 and f(x) = x3. For regular partition and for each positive integer n, we have

∆x =
4− 0

n

=
4

n
;

xk = a+ k∆x

=
4k

n
, for k = 1, 2, · · · , n;

f(ξk) =

(
4k

n

)3

=
64k3

n3
, for k = 1, 2, · · · , n.

Then,
n∑
k=1

f(ξk)∆x =

n∑
k=1

(
64k3

n3

)(
4

n

)

=

n∑
k=1

256k3

n4

=
256

n4

n∑
k=1

k3

=
256n2(n+ 1)2

4n4
.

(Notice that the last step of the simplification follows from summation formula.)

Then, by the definition of definite integral,∫ 4

0

x3 dx = lim
n→∞

n∑
k=1

f(ξk)∆x

= lim
n→∞

(
64k3

n3

)(
4

n

)
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= lim
n→∞

256n2(n+ 1)2

4n4

= 64

N

13.2 Basic properties of Definite Integrals

In the last section, we have defined definite integral of f(x) on the closed interval [a, b]. This is to imply

that a < b. We shall also define integrals in which the upper limit is less than the lower limit.

Definition 13.1

Let f(x) be integrable on [a, b]. Then, the definite integral of f(x) from b to a is defined by∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

Directly from this definition, we have the following properties:

1.

∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx, where k is a constant.

2.

∫ b

a

[f(x)± g(x)] dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

3.

∫ a

a

f(x) dx = 0

4.

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx, where a < c < b.

We will prove property 3. The proofs of the other properties are easy and trivial. They are left to our

students as an exercise.

Proof.

Since ∫ a

a

f(x) dx = −
∫ a

a

f(x) dx.

Then,

2

∫ a

a

f(x) dx = 0∫ a

a

f(x) dx = 0.

�



CHAPTER 13. DEFINITE INTEGRAL 17

13.3 Fundamental Theorem of Calculus

As you will see in section 12.1 that it is quite difficult to evaluate a definite integral directly from the defi-

nition. This problem can be easily solved by means of the following famous theorem:

If f(x) is a continuous function on [a, b] and F (x) is the antiderivative of f(x) (i.e. F ′(x) = f(x)).

We have, ∫ b

a

f(x) dx = [F (x)]
b
a = F (b)− F (a).

The Fundamental Theorem of Calculus enables us to evaluate definite integrals by finding the indefinite

integrals. To evaluate the definite integral

∫ b

a

f(x) dx, we first find the indefinite integral

∫
f(x) dx. Then,

we substitute the upper and lower limits into the resulting function to evaluate the value of

∫ b

a

f(x) dx.

In other words, we will repeat all the skills of the last chapter again and do the upper and lower limits

substitution to the final function without the integration constant C.

Note: For Integration by Substitutions, we need to change the upper and lower limits to the new upper and

lower limits for the new variable after substitution.

Example 13.2.

Evaluate

∫ 0

−2
(3x− 4x3) dx.

∫ 0

−2
(3x− 4x3) dx =

[
3

2
x2 − x4

]0
−2

=

[
3

2
(0)2 − 04

]
−
[

3

2
(−2)2 − (−2)4

]
= 10

N

Example 13.3.

Evaluate

∫ π
3

0

secx tanx dx.

∫ π
3

0

secx tanx dx =
[

secx
]π

3

0

= sec
(π

3

)
− sec 0

= 1

N
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Example 13.4.

Evaluate

∫ 2

0

(x2 + 4x) dx−
∫ 2

3

(x2 + 4x) dx.

∫ 2

0

(x2 + 4x) dx−
∫ 2

3

(x2 + 4x) dx =

∫ 2

0

(x2 + 4x) dx+

∫ 3

2

(x2 + 4x) dx

=

∫ 3

0

(x2 + 4x) dx

=

[
x3

3
+ 2x2

]3
0

=
33

3
+ 2(3)2

= 27

N

Example 13.5.

Evaluate

∫ 4

0

6x
√
x2 + 9 dx.

Let u = x2 + 9. Then, du = 2x dx. When x = 0, u = 9 and x = 4, u = 25.∫ 4

0

6x
√
x2 + 9 dx =

∫ 25

9

3
√
u du

= 2
[
u

3
2

]25
9

= 2[125− 27]

= 196

N

Example 13.6.

Evaluate

∫ e2

e

lnx+ 1

x
dx.

Let u = lnx+ 1. Then, du =
1

x
dx. When x = e, u = 2 and x = e2, u = 3.∫ e2

e

lnx+ 1

x
dx =

∫ 3

2

u du

=

[
u2

2

]3
2

=
32 − 22

2

=
5

2

N
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Example 13.7.

Evaluate

∫ π
4

0

tan3 x secx dx.

Let u = secx. Then du = secx tanx dx. When x = 0, u = 1 and x =
π

4
, u =

√
2.∫ π

4

0

tan3 x secx dx =

∫ √2

1

(u2 − 1) du

=

[
u3

3
− u
]√2

1

=

[
(
√

2)3

3
−
√

2

]
−
[

(1)3

3
− 1

]
=

2
√

2

3
−
√

2− 1

3
+ 1

=
2−
√

2

3

N

Example 13.8.

Evaluate

∫ 3

0

x3√
9− x2

dx.

Let x = 3 sin θ. Then, dx = 3 cos θ dθ. When x = 0, u = 0 and x = 3, u =
π

2
.∫ 3

0

x3√
9− x2

dx =

∫ π
2

0

(3 sin θ)3

3 cos θ
3 cos θ dθ

= 27

∫ π
2

0

sin3 θ dθ

= −27

∫ π
2

0

(1− cos2 θ) d(cos θ)

= −27

[
cos θ − cos3 θ

3

]π
2

0

= −27

cos
π

2
−

cos3
π

2
3

+ 27

[
cos 0− cos3 0

3

]

= 27

[
1− 1

3

]
= 18

N

Example 13.9.

Evaluate

∫ 1

0

xex dx.

∫ 1

0

xex dx =

∫ 1

0

x d(ex)
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= [xex]
1
0 −

∫ 1

0

ex dx

=
[
(1)e1 − 0(e0)

]
− [ex]

1
0

= e−
[
e1 − e0

]
= 1

N

Example 13.10.

Evaluate

∫ π

0

x2 cosx dx.

∫ π

0

x2 cosx dx =

∫ π

0

x2 d(sinx)

=
[
x2 sinx

]π
0
− 2

∫ π

0

x sinx dx

= 2

∫ π

0

x d(cosx)

= 2 [x cosx]
π
0 − 2

∫ π

0

cosx dx

= 2 [π cosπ]− 2 [sinx]
π
0

= −2π − 2 [0− 0]

= −2π

N

13.4 Definite Integrals of Even, Odd and Periodic Functions

13.4.1 Even and Odd functions

A function f(x) is an even function if f(−x) = f(x) for all values of x.

Example 13.11.

f(x) = x2 is an even function since f(−x) = (−x)2 = x2 = f(x). N

A function f(x) is an odd function if f(−x) = −f(x) for all values of x.

Example 13.12.

f(x) = x3 is an odd function since f(−x) = (−x)3 = −x3 = −f(x). N

When f(x) is an even function or an odd function, we have the following result.

∫ a

−a
f(x)dx =


2

∫ a

0

f(x)dx , if f(x) is even.

0 , if f(x) is odd.
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Proof. ∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0

f(x) dx

Consider

∫ 0

−a
f(x) dx.

Let u = −x. Then, −du = dx. When x = −a, u = a and x = 0, u = 0.∫ 0

−a
f(x) dx =

∫ 0

a

f(−u) (−du)

=

∫ a

0

f(−u) du

=

∫ a

0

f(−x) dx

Hence, ∫ a

−a
f(x) dx =

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx

When f(x) is even function, f(−x) = f(x).∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx

When f(x) is even function, f(−x) = −f(x).∫ a

−a
f(x) dx = 0

�

Example 13.13.

Evaluate

∫ π
4

−π4
cosx dx.

Let f(x) = cosx. Notice that f(−x) = cos(−x) = cosx = f(x). Hence, cosx is an even function.∫ π
4

−π4
cosx dx = 2

∫ π
4

0

cosx dx

= 2 [sinx]
π
4
0

= 2
[
sin

π

4
− sin 0

]
=
√

2

N

Example 13.14.

Evaluate

∫ 1

−1

x

x2 + 2
dx.

Let f(x) =
x

x2 + 2
. Notice that f(−x) =

−x
(−x)2 + 2

= −f(x). Hence,
x

x2 + 2
is an odd function.∫ 1

−1

x

x2 + 2
dx = 0

N
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13.4.2 Periodic Functions

If a function f(x) is a periodic function with period T , then f(x+ T ) = f(x) for all values of x.

Example 13.15. f(x) = sinx is a periodic function with period 2π. N

Note: If f(x+ T ) = f(x), then f(x+ nT ) = f(x), where n is an integer.

When f(x) is a periodic function with period T , we have the following result.∫ nT

0

f(x) dx = n

∫ T

0

f(x) dx, where n is an integer.

Proof.

Case I: n is a positive integer.∫ nT

0

f(x) dx =

∫ T

0

f(x) dx+

∫ 2T

T

f(x) dx+ · · ·+
∫ nT

(n−1)T
f(x) dx

Consider

∫ 2T

T

f(x) dx. Let u = x− T . Then du = dx. When x = T, u = 0 and x = 2T, u = T .∫ 2T

T

f(x) dx =

∫ T

0

f(u+ T ) du

=

∫ T

0

f(u) du

=

∫ T

0

f(x) dx

Similarly, ∫ 3T

2T

f(x) dx =

∫ T

0

f(x) dx

...∫ nT

(n−1)T
f(x) dx =

∫ T

0

f(x) dx

Hence, ∫ nT

0

f(x) dx =

∫ T

0

f(x) dx+

∫ 2T

T

f(x) dx+ · · ·
∫ nT

(n−1)T
f(x) dx

= n

∫ T

0

f(x)dx

Case II: n = 0. The statement is trivial.

Case III: n is a negative integer.

Let u = x− nT and m = −n. Then, du = dx. When x = 0, u = −nT = mT and x = nT, u = 0∫ nT

0

f(x) dx =

∫ 0

mT

f(u) du

= −
∫ mT

0

f(u) du
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= −m
∫ T

0

f(u) du (by the result of case I)

= n

∫ T

0

f(x) dx

To conclude, ∫ nT

0

f(x) dx = n

∫ T

0

f(x) dx, where n is an integer.

�

Example 13.16.

It is given that f(x) is a periodic function with period 2π,

∫ π
3

0

f(x) dx =

√
3

4
and

∫ 2π

0

f(x) dx = 0.

(a) Show that

∫ b+2nπ

a+2nπ

f(x) dx =

∫ b

a

f(x) dx, where a, b are real numbers and n is an integer.

(b) Hence, evaluate

∫ 13π
3

0

f(x) dx.

(a)

Let u = x− 2nπ. Then du = dx. When x = a+ 2nπ, u = a and x = b+ 2nπ, u = b.∫ b+2nπ

a+2nπ

f(x) dx =

∫ b

a

f(u+ 2nπ) du

=

∫ b

a

f(u) du

=

∫ b

a

f(x) dx

(b) ∫ 13π
3

0

f(x) dx =

∫ 4π+π
3

0

f(x) dx

=

∫ 4π

0

f(x) dx+

∫ 4π+π
3

4π

f(x) dx

=

∫ 2(2π)

0

f(x) dx+

∫ π
3

0

f(x) dx

= 2

∫ 2π

0

f(x) dx+

√
3

4

= 2(0) +

√
3

4

=

√
3

4

N
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Exercises

1. Evaluate the following definite integrals from the definition of definite integrals.

(a)

∫ 3

1

(4x+ 3) dx.

(b)

∫ 2

0

(7 + x2) dx.

2. Evaluate

∫ π
6

0

(
1

1− sinx
+

1

1 + sinx

)
dx.

3. Evaluate

∫ 4

1

(√
x+

1√
x

)
dx.

4. Evaluate

∫ 3

−3

ex

ex + 2e−x
dx− 2

∫ −3
3

e−x

ex + 2e−x
dx.

5. Evaluate

∫ e5

1

dx

x lnx+ x
.

6. Evaluate

∫ 3

0

(x+ 1)ex
2+2x dx.

7. Evaluate

∫ 3
√
3

3
√
2

1

x2
√

36− x2
dx.

8. Evaluate

∫ 3

−1

1√
(x+ 1)2 + 16

dx.

9. (a) Evaluate

∫ √3

1√
3

dx

1 + x2
.

(b) Using the substitution u =
1

x
and the result of (a), evaluate

∫ √3

1√
3

dx

(x3 + 1)(x2 + 1)
.

10. Evaluate

∫ 4

1

√
x lnx dx.

11. Evaluate

∫ 0

−π
e2x(sinx+ cosx)2 dx.

12. Evaluate

∫ √3

0

x3ex
2

dx.

13. Evaluate

∫ π
2

0

x cos2 x dx.

14. (a) Evaluate

∫ π
3

0

x sec2 x dx.

(b) Using the result of (a), evaluate

∫ π
3

0

x tan2 x dx.

15. Evaluate

∫ π

−π
(ex + e−x) sinx dx.
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16. Suppose f(x) is a periodic function with period T .

(a) Using the substitution u = x+ T , show that

∫ b

a

f(x) dx =

∫ b+T

a+T

f(x) dx, where a and b are real

numbers.

(b) Using the result of (a), show that

∫ T

0

f(x) dx =

∫ a+T

a

f(x) dx, where a is a real number.

17. Evaluate

∫ 2

√
2

dx

x2
√
x2 − 1

.

18. Evaluate

∫ 0

−1
x2e−3x dx.

19. (a) Using the substitution u = a− x, show that

∫ a

0

x3

x3 + (x− a)3
dx =

∫ a

0

(x− a)3

x3 + (x− a)3
dx.

(b) Using the result of (a), evaluate

∫ 4

0

x3

x3 + (x− 4)3
dx.

20. (a) Show that

∫ π
2

0

f(x) dx =

∫ π
2

0

f(
π

2
− x) dx.

(b) Using the result of (a), evaluate the following definite integrals.

i.

∫ π
2

0

cosx− 3 sinx

sinx+ cosx
dx.

ii.

∫ π
2

0

sin3 x

sinx+ cosx
dx. (Hint: a3 + b3 = (a+ b)(a2 − ab+ b2))



Chapter 14

Application of Integration

In this chapter, we will see how definite and indefinite integrals be applied to real life situation. The first

application of indefinite integral would be on straight line motion and the next application would be on

graphs and functions.

14.1 Straight Line Motion

Consider the motion of an object along a straight line. If the displacement of the object from a reference

point at any time t is s, then its velocity v at time t is given by v =
ds

dt
and its acceleration a at time t is

given by a =
dv

dt
=
d2s

dt2
.

Conversely, the displacement and the velocity of the object can be determined from the given velocity and

acceleration respectively. For any given acceleration a at time t, the velocity v and displacement s can be

found by

s =

∫
v dt

v =

∫
a dt.

Example 14.1.

An object moves along a straight line through a fixed point O. The acceleration a ms−2 of the object t

seconds after the object has passed through O is given by a = 10t− 2. The object moves with a velocity of

18 ms−1 when t = 2.

(a) Find the velocity of the object when t = 6.

(b) Find the displacement of the object from O when t = 6.

(a) Let v ms−1 be the velocity of the object.

v =

∫
a dt

=

∫
(10t− 2) dt

26
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= 5t2 − 2t+ C1

When t = 2, v = 18. Hence, C1 = 18− 5(2)2 + 2(2) = 2.

i.e. v = 5t2 − 2t+ 2.

When t = 6, v = 5(6)2 − 2(6) + 2 = 170.

(b) Let s m be the displacement of the object from O.

s =

∫
v dt

=

∫
(5t2 − 2t+ 2) dt

=
5

3
t3 − t2 + 2t+ C2

When t = 0, s = 0. Hence, C2 = 0.

i.e. s =
5

3
t3 − t2 + 2t.

When t = 6, s =
5

3
(6)3 − (6)2 + 2(6) = 336.

N

Example 14.2.

A ball is thrown vertically upwards from the ground. Its velocity v ms−1 after t seconds is given by

v = 20− 10t. Let s m be the height of the ball above the ground.

(a) Express s in terms of t.

(b) Find the time taken for the ball to reach the highest point and the maximum height reached.

(c) Find the total distance travelled by the ball from t = 1 to t = 3.

(a)

s =

∫
v dt

=

∫
(20− 10t) dt

= 20t− 5t2 + C

When t = 0, s = 0. Hence, C = 0.

i.e. s = 20t− 5t2.

(b) When the ball reaches the highest point, its velocity would be zero. i.e. v = 0.

Hence, 20− 10t = 0 and t = 2.

The time taken for the ball to reach the highest point is 2 s.

When t = 2, s = 20(2)− 5(2)2 = 20.
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Hence, the maximum height reached is 20 m.

(c) When t = 1, s = 20(1)− 5(1)2 = 15.

When t = 3, s = 20(3)− 5(3)2 = 15.

From (b), the ball will reach its highest position and start to fall after 2 seconds.

Hence, the total distance travelled by the ball from t = 1 to t = 3

= [(20− 15) + (20− 15)]

= 10 m

N

14.2 Geometrical Application

We have learnt that the slope of a curve y = f(x) at any point (x, y) is given by f ′(x) or
dy

dx
. In particular,

f ′(x1) is the slope of the curve at (x1, y1).

If the slope of a curve at any point is given, we can use integration to find the equation of the curve.

Example 14.3.

The slope of a curve at any point (x, y) is given by
dy

dx
= 2x − 4. If the curve passes through the point

(1,−2), find the equation of the curve.

dy

dx
= 2x− 4

y =

∫
(2x− 4) dx

= x2 − 4x+ C

Since the curve passes through (1,−2),

−2 = (1)2 − 4(1) + C

C = 1

Hence, the equation of the curve is y = x2 − 4x+ 1.

N

Example 14.4.

At any point (x, y) of a curve,
d2y

dx2
= 12x + 6. If (0,−7) and (2, 11) lie on the curve, find the equation of

the curve.

d2y

dx2
= 12x+ 6

dy

dx
=

∫
(12x+ 6) dx

dy

dx
= 6x2 + 6x+ C1
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Then,

y =

∫
(6x2 + 6x+ C1) dx.

Hence,

y = 2x3 + 3x2 + C1x+ C2.

Since (0,−7) and (2, 11) lies on the curve, we have

−7 = 2(0)3 + 3(0)2 + C1(0) + C2

and

11 = 2(2)3 + 3(2)2 + C1(2) + C2.

On solving, C1 = −5 and C2 = −7.

i.e. The equation of the curve is y = 2x3 + 3x2 − 5x− 7.

N

Example 14.5.

At any point (x, y) of a curve,
d2y

dx2
= 24x2 − 10. If the slope of the curve at (−1,−8) is 9, find the equation

of the curve.

d2y

dx2
= 24x2 − 10

dy

dx
=

∫
(24x2 − 10) dx

= 8x3 − 10x+ C1

Since the slope of the curve at (−1,−8) is 9

9 = 8(−1)3 − 10(−1) + C1

C1 = 7
dy

dx
= 8x3 − 10x+ 7

y =

∫
(8x3 − 10x+ 7) dx

= 2x4 − 5x2 + 7x+ C2

Since (−1,−8) is a point on the curve

−8 = 2(−1)4 − 5(−1)2 + 7(−1) + C2

C2 = 2

i.e. The equation of the curve is y = 2x4 − 5x2 + 7x+ 2.

N
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14.3 Area of a Plane Figure

From the definition of integrals, we know that∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ξk)(
b− a
n

).

Hence, the area of a region bounded by a curve f(x), the x-axis and the line x = a and x = b can be

evaluated by the definite integrals: ∫ b

a

f(x) dx.

Similarly, the area of a region bounded by a curve f(y), the y-axis and the line y = a and y = b can be

evaluated by the definite integrals: ∫ b

a

f(y) dy.

Example 14.6.

Find the area of the region bounded by the line y = x+ 1, the x-axis and the lines x = 1 and x = 2.

The required area: ∫ 2

1

(x+ 1) dx =

[
x2

2
+ x

]2
1

=

[
4− 3

2

]
=

5

2

N

Example 14.7.

Find the area of the region bounded by the curve y = − 1

x2
, the x-axis and the lines x = 1 and x = 2.

Notice that the region is below the x-axis when x lies between 1 and 2.

Hence, the required area:

−
∫ 2

1

(
− 1

x2

)
dx =

[
− 1

x

]2
1

=
1

2

N

Example 14.8.

Find the area of the region bounded by the curve y = x(x− 1)(x− 2) and the x-axis.

When y = 0, x = 0, 1 or 2. Hence, the x-intercepts of the curve are 0, 1 and 2. Notice that from x = 0 to

x = 1, the area region is above the x-axis while from x = 1 to x = 2, the area region is below the x-axis.

Hence, the required area:∫ 1

0

x(x− 1)(x− 2) dx−
∫ 2

1

x(x− 1)(x− 2) dx =

∫ 1

0

(x3 − 3x2 + 2x) dx−
∫ 2

1

(x3 − 3x2 + 2x) dx
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=

[
x4

4
− x3 + x2

]1
0

−
[
x4

4
− x3 + x2

]2
1

=
1

2

N

Example 14.9.

Find the area of the region below the x-axis bounded by the curve x2 + y2 = 36 and the line x = −3.

Notice that y = ±
√

36− x2 and the required area is below the x-axis. Hence, we will take y = −
√

36− x2.

The required area:

−
∫ 6

−3
−
√

36− x2 dx =

∫ 6

−3

√
36− x2 dx

Let x = 6 sin θ. Then dx = 6 cos θ dθ. When x = −3, θ = −π
6

and x = 6, θ =
π

2
.∫ 6

−3

√
36− x2 dx =

∫ π
2

−π6
36 cos2 θ dθ

= 18

∫ π
2

−π6
(1 + cos 2θ) dθ

= 18

[
θ +

1

2
sin 2θ

]π
2

−π6

= 12π +
9
√

3

2

N

Example 14.10.

Find the area of the region bounded by the curve x = y(y − 2)(y + 1) and the y-axis.

Notice that we are now considering the area with respect to the y-axis instead of the x-axis. When x = 0,

y = −1, 0 or 2. Hence, the y-intercepts of the curve are −1, 0 and 2. Moreover, the required area is leftward

of the y-axis from y = 0 to y = 2 and rightward of the y-axis from y = −1 to y = 0.

The required area:∫ 0

−1
y(y − 2)(y + 1) dy −

∫ 2

0

y(y − 1)(y − 2) dy =

∫ 0

−1
(y3 − y2 − 2y) dy −

∫ 2

0

(y3 − y2 − 2y) dy

=

[
y4

4
− y3

3
− y2

]0
−1
−
[
y4

4
− y3

3
− y2

]2
0

=
37

12

N

Example 14.11.

Find the area of the region bounded by the curve y = x2 and the line y = 2x.

By solving y = x2 and y = 2x simultaneously, the x-coordinate of their points of intersection are x = 0 and

x = 2. Notice that when 0 ≤ x ≤ 2, 2x ≥ x2.
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Hence, the required area: ∫ 2

0

(2x− x2) dx =

[
x2 − x3

3

]2
0

=
4

3

N

Example 14.12.

Find the area of the region bounded by the curve y = 2 sinx+2 and y = sinx+2 between x = 0 and x = 2π.

By solving y = 2 sinx + 2 and y = sinx + 2 simultaneously, the x-coordinate of their points of intersection

are x = 0, x = π and x = 2π. From x = 0 to x = π, 2 sinx + 2 ≥ sinx + 2 while from x = π to x = 2π,

sinx+ 2 ≥ 2 sinx+ 2.

Hence, the required area:∫ π

0

(2 sinx+ 2− sinx− 2) dx+

∫ 2π

π

(sinx+ 2− 2 sinx− 2) dx = [− cosx]
π
0 + [cosx]

2π
π

= 4

N

Example 14.13.

Find the area of the region bounded by the curve x = y2 and the line x = −y + 6.

By solving x = y2 and x = −y + 6 simultaneously, the y-coordinate of their points of intersection are 2 and

−3. When −3 ≤ y ≤ 2, −y + 6 ≥ y2.

Hence, the required area: ∫ 2

−3
(−y + 6− y2) dy =

[
−y

2

2
+ 6y − y3

3

]2
−3

=
125

6

N

Example 14.14.

Find the area of the region bounded by the curve y = x2 and the lines y = 5x and y = 4− 3x.

By solving y = x2 and y = 5x simultaneously, the x-coordinate of their points of intersection is
1

2
. Similarly,

by solving y = x2 and y = −4− 3x simultaneously, the x-coordinate of their points of intersection is 1.

Hence, the required area:∫ 1
2

0

(5x− x2) dx+

∫ 1

1
2

(4− 3x− x2) dx =

[
5x2

2
− x3

3

] 1
2

0

+

[
4x− 3x2

2
− x3

3

]1
1
2

=
7

6

N
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14.4 Volume of a Solid of Revolution

The volume of a solid obtained by revolving the region bounded by a curve y = f(x), the x-axis and the

lines x = a and x = b about the axis is given by

π

∫ b

a

[f(x)]2 dx.

Similarly, the volume of a solid obtained by revolving the region bounded by a curve x = g(y), the y-axis

and the lines y = a and y = b is given by

π

∫ b

a

[f(y)]2 dy.

Example 14.15.

Find the volume of the solid of revolution generated by revolving the region bounded by the x-axis and the

lines y = x+ 1, x = 1 and x = 5 about the axis.

The required volume:

π

∫ 5

1

(x+ 1)2 dx = π

[
(x+ 1)3

3

]5
1

=
208π

3

N

Example 14.16.

Find the volume of the solid of revolution generated by revolving the region bounded by the y-axis and the

lines y = x+ 1 and y = 7 about the y-axis.

The required volume:

π

∫ 7

1

(y − 1)2 dy = π

[
(y − 1)3

3

]7
1

= 72π

N

Example 14.17.

Find the volume of the solid generated by revolving the region bounded by

(a) the curve y = x2 and the lines y = 1, x = 1 and x = 3 about the line y = 1,

(b) the curve y = x2 and the lines x = 1, y = 1 and y = 4 about the line x = 1.

(a) The required volume:

π

∫ 3

1

(x2 − 1)2 dx = π

∫ 3

1

(x4 − 2x2 + 1) dx

= π

[
x5

5
− 2x3

3
+ x

]3
1

=
496π

15
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(b) Since x = y
1
2 , the required volume:

π

∫ 4

1

(y
1
2 − 1)2 dy = π

∫ 4

1

(y − 2y
1
2 + 1) dy

= π

[
y2

2
− 4y

3
2

3
+ y

]4
1

=
7π

6

N

Example 14.18.

Find the volume of the solid generated by revolving the region bounded by the curve x =
√
y and the line

x = 1, y = 1 and y = 4 about the y-axis.

The required volume:

π

∫ 4

1

[
(
√
y)2 − 12

]
dy = π

∫ 4

1

(y − 1) dy

= π

[
y2

2
− y
]4
1

=
9π

2

N

Example 14.19.

Find the volume of the solid generated by revolving the region bounded by the curve y =
1

3
x2 + 1 and the

line y = x, x = 0 and x = 3 about the x-axis.

The required volume:

π

∫ 3

0

[(
1

3
x2 + 1

)2

− x2
]
dx = π

∫ 3

0

(
x4

9
+

2x2

3
+ 1− x2

)
dx

= π

[
x5

45
− x3

9
+ x

]3
0

=
27π

5

N

Exercises

1. A toy car initially at rest moves along a straight line from a point O. Its velocity v ms−1 after t seconds

is given by v = −t2 + 25. Let s m be the displacement of the toy car from O.

(a) Express s in terms of t.

(b) Find the displacement of the toy car from O after 2 seconds.
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2. There is an apple on a tree. The apple is 4 m above the ground. Polly throws a ball vertically

upwards towards the apple from the ground. The velocity v ms−1 of the ball after t seconds is given

by v = 7− 10t. Can the ball hit the apple? Explain your answer briefly.

3. The acceleration a ms−2 of a moving object at time t s is given by a = cos t. The velocity v ms−1 of

the object is 0.5 ms−1 when t = 30. (a) Express v in terms of t. (b) Find the maximum velocity of

the object.

4. At any point (x, y) of a curve,
d2y

dx2
= 24(1 − x2). If the slope of the curve at (3,−7) is 4, find the

equation of the curve.

5. At any point (x, y) of a curve,
d2y

dx2
= 48x2. If (1, 12) and (−1, 18) lie on the curve, find the equation

of the curve.

6. At any point (x, y) of a curve,
d2y

dx2
= kx, where k is a constant. The curve attains its maximum at

(−1, 5) and its y-intercept is 1.

(a) Find the value of k.

(b) Find the equation of the curve.

(c) Find the minimum point of the curve.

(d) Sketch the curve for −2 ≤ x ≤ 2.

7. HKCEE 2005 Additional Mathematics Q10

(a) Show that
d

dx
[x(x+ 1)n] = (x+ 1)n−1 [(n+ 1)x+ 1], where n is a rational number.

(b) The slope of any point (x, y) of a curve C is given by
dy

dx
= (x + 1)2004(2006x + 1). If C passes

through the point (−1, 1), find the equation of C.

8. HKCEE 2006 Additional Mathematics Q10

The slope at any point (x, y) of a curve is given by
dy

dx
= 3 + 2 cos 2x. If the curve passes through the

point

(
π

4
,

3π

4

)
, find its equation.

9. Two curves y = f(x) and y = g(x) intersect at a point A, where f(x) = x2+2x+1 and g(x) = f(x−4).

(a) Find the coordinates of A.

(b) Find the area of the region bounded by the two curves and the x-axis.

10. The curves y = −x2 + 4 and y =
x2

2
− x both pass through a point A on the x-axis.

(a) Find the coordinates of A.

(b) Find the area of the region bounded by the two curves and y-axis.

11. The curve y2 = 2x and the straight line x− 2y + 2 = 0 intersect at a point A.

(a) Find the coordinates of A.

(b) Find the area of the region bounded by the curve, the straight line and the y-axis.

12. The curve y =
1

x
cuts the straight lines y = x and x = e at P and Q respectively.

(a) Find the coordinates of P and Q.

(b) Find the area of the region bounded by the curve y =
1

x
, the x-axis and the lines y = x and x = e.
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13. Find the area in the first quadrant bounded by the curves y = ex, y = e−x and x = 2.

14. Find the area bounded by the curve 2y2 = 3− x and the straight line x+ 2y + 1 = 0.

15. Let f(x) =
p− x
x+ q

for all x 6= −q and g(x) =
x+ 2q

4− x
for all x 6= 4, where p and q are positive constants.

The y-intercept of the curve y = f(x) is 5 and the x-intercept of the curve y = g(x) is −2.

(a) Find the values of p and q.

(b) Find the point of intersection of two curves.

(c) If the area of the shaded region bounded by the two curves, the y-axis and the line x = k is 6 ln
3

2
,

where 0 < k <
3

2
, find the value of k.

16. (a) Evaluate

∫ √
b2 − y2 dy.

(b) Find the area bounded by the lower half of the ellipse
x2

a2
+
y2

b2
= 1 and the straight line y = −(b−h)

where 0 < h < b.

17. Find the volume of the solid generated by revolving the region bounded by the curve x =
√

4− y2 and

the line x = −y + 2 about the y-axis.

18. Find the volume of the solid generated by revolving the region bounded by the curves y2 = x and

8y = x2 about the x-axis.

19. Show, by using integration, that the volume of a sphere with radius r is
4

3
πr3.

20. Find the volume of the solid of revolution generated by revolving the region bounded by the x-axis and

the curves y =
√
x and y =

√
6− x about the x-axis.

21. Find the volume of the solid of revolution generated by revolving the region bounded by the x-axis,

x = 0, x =
π

2
, y = sinx and y = cosx about the x-axis.

22. Given two curves y = f(x) and y = g(x), where f(x) = −x2 − 6x+ 2 and g(x) = −f(x) + 4.

(a) Find the points of intersection of the two curves.

(b) Find the area of the shaded region bounded by the two curves.

(c) Find the volume of the solid of revolution generated by revolving the shaded region about the

y-axis.


