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ABSTRACT
 Usually� when testing the null hypothesis that a distribution has one

mode� against the alternative that it has two� the null hypothesis is interpreted as

entailing that the density of the sampling distribution has a unique point of zero

slope� which is a local maximum
 In this paper we argue that a more appropriate

null hypothesis is that the density has two points of zero slope� of which one is a

local maximum and the other is a shoulder
 We show that when a test for a mode�

with�shoulder is properly calibrated� so that it has asymptotically correct level� it

is generally conservative when applied to the case of a mode without a shoulder


We suggest methods for calibrating both the bandwidth and dip�excess mass tests

in the setting of a mode with a shoulder
 We also provide evidence in support of

the converse a test calibrated for a single mode without a shoulder tends to be

anticonservative when applied to a mode with a shoulder
 The calibration method

involves resampling from a �template� density with exactly one mode and one shoul�

der
 It exploits the following asymptotic factorisation property for both the sample

and resample forms of the test statistic all dependence of these quantities on the

sampling distribution cancels asymptotically from their ratio
 In contrast to other

approaches� the method has very good adaptivity properties
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�� INTRODUCTION

Testing for modality is one way of �nding evidence of sub�populations in the

population from which data are drawn
 Early tests were often based on parametric

mixture models �e
g
 Cox ������ but during the last two decades several nonpara�

metric methods have been developed
 They are generally conservative� however� and

increasing interest is being shown in ways of calibrating them so that their levels

are closer to those prescribed
 Heuristically� it is to be expected that improving the

level accuracy of a conservative test would lead to increased power


It is usually necessary to have at least an approximate model for densities f

representing the �null hypothesis� that is being tested� since we need to calibrate

the test under the null
 For example� in the case of testing for unimodality against

the alternative of multimodality� the null hypothesis is generally that f has one local

maximum� no local minima� and no places of zero gradient that do not correspond to

turning points
 We shall call this the �classic null hypothesis�� H��class� it is tested

against the alternative� H�� that f has two or more modes


Such alternative hypotheses are generally relatively easy to distinguish from

the null� however
 We argue that a test of modality will have better performance

if it works well against distributions that are �marginal�� or �most di�cult� to tell

apart from the null � this is the sense in which we use the term �di�cult� in our

paper
 The di�cult cases are densities that represent the boundary between one

and two modes � that is� those where f has one local maximum� no local minima�

and exactly one point x for which f ��x� � � but x is a shoulder point �de�ned by

f ���x� � � and f ����x� �� �� rather than a local maximum or local minimum
 We term

this the �boundary null hypothesis�� H��bound
 The issue of which null hypothesis is

employed determines the type of theory which best describes properties of tests for

modality� and a�ects the tests� level accuracy and power


Figure �
� illustrates some of these issues
 Panels �a� and �c� depict densities

that are unimodal and bimodal� satisfying H��class and H� respectively� and panel

�b� shows a �shoulder� density which in a sense is midway between the other two�

and satis�es H��bound
 Intuitively� when an empirical test �nds it hard to distinguish

between panels �a� and �c�� the problem really arises because the test can�t solve

the more di�cult problem of deciding between panels �b� and �c�
 To optimise



�

performance in these di�cult cases the test should be constructed so that it addresses

the harder problem� not the easier one


� Put Figure ��� about here� please �

It is helpful to consider the related� parametric problem of testing composite�

one�sided hypotheses� of the form � � �� versus � � ��� where � denotes a scalar

parameter
 There it is common to construct �rst a test of the simple null hypothesis�

� � ��� against the alternative hypothesis � � ��� and then use the same test in

the case of the composite one�sided null hypothesis
 When the likelihood ratio is

monotone� this approach is optimal and gives uniformly most powerful tests� see

Kendall and Stuart ������ Chapter ���
 The null hypothesis � � �� is more di�cult

than � � �� to distinguish from � � ��� and the optimal approach is to construct

the test in the more di�cult case


In the context of the mode testing problem� H��bound represents the simple null

hypothesis � � �� at the boundary� and H��class plays the role of the null hypothesis

� � ��
 Following the line suggested in the previous paragraph� we argue that the

test should be developed for the more di�cult null hypothesis� H��bound
 Section �
�

establishes that� analogously to the conclusions reached in the previous paragraph for

the parametric case� our test is also appropriate for H��class� Figure �
� indicates the

conservatism of a test of H��bound when applied to H��class� and Figure �
� illustrates

the anticonservatism of a test for H��class when applied to H��bound


In this paper we suggest methods� and develop theory� pertaining to this view of

testing for modality
 We employ two particular tests as examples� the bandwidth test

of Silverman ������ and the dip�excess mass test of Hartigan and Hartigan ����	�

and M�uller and Sawitzki ������
 Both involve rejecting the null hypothesis if the

test statistic exceeds a certain critical point
 For either test we discuss a bootstrap

calibration method that produces the asymptotically correct level under H��bound�

and is slightly conservative under H��class
 Related methods� inspired by work of

Hartigan ������� will also be noted
 Importantly� the level of the test under H��class

does not converge to zero as sample size increases� and so the bootstrap procedure

is relatively adaptive to both null hypotheses
 In comparison� alternative methods

for calibrating tests of H��bound have a level which converges to zero under H��class


Our theoretical description of mode testing under the boundary null hypothesis
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is in contradistinction to existing accounts in the literature� which seem always to

assume the classic null hypothesis
 Examples include Silverman ������� Mammen�

Marron and Fisher ������ and Cheng and Hall ������
 The results in the two

cases are quite di�erent� with respect to order of magnitude as well as asymptotic

distribution
 For example� under H��class the critical value for the bandwidth test is

of size n����� where n is the number of data values �Mammen� Marron and Fisher

������ but under H��bound it is of size n����
 The analogues for critical points

in the case of the dip�excess mass tests are n���� and n����� respectively
 The

limiting distributions in the four cases are all di�erent and non�Normal
 These facts

alone demonstrate that calibration methods developed speci�cally for H��class can

be inappropriate for H��bound� and so can su�er problems when H��class is only �just

true�� unless they have the adaptivity property noted in the previous paragraph


Speci�cally� suppose H��class is true� but only just true �that is� H��bound is

�almost� true�� and the test is constructed so as to reject the null hypothesis when

the test statistic exceeds a critical point whose asymptotic size is appropriate to

H��class
 �Therefore� the critical point is of size n���� if the bandwidth test is used�

and of size n���� for the excess mass test
� Then the test will tend to incorrectly

reject the null hypothesis� for the simple reason that n���� � n���� and n���� �

n����
 Our adaptive tests based on bootstrap calibration does not su�er from this

problem


Because of the light which these theoretical results shed on the importance of

distinguishing between the two types of null hypothesis� we shall discuss our theo�

retical work �rst� in Section �
 Section � will summarise the results of a simulation

study that assesses the performance of our adaptive tests
 Section �
� will describe

alternative� non�adaptive approaches
 Technical arguments for Section � will be

placed into Section �
 For simplicity we shall consider only the case of testing for

unimodality
 There is no technical di�culty in stating and deriving analogues of our

theory for testing the hypothesis of m modes against that of m � � modes� where

m � �� although notation becomes rather complex in that case
 The versions of

our adaptive tests in that general setting seem prohibitively complex� however
 In

this multimodal setting� recent work of Hartigan ������ is particularly deserving of

mention
 There� a novel sequential �in m� approach to using the excess mass test is

suggested
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�� THEORETICAL PROPERTIES OF TEST STATISTICS

���� Summary and conclusions� The bandwidth test� which will be introduced and

discussed in Section �
�� involves rejecting the null hypothesis if a critical bandwidth�

 hcrit� is too large� and the dip�excess mass test� to be described in Section �
��

rejects the null hypothesis if a test statistic ! is too large
 When the sampling

density f satis�es the null hypothesis H��class� and appropriate regularity conditions

hold� n��� hcrit has a proper limiting distribution that may be written as that of a

random variable C�R�� where the nonzero constant C� depends only on f � and the

distribution of the random variable R� does not depend on f 
 See Mammen� Marron

and Fisher ������
 By way of contrast� we shall point out in Section �
� that under

H��bound and appropriate conditions on f � n���  hcrit � C�R� in distribution� where

�here and below� Cj and Rj have the properties ascribed to C� and R� above


Analogous results hold for the dip�excess mass test� where� under H��class and

regularity conditions on f � n���!� C�R� in distribution �see Cheng and Hall ������

and� under H��bound and regularity conditions� n���! � C�R� in distribution �see

Section �
��


The formulae for C�� � � � � C� are very di�erent from one another� as too are

the distributions of R�� � � � � R�
 However� in each case the principle is the same

the distribution of the test statistic factorises� asymptotically� into a constant that

depends only on f and a random variable whose distribution is continuous and is in

principle known
 Note particularly that even the order of magnitude of the critical

points� let alone the constants Cj and the random variables Rj � depends not only

on the type of test but also on the particular form of null hypothesis that is chosen


For both the bandwidth and dip�excess mass tests� the factorisation property

may be exploited to construct a test that adapts itself well to either H��class or

H��bound
 It amounts to computing the ratio of the test statistic �either  hcrit or !�

and its bootstrap form� and rejecting the null hypothesis if the bootstrap distribution

of the ratio assumes values that are too large
 On account of the factorisation� the

unknown constants Cj cancel from the ratio in all four cases� and so the bootstrap

distribution function of the ratio �a stochastic process� does not depend asymptoti�

cally on any unknowns
 Unlike the case of more standard statistical problems �such

as percentile�t statistics� where scale parameters cancel� the bootstrap versions of
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the distributions of variables Rj are not particularly close to those of the respective

Rj �s� and so the stochastic process noted just above is not degenerate
 Nevertheless�

its properties may be determined by Monte Carlo methods� and after suitable cali�

bration it has asymptotically correct level under both H��bound and H��class
 Adap�

tive tests will be introduced in Sections �
� �for the bandwidth method� and �
�

�dip�excess mass method�� and Section �
� will discuss their properties


An alternative way to proceed would be to directly estimate that one of the

unknown constants C�� � � � � C� which is appropriate to the context �e
g
 C� if we were

using the excess mass test under H��class�� use Monte Carlo methods to calculate the

distribution of the respective variable Rj � and thereby approximate the asymptotic

distribution of the test statistic under the null hypothesis
 If the bootstrap method

described in the previous paragraph is likened to Studentizing so to cancel the e�ects

of scale� then this approach is similar to using standard asymptotic approximations

after �plugging in� an estimate of scale
 However� by its very construction the latter

approach is highly sensitive to choice of null hypothesis� be it H��class or H��bound�

and in particular it does not enjoy the adaptivity of the bootstrap approach
 If it is

constructed so that it gives an asymptotically correct test under H��class �respectively�

H��bound�� then the level of the test under H��bound �or H��class� will be � �or ��


Moreover� even if these problems are overcome� it is likely that the bootstrap ap�

proach captures at least some of the �rst�order features of the distribution of the test

statistic that a purely asymptotic method misses
 In the context of bootstrap versus

asymptotic approximations to critical points for Silverman�s ������ bandwidth test�

York ������ has demonstrated this numerically
 The bootstrap approach� through

taking the resample size equal to the sample size� n� o�ers a signi�cantly better

approximation than does taking n ��� even if the template density is not the true

density


���� Bandwidth test
 To introduce the test� let X � fX�� � � � � Xng denote a random

sample drawn from a distribution with unknown density f � and construct the kernel

estimator

 fh�x� � �nh���
nX
i��

K
�x�Xi

h

�
� �����

where h is a bandwidth and K a kernel function
 As in Silverman ������ we take

K to be the standard Normal density� for which the number of modes of  fh on the
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whole line is a nonincreasing function of h
 Furthermore�  fh is unimodal for all

su�ciently large h
 Let  hcrit denote the in�mum of bandwidths such that  fh has

only one mode
 A test of the null hypothesis of unimodality consists of rejecting

unimodality if  hcrit is too large


Mammen� Marron and Fisher ������ proved that under H��class� and assuming

appropriate regularity conditions on f �  hcrit is of size n����
 We show next that it

is of size n���� under H��bound
 First we state an analogue of Mammen� Marron

and Fisher�s ������ regularity conditions �corresponding also to the conditions of

Silverman ������� in the case of H��bound

f is supported on a compact interval �a� b�� and has two deriv�

atives there� f � � � at distinct points x�� x� � �a� b�� and f � �� �

at all other points in �a� b�� f has respectively two and three

H�older�continuous derivatives in neighbourhoods of x� and x��

f ���x�� � � � f ���x�� � � � f ����x�� �� � � f ��a�� � � � f ��b�� � � � �����

For � � r �� and �� � s ��� de�ne

Z�r� s� � r��

Z
K ���s� u�W �ru� du� �

��� � s�� �

where W is a standard Wiener process
 Put C� � ff�x���jf ����x��j�g���� where x�
is the shoulder point noted in ��
��� and let R� denote the in�mum of all values of

r such that the function Z�r� �� does not change sign on ������
 �In view of total

positivity properties of K �� �see Schoenberg� ��	��� if Z�r� �� does not change sign

on ������ then� with probability �� neither does Z�r�� �� for any r� � r
�

Theorem ���� Assume condition ������ Then n��� hcrit � C�R� in distribution as

n���

We should comment on the nature of condition ��
��� which asks that f decrease

linearly to zero at the ends of its support
 This ensures that the likelihood of spurious

bumps in the tails of the density estimator  fh is very small
 Therefore� the size of

 hcrit is determined by properties of f at points of zero slope interior to �a� b�
 More

generally� when f might not satisfy ��
��� one would either con�ne attention to

testing for unimodality away from the tails� or use larger bandwidths in the tails so

as to suppress bumps that arise from data sparseness
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Next we de�ne the bootstrap version of  hcrit� and show that it satis�es a limit

law similar to that in Theorem �
�
 Conditional on X � let X � � fX�
� � � � � � X

�
ng

denote a resample drawn randomly� with replacement� from the distribution with

density  fcrit �  f�hcrit � and de�ne  f�h by ��
�� except that Xi there is replaced by X�
i 


Write  h�crit for the in�mum of bandwidths such that  f�h is unimodal


Our proof of Theorem �
� in Section � will involve constructing W �depending

on n� such that

n���  hcrit � C�R� in probability � �����

For this W � let W � be a standard Wiener process independent of W � and let S be

the unique point at which Z�R�� �� vanishes
 De�ne

Z��r� s� � �rR��
��

Z
K ���s� u�W ��ru� du�

Z
Z�R�� S �R��

� ru�K�u� du �

and let R�� denote the in�mum of all values of r such that the function Z��r� ��
does not change sign on ������
 It is straightforward to prove that R�� is strictly

positive with probability �


Theorem ���� Assume condition ������ and that W is constructed so that �����

holds� Then�

sup
��x��

��P �n���  h�crit � C�x
��X �� P �R�� � xjW �

��� �

in probability as n���

Theorem �
� and ��
�� together imply that� under H��bound�

sup
��x��

��P � h�crit� hcrit � x
��X �� P �R���R� � xjW �

��� � �����

in probability
 It follows that the distribution of the stochastic process bG�x� �

P �R���R� � xjW � does not depend on f � which makes it possible to develop an

asymptotically correct test of H��bound
 This could be based on tabulation of the

distribution of bG� and applying an asymptotic test� but alternatively it may be

accomplished by Monte Carlo methods� as follows
 Put bGn�x� � P � h�crit�
 hcrit �

xjX �� let f� denote a �template� density with a shoulder� and let bG�n denote the

version of bGn that results from an n�sample drawn randomly from f�
 Using Monte

Carlo methods we may compute to arbitrary accuracy the value of a constant t� �
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t��n� such that Pf bG�n�t�� � ���g � �� where � is the desired signi�cance level of

the test
 Then� the test with the form reject H��bound in favour of H� if bGn�t�� �
�� �� has asymptotically correct level under H��bound


One would expect the template approach to capture second�order e�ects better

than a purely asymptotic argument
 This may be con�rmed by simulation
 To cap�

ture second�order e�ects even more accurately one could use a skewed template �for

example� if there was evidence that the sampling distribution was skewed� although

it is di�cult to ensure both the right degree of skewness and the right value of C�


���� Dip�excess mass test
 It su�ces to consider the excess mass test statistic� !�

which equals twice the dip test statistic
 Let bF be the empirical distribution function

of the n�sample X introduced in Section �
�� and for m � � and � � � de�ne

Enm��� � sup
C������Cm

mX
j��

� bF �Cj�� � kCjk
�
�

where the supremum is over disjoint intervals C�� � � � � Cm� bF �C� is the bF�measure

of C� and kCk equals the length of C
 Put Dnm��� � Enm��� � En�m����� and

! � sup� Dn����
 We reject the null hypothesis of unimodality if ! is too large


Cheng and Hall ������ established that under H��class� ! is of size n����
 We

show next that under H��bound it is of size n����� for which purpose we augment

��
�� by the condition

f � is H�older�continuous within a neighbourhood of

the unique point x� �� x� satisfying f�x�� � f�x��
 ���	�

Let W be as in Section �
�� and de�ne C� � ff�x����jf ����x��jg���� !�t�� t�� u� �

fW �t���W �t��g � �t�� � t���� u�t� � t�� and

R� � ����� sup
���u��

�
sup

���t��t��t���

�
!��� t�� u� � !�t�� t�� u�

�
� sup
���t���

!��� t�� u�

	
� �����

It may be proved that R� is �nite and positive with probability one� and that its

distribution has no atoms


Theorem ���� Assume conditions ����� and ���	�� Then n���! � C�R� in distri�

bution as n���
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The bootstrap setting for Theorem �
� is similar to that for Theorem �
�
 Let !�

be the bootstrap version of !� computed using the resample X � drawn by sampling

from the distribution with density  fcrit
 For a suitable construction of W � Theorem

�
� may be stated in the stronger sense that n���! � C�R� in probability
 We

assume this construction below
 Let W � be another Wiener process� independent of

W � de�ne

U�r� s� � r��

Z
K ���s� u�W �ru� du �

let R denote the in�mum of all r � � such that U�r� s� � �
� �� � s��� as a function

of s� does not change sign on the real line� and let S be the unique point at which

U�R� s� � �
� �� � s�� vanishes
 Put

"�y�� y�� u� � W ��y���W ��y��

�R�

Z �

�

t
h
y�� U

�
R� S �R����� t� y�

�
� y�� U

�
R� S �R����� t� y�

�i
dt

� �
�

�
� � S�

� �
y�� � y��

�� �
	 RS

�
y�� � y��

�
� �

��

�
y�� � y��

�� u �y� � y�� �

and� with "������ replacing !� de�ne R�� by ��
��
 With probability one� R�� is �nite

and positive� and its distribution has no atoms


Theorem ���� Assume conditions ����� and ���	�� and that W is constructed so

that n���!� C�R� in probability� Then�

sup
��x��

��P �n���!� � C�x
��X �� P �R�� � xjW �

��� �

in probability as n���

Theorem �
� is directly analogous to Theorem �
�� and implies the obvious

analogue of ��
��

sup
��x��

��P �!�
�
! � x

��X �� P �R���R� � xjW �
��� � �����

Therefore� bootstrap calibration applied to the ratio !��! produces tests of H��class

with asymptotically correct level
 Speci�cally� if f� is the template density intro�

duced in Section �
�� if bHn�x� � P �!��! � xjX �� if bH�n is the version of bHn when



�	

the n�sample is drawn from f� rather than f � and if the constant u� is de�ned by

Pf bH�n�u�� � � � �g � �� then the test which rejects H��bound if bHn�u�� � � � �

has asymptotically correct level under H��bound


Hartigan ������ has suggested an asymptotic test based on the results in The�

orem �
�� normalising the test statistic using the square root of the number of data

values interior to the shoulder segment
 If one calibrates via the asymptotic dis�

tribution then this ingenious approach avoids using the template density
 In order

to better capture second�order e�ects� however� one could compute the template

density and then� simulating from that distribution �taking the Monte Carlo sample

size equal to the actual sample size�� compute an approximation to the distribution

of the test statistic under the null hypothesis


��	� Adaptivity of bootstrap calibration methods
 The factorisation which forms the

basis for our bootstrap calibration method is also valid under H��class� where instead

of ��
�� and ��
�� it produces results of the form

sup
��x��

��P � h�crit� hcrit � x
��X �� P �R���R� � xjW �

��� � � �����

sup
��x��

��P �!�
�
! � x

��X �� P �R���R� � xjW �
��� � � �����

A suitable regularity condition for each of these results is the following version of

��
��� where the shoulder point x� is no longer permitted� thereby ensuring that

H��class �rather than H��bound� obtains

f is supported on a compact interval �a� b�� and has two der�

ivatives there� f � � � at x� � �a� b�� and f � �� � at all other

points in �a� b�� f has two H�older�continuous derivatives in

a neighbourhood of x�� f
���x�� � �� f ��a�� � �� f ��b�� � �


Result ��
�� is discussed in an ANU PhD thesis by M
 York ������� and ��
�� appears

in Cheng and Hall ������
 As in the case of R� and R�� the variables R� and R� are

functionals of a standard Weiner process W � R�� and R�� are functionals of W and

an independent Wiener process W �� and all variables Rj and R�j have continuous

distributions
 It follows from ��
�� and ��
�� that if H��class holds instead of H��bound�

yet we apply the bootstrap test suggested when H��bound is valid� the asymptotic

level of the test lies strictly between � and �
 In this sense� the tests suggested

in Sections �
� and �
� are adaptive� other approaches to calibration� such as that



��

discussed towards the end of Section �
�� do not enjoy this property
 Moreover�

bootstrap calibration under H��bound turns out to be conservative when H��class is

true� as we shall show in the next section


�� NUMERICAL STUDY

The bandwidth and dip�excess mass tests for H��bound were applied to three

Normal mixture densities the two unimodal�with�shoulder densities given by

�
�e
��

�
� � �e
��

���� �N��� �� �
�
� � �e
��

��� �N���
p
���� �����	� � �����

��������� �N��� �� � ������� �N����� ����� �����

and illustrated in panels �a� and �b�� respectively� of Figure �
�� and the unimodal�

without�shoulder standard Normal density� depicted in panel �d� of that �gure
 In

all cases the bandwidth and dip�excess mass tests for H��bound were calibrated using

the methods suggested in Sections �
� and �
�
 The template density f� employed

for calibration was taken as

������� �N��� �� � ������ �N�����	� �����	� � �����

and is unimodal with a shoulder
 It is illustrated in panel �c� of Figure �
�


� Put Figure ��� about here� please �

The sample sizes used were 	� and ���
 In each setting� 	�� samples were

simulated� and conditional on each of these� 	�� resamples were drawn
 Then�

all the required conditional and unconditional probabilities were approximated by

their corresponding empirical values
 To obtain values of  hcrit and  h�crit� kernel

density estimates were computed over an equally�spaced grid of 	�� points
 To avoid

problems arising from data sparseness in the tails� only modes that occurred within

��	 standard deviations of the mean were counted
 The same rule was followed when

evaluating the dip�excess mass statistics


Figure �
� illustrates the actual versus nominal levels when the two tests for

H��bound �calibrated using the density at ��
�� as the template� were applied to data

generated from the two shoulder�densities given by ��
�� and ��
��� respectively


Note that the actual versus nominal curves are close to the diagonal line� especially

in the cases illustrated by panels �b�� �c� and �d�
 This indicates that both tests



��

have accurate levels
 The �gure also suggests that� overall� the excess mass test has

better level accuracy than the bandwidth test


� Put Figure ��� about here� please �

Figure �
� depicts� for both the bandwidth and dip�excess mass tests� the actual

versus nominal levels when the true density is standard Normal and the shoulder

density f� is used to provide calibration
 Note particularly that all the curves always

lie below the diagonal line� illustrating the conservatism of a method calibrated for

H��bound when it is applied to test H��class


� Put Figure ��� about here� please �

Figure �
� is essentially the obverse of Figure �
� in the latter� the sampling

density was standard Normal� and we calibrated using f�� but in Figure �
� the

sampling density is f� and we calibrate using the standard Normal
 The fact that

the dashed and dotted lines in both panels of Figure �
� lie above the diagonal line

demonstrates that� as expected� calibrating a test of H��bound using a template for

H��class results in an anticonservative procedure


� Put Figure ��	 about here� please �

�� TECHNICAL ARGUMENTS

	��� Proof of Theorem ���� Let � � n���� and write C�R for C�� R�� respectively


We shall prove that

there exist 	�� 	� � � such that� if  hcrit �  hcrit�	�� 	�� is re�de�ned

to be the supremum of the set H of values h � n�������� such that

 f��jh� has at least one turning point in I�	�� � �x� � �n�� � x� � �n����

then with probability tending to one� H is nonempty� and n��� hcrit

has the claimed limit distribution� �����

Arguments similar to those of Mammen� Marron and Fisher ������ may be employed

to prove that �a� for each 	� � ��� ����� the probability that for some h � n��������

the function  f��jh�� has more than one turning point in IR converges to �� �b� for

each c � � and 	� � �� the probability that for some h � cn���� the function  f��jh�
has more than one turning point in IRnI�	�� converges to �� and �c� with probability

��  f��jh� has at least one turning point in I�	�� for each h �  hcrit
 The theorem

follows from ��
�� and �a���c�




��

The embedding of Koml#os� Major and Tusn#ady ����	� ensures the existence of a

standard Wiener process W� such that� with W ��t� � W��t�� tW����� the empirical

distribution function bF of X may be written as bF �x� � F �x� � n����W �fF �x�g�
Op�n

�� logn� uniformly in x
 It follows that

 f ��xjh� �E  f ��xjh� � ��n��� h����
Z 


W�fF �x� hz�g �W�fF �x��g
�
K ���z� dz

� Op

�
�nh���� logn

�
uniformly in �� � x �� and h � �
 Writing x � x� � �y and h � �r�� and using

standard results on the modulus of continuity of a Wiener process� we deduce that

if 	�� 	� � � are su�ciently small then for some 	� � ��

 f ��x� � �yj�r��� E  f ��x� � �yj�r��
� ��n�����r�����

Z 

W�fF �x�� � ��y � r�z� f�x��g

�W�fF �x��g
�
K ���z� dz �Op

�
��n���r��

�

�
uniformly in � � r� � const�n�� and jyj � const�n�� � for all values of the constants


Therefore� de�ning

W��t� � �f�f�x��g����


W�fF �x�� � � f�x�� tg �W�fF �x��g

�
�

we �nd that� uniformly in the same values of r� and y�

��� r��
�
 f ��x� � �yj�r��� E  f ��x� � �yj�r��

�
� f�x��

���

Z
W��y � r�z�K

���z� dz � Op

�
n���

�
� �����

Using the fact that f �� is H�older continuous in a neighbourhood of x� we see

that� for 	�� 	�� 	� � � chosen su�ciently small�

E  f ��x� � �yj�r�� �
Z
f �fx� � ��y � r�z�gK�z� dz

� �
� �

�
�
y� � r��

�
f ����x�� �O

�
��
�
y� � r��

�
n���

�
�����

uniformly in � � r� � const�n�� and jyj � const�n�� 
 Combining ��
�� and ��
�� we

deduce that

 f ��x� � �yj�r�� � ��
h
r��
� f�x��

���

Z
W��y � r�z�K

���z� dz

� �
�

�
y� � r��

�
f ����x�� �Op

��
r��
� � y� � r��

�
n���

�i
�����



��

uniformly in � � r� � const�n�� and jyj � const�n�� 


Let T � sgnff ����x��g� C � ff�x���jf ����x��j�g���� C � � ff�x��� jf ����x��j�g����
y � Crs� r� � Cr and W��Ct� � C��� TW ��t�
 Then W is a standard Wiener

process� and ��
�� implies that for di�erent values of 	�� 	�� 	� � �� chosen su�ciently

small�

 f ��x� � �Crsj�Cr� � ��C �T
�
r��

Z
Wfr�z � s�gK ���z� dz

� �
� r

��� � s�� � Op�fr�� � r��� � s��gn��� �
�

� ��C �Tr�


Z�r� s� �Op

��
r�� � � � s�

�
n���

��
� ���	�

uniformly in � � r � const�n�� and jyj � const�n�� 
 Result ��
�� follows from this

formula


	��� Proof of Theorem ���� We give the proof only in outline� noting the analogues

of steps in the proof of Theorem �
� and not pausing to give detailed bounds for

remainder terms
 In the derivation of Theorem �
� we should replace �  f��jh�� f� by
�  f���jh��  fcrit�
 Let  x� denote the shoulder of  fcrit
 �Thus�  f �crit� x�� �

 f ��crit� x�� � �
�

In place of ��
�� we have� conditional on X and for a standard Wiener process W �
�

independent of W �

���r��


 f��� x� � �yj�r��� E

�
 f��� x� � �yj�r��jX

��
� f�x��

���

Z
W �

� �y � r�z�K
���z� dz � op��� � �����

By ��
	� and since  hcrit � �CR � op��� we have� in notation from the proof of

Theorem �
��

 f �crit�x� � �CRs� �  f �crit�x� � �CRsj hcrit� � ��C �TR�Z�R� s� � op
�
��
�
�

Furthermore�  x� � �x� � �CRS� � op���� and so

Ef  f��� x� � �yj�r��jX g
�

Z
 f �critf x� � ��y � r�z�gK�z� dz

� ��C �TR�

Z
Z
�
R� ��CR���� x� � x�� � �CR����� � r�z�

�
K�z� dz � op

�
��
�

� ��C �TR�

Z
Z
�
R� S � �CR����y � r�z�

�
K�z� dz � op

�
��
�
� �����



��

Combining ��
�� and ��
�� we deduce that

 f��� x� � �yj�r�� � ��
h
r��
� f�x��

���

Z
W �

� �y � r�z�K
���z� dz

� C �TR�

Z
Z
�
R� S � �CR����y � r�z�

�
K�z� dz

i
� op

�
��
�
� �����

Making the changes of variable y � Crs� r� � Cr and W �
� �Ct� � C���W ���t�� the

right�hand side of ��
�� becomes

C �TR��� Z��r� s� � op
�
��
�
�

The theorem follows from this approximation


	��� Proof of Theorem ���� Let a � f�x�� and b � �
�� jf ����x��j
 Given 	�� 	� �

���min�a� ������ de�ne J� � ��� a � 	��� J� � �a � 	�� a � n��������� � and J� �

�a� n��������� ���
 Arguing as in the proof of Theorem � of M�uller and Sawitzki

������ we may show that

sup
��J�

Dn���� � Opf�n�� logn����g � sup
��J�

Dn���� � Op

�
n�����������

�
�

Therefore�

sup
��J��J�

Dn���� � op
�
n����

�
� �����

We prove the theorem in the case f ����x�� � �
 The case f ����x�� � � may be

treated similarly
 Since f ����x�� � � and condition ��
�� holds� x� � x� and there

exists a point x� such that x� � x�� f�x�� � f�x�� and f ��x�� � �
 Let � � n�����


 � n��� with 	� � ���� I� � �x� � �n�� � x� � �n���� I� � �x� � 
n�� � x� � 
n���

and I� � ��n�� � n���
 Given t�� � � � � t� � I�� put yj � �tj � x���� � I�� j � �� � � � � �


Let sup��� � � � � sup�� denote suprema over� respectively� ��� �� � t� � t� � ��

��� t� � I�� t� � I� such that t� � t�� ��� y� � I�� ��� �� � t� � � � � � t� � ��

�	� t�� � � � � t� � I�� t� � I� such that t� � � � � � t�� ��� t� � I�� t� � � � � t� � I�
such that t� � � � � � t�� and ��� y�� � � � � y� � I� such that y� � � � � � y�
 Write

� � a� b���� where �� � � ��
 Given a standard Wiener process W�� de�ne

W �y� � �a������


W�fF �x�� � a�yg �W�fF �x��g

�
�



��

also a standard Wiener process
 Using the embedding of Koml#os� Major and Tusn#ady

����	� we may choose W�� a standard Wiener process depending on n� such that

bF �t��� bF �t�� � F �t��� F �t�� � n����


W�fF �t��g �W�fF �t��g

� fF �t��� F �t��gW����
�
� Op

�
n�� logn

�

uniformly in all t�� t�
 Therefore� de�ning D�x�� x�� �� � bF �x��� bF �x�����x��x��
and D��y�� y�� �� � a���fW �y�� � W �y��g � b�y�� � y��� � b��y� � y��� and noting

the H�older continuity of f ��� in a neighbourhood of x�� we deduce that if 	� � � is

su�ciently small�

sup��D�t�� t�� �� � sup��
� bF �t��� bF �x�� � bF �x��� bF �t��

� bF �x��� bF �x��� ��t� � t��
�

� sup��
�
a �
y� � �y�� �

�
� f

��x�� 

�y�� � b ��y��

� n����


W�fF �x�� � a
y�g �W�fF �x��g

� f� � op���g
� n����



W�fF �x�� � a�y�g �W�fF �x��g

� f� � op���g
� �

a� b���
�
�x� � x���

�
a� b���

�
�
y� � �y��

�
�
� bF �x��� bF �x��

�
� op

�
�� � 
�

�
�

Since f ��x�� � � and f ����x�� � � then for any �� � � ��� the above quantity is

maximised when 
 � n����
 Hence�

sup��D�t�� t�� �� � bF �x��� bF �x���
�
a� b���

�
�x� � x��

� �� sup��D���� y�� �� � op��
�� � ������

Similarly�

sup��
�
D�t�� t�� �� �D�t�� t�� ��

�
� bF �x��� bF �x���

�
a� b���

�
�x� � x��

� �� sup��
�
D���� y�� �� �D��y�� y�� ��

�
� op

�
��
�
� ������

sup�	fD�t�� t�� �� �D�t�� t�� ��g
� bF �x��� bF �x���

�
a� b���

�
�x� � x��

� �� sup��D���� y�� �� � op
�
��
�
� ������



��

De�ne I� � �a � b ������������ I� � ���� n���� �i
e
 such that I� � f���� 
� � I�g�� Sn � sup��I� Dn�����

S�n � sup
��I�

h
max

�
sup�� fD�t�� t�� �� �D�t�� t�� ��g�

sup�	 fD�t�� t�� �� �D�t�� t�� ��g
�� sup��D�t�� t�� ��

i
�

We may show that for su�ciently small 	�� P �Sn � S�n� � �
 From this result�

��
���� ��
��� and ��
��� we deduce that

���Sn � sup
��I�

h
sup��

�
D���� y�� �� �D��y�� y�� ��

�
� sup��D���� y�� ��

i
� op��� � ������

De�ne

Z � � sup
������

�
sup

���y������y���



a���

��W �y�� �W �y���W �y�� �W ���
�

� b
�
y�� � y�� � y��

�� � �y� � y� � y��
�

� sup
���y���



a���fW ����W �y��g � b y�� � � y�

��
�

It can be shown that the di�erence between Z � and the right�hand side of ��
���

converges in probability to zero
 Changing variable from yi to ti � �b��a����yi� and

noting that W��t� � �b��a����� Wf�a�b�����tg also de�nes a Wiener process� we

deduce that Z � has the same distribution as �a��b���������� Z
 Theorem �
� follows

from this result and ��
��


	�	� Proof of Theorem ��	� Write bFcrit for the distribution function corresponding

to density  fcrit
 Let  x� denote the shoulder of  fcrit �thus�  f �crit� x�� �
 f ��crit� x�� � ��


Let C�C � be as in Section �
�
 Using the embedding of Koml#os� Major and Tusn#ady

����	� we may prove that for an appropriate choice of W � and with the random

function U de�ned as in Section �
��

 f �crit� x� � �Cy� � ��C �TR�


U
�
R� S � R��y

�
� �

�

�
S � �R��y��

�
� op���

�
�

�In this simpli�ed argument it is assumed� here and below� that jyj� jy�j� jy�j are all

bounded
� Therefore� using the exact form for the remainder in Taylor�s Theorem�

bFcrit� x� � �Cy�� bFcrit� x��



��

� �Cy  fcrit� x�� � ��Cy��
Z �

�

t  f �crit
�
 x� � �Cy��� t�

�
dt

� �Cy  fcrit� x�� � ��Cy�� ��C �TR�

	
Z �

�

t


U
�
R� S � R����� t�y

�
� �

�

�
S � R����� t� y

���
dt� op

�
��
�
� ������

Hence� writing ti �  x� � �Cyi for i � � and �� and de�ning A�y�� y�� � bFcrit� x� �

�Cy��� bFcrit� x� � �Cy�� and � �  fcrit� x��� u�C���CC �T � we have

�
A�y��y��� � �t� � t��

���
��C�C �T

�
� R�

Z �

�

t
h
y�� U

�
R� S � R����� t� y�

�� y�� U
�
R� S �R����� t� y�

�i
dt

� �
� R

��� � S��
�
y�� � y��

�
� �

	 RS
�
y�� � y��

�
� �

��

�
y�� � y��

�
� u �y� � y�� � op��� � ����	�

De�ne  x� ��  x� by  fcrit� x�� �  fcrit� x��
 Since  hcrit � �CR � op��
�� and  x� �

x���CRS�op���� we may show that  x� � x��Op��
��
 This result and the H�older

continuity of f � near x� yield that� for any sequence of numbers 
 � o��� and real

number jyj ���

bFcrit� x� � 
y� � bFcrit

�
 x�
�
� 
y  fcrit

�
 x�
�
� �

� f
��x��


�y� � op�

�� � ������

Using the Koml#os�Major�Tusn#ady embedding again� this time conditional on X and

for the empirical distribution function bF � of the resample X �� and noting that

n����
�
�C  fcrit� x��

�����
��C�C �

��� � �

in probability as n � �� we may establish the existence of standard Wiener pro�

cesses W � and W �� �conditional on X � such that

� bF �� x� � �Cy��� bF �� x� � �Cy���A�y�� y��
���� ��C�C �T

�
� W ��y���W ��y�� � op��� ������

and

bF �� x� � 
y��� bF �� x� � 
y��

�
h bFcrit� x� � 
y��� bFcrit� x� � 
y��

� n����
�

  fcrit� x��

�����
W ���y���W ���y��

�i f� � op���g



��

The last equality and ��
��� yield that

bFcrit

�
 x� � 
y�

�� bFcrit

�
 x� � 
y�

�� �
�
 x� � 
y� �  x� � 
y�

�
� �

�
f ��x��


�
�
y�� � y��

�
� ��CC �
u�y� � y��

� n����
�

  fcrit� x��

�����
W ���y���W ���y��

�
� op

�

� � ��
 � n����
���

�
� ������

Combining ��
�	� and ��
���� and observing that C�C � � C�� we see that

bF ��t��� bF ��t��� � �t� � t�� � ���C�T
�
"�y�� y�� u� � op���

�
� ������

Then ��
��� and ��
��� imply that

bF �� x� � 
y��� bF �� x� � �Cy��� � �x� � 
y� � x� � �Cy��

� �
� f

��x�� 

�y�� � u��
CC �y� � n����

�

  fcrit� x��

����
	 �

W ���y���W �����
�� ��C�T"�y�� �� u�

� bF �� x��� bF �� x��� �� x� �  x��

� op
�

� � �� � n����
���

�
� ������

Arguing as in the proof of Theorem �
� and observing ��
��� � ��
����

!� � ��C� sup
u

�
sup

y������y�

�
"��� y�� u� � "�y�� y�� u�

�
� sup

y
"��� y� u�

	
� op

�
��
�
�

This result implies Theorem �
�
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CAPTIONS FOR FIGURES

Caption for Figure ���
 Panels �a�� �b� and �c� respectively depict the standard

Normal density� densities represented by the Normal mixture formulae ��
�� and

����N������ �������N����� ������ giving a unimodal�without�shoulder� a unimodal�

with�shoulder and a bimodal density


Caption for Figure ���
 Panels �a�� �b� and �c� depict the unimodal�with�shoulder

densities represented by the Normal mixture formulae ��
�����
��� respectively
 Panel

�d� illustrates the standard Normal density� which of course is unimodal without a

shoulder


Caption for Figure ���
 Actual versus nominal levels for the bandwidth �dashed lines�

and dip�excess mass �dotted lines� tests� calibrated for H��bound using the template

density at ��
��� when data are generated from the density at ��
�� �panel �a� for

n � 	� and panel �b� for n � ���� or from the density at ��
�� �panel �c� for n � 	�

and panel �d� for n � ����


Caption for Figure ���
 Actual versus nominal levels for the bandwidth �dashed lines�

and dip�excess mass �dotted lines� tests� calibrated for H��bound using the template

density at ��
��� when data are generated from the standard Normal density �panel

�a� for n � 	� and panel �b� for n � ����


Caption for Figure ��	
 Actual versus nominal levels for the bandwidth �dashed lines�

and dip�excess mass �dotted lines� tests� calibrated for H��class using the standard

Normal density� when data are generated from the density at ��
�� �panel �a� for

n � 	� and panel �b� for n � ����
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