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Local likelihood modeling is a unified and effective approach to establishing the dependence of a response variable, which can be of various
types, on independent variables. Therefore, these models have become popular in a wide range of applications. There is an increasing
interest in employing multiparameter local likelihood models to investigate trends of sample extremes in environmental statistics. When
sample maxima are modeled by a generalized extreme value distribution, the sample size is small in general and local likelihood estimation
exhibits a large variation. In this article variance reduction techniques are employed to improve the efficiency of the inference. A simulation
study and an application to annual maximum temperatures show that our methods are very effective in finite samples.
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1. INTRODUCTION

Suppose that (X1,Y1), . . . , (Xn,Yn) are independent bivariate
observations from the distribution of (X,Y). Consider a multi-
parameter likelihood model

f
(
y; θ1(x), . . . , θd(x)

)
(1.1)

for the conditional density of the response Y given that the
covariate X = x, where the form of the probability density
function f is known and the unknown parameters θ(x) =
(θ1(x), . . . , θd(x))T depend on X = x. Under model (1.1), the
dependence of Y on X is specified by a parametric law, with
probability density function f , in which the parameter vector θ
is an unknown d-dimensional function of X.

Statistical inference for the underlying population (X,Y)

based on the observed data (X1,Y1), . . . , (Xn,Yn) relies heavily
on nonparametric estimation of the curves θ1(x), . . . , θd(x). An
efficient approach is the local linear maximum likelihood esti-
mation: Locally around every x the curves θ1(·), . . . , θd(·) are
modeled as linear functions and then estimated by maximizing
a kernel-weighted likelihood function. Specifically, define the
local linear log-likelihood at θ(x) as

Ln(θ
∗(x)) =

n∑

i=1

Kh(Xi − x) log f (Yi; θ(x,Xi)),

where Kh(x) = K(x/h)/h, K is a kernel, h > 0, h = h(n) → 0
as n → ∞ is a bandwidth, θ∗(x) = (θ1(x), θ ′

1(x), . . . , θd(x),
θ ′

d(x))
T , and θ(x,u) = θ(x)+ (θ ′

1(x)(u− x), . . . , θ ′
d(x)(u− x))T .

Then the local linear maximum likelihood estimator θ̂∗(x) =
(θ̂1(x), θ̂ ′

1(x), . . . , θ̂d(x), θ̂ ′
d(x))

T of θ∗(x) maximizes Ln(θ
∗(x)),

that is,

θ̂∗(x) = arg max
θ∗(x)

Ln(θ
∗(x)).

Note that in model (1.1) what is essential is θ(x) = (θ1(x), . . . ,
θd(x))T and the derivatives α(x) = (θ ′

1(x), . . . , θ
′
d(x))

T are ir-
relevant. Hence, the local linear maximum likelihood estimator
(MLE) for θ(x) is defined as

θ̂(x) = (
θ̂1(x), θ̂2(x), . . . , θ̂d(x)

)T
. (1.2)
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We refer to Aerts and Claeskens (1997) and Fan, Farmen, and
Gijbels (1998) for the asymptotic properties of θ̂∗(x) and θ̂(x)
and the choice of bandwidth. In addition, see Claeskens and
Van Keilegom (2003) for a study on confidence bands of θ(x).

To provide a motivating example for studying variance re-
duction in the construction of multiparameter local likelihood
models, we mention modeling of extremes and exceedances.
Recently, there has been an increasing interest in applying like-
lihood models to investigate the trend in sample extremes;
see Davison and Ramesh (2000) for fitting a generalized ex-
treme value distribution to sample maxima, Hall and Tajvidi
(2000) for fitting a generalized extreme value distribution and
a generalized Pareto distribution to data, and Beirlant and
Goegebeur (2004) for fitting a generalized Pareto distribution
to exceedances by taking the unknown high threshold into ac-
count. Some applications of fitting an extreme value distrib-
ution locally to environmental data can be found in Ramesh
and Davison (2002) and Chavez-Demoulin and Davison (2005).
When we model sample maxima by a generalized extreme
value distribution, the sample size is not large in general. Then
the estimation procedure can become much more reliable and
efficient provided that variance reduction techniques are imple-
mented.

Kogure (1998) studied general order polynomial interpola-
tion of kernel density estimation and showed that the asymp-
totic integrated variance becomes smaller. Cheng, Peng, and
Wu (2005) introduced variance reduction techniques for non-
parametric regression, which reduce the pointwise asymptotic
variance uniformly. In this article we adopt the approach of
Cheng et al. (2005) because it is more effective. Theoreti-
cal study shows that our method reduces asymptotic variances
of the d-parameter estimators by a common and known con-
stant factor. Interestingly, this variance reduction in estimat-
ing d parameters is simultaneously achieved by applying the
technique once all together. These results are nontrivial given
those of Cheng et al. (2005): The multiparameter local like-
lihood model specifies the conditional distribution of the re-
sponse variable given the covariates, whereas nonparametric
regression considers the conditional mean, and asymptotic be-
haviors of nonparametric kernel regression are different from
those of local likelihood estimation.
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Here we discuss briefly the scope of local likelihood models
outside extremes and exceedances. Local likelihood methods
effectively model the dependence of various kinds of response
variables on covariates in a unified framework. If f (y; θ1(x)) =
exp[C + {y − θ1(x)}2/σ ], where C and σ are given constants,
then the local linear maximum likelihood estimator (MLE) re-
duces to the local linear regression estimator; see, for example,
Loader (1999). Yu and Jones (2004) adapted an analogous lo-
cal Normal likelihood model for estimation of the conditional
variance function in nonparametric regression. Tibshirani and
Hastie (1987) suggested (1.2) when d = 1 and applied it to lo-
cal logistic regression and local partial likelihood estimation of
Cox’s proportional hazard model. Staniswalis (1989) consid-
ered a local constant MLE and allowed Xi to be multivariate.
Another special case of local likelihood modeling is, in general-
ized linear models, when the conditional distribution of Y given
X belongs to a one-parameter exponential family and the para-
meter depends on X. In this regard, Loader (1999) discussed
various examples, including local Poisson regression and a lo-
cal Gamma model for survival analysis. Fan, Heckman, and
Wand (1995) extended the idea to local quasi-likelihood esti-
mation. The literature further includes Irizarry (2001), Eguchi,
Kim, and Park (2003), and Signorini and Jones (2004).

This article is organized as follows. In Section 2 we demon-
strate a way to incorporate the variance reduction techniques of
Cheng et al. (2005) to improve the local linear maximum like-
lihood estimator (1.2). In addition, the main theoretical results
and discussions on additional variants are suggested. A simula-
tion study and a real application on annual maximum temper-
atures are presented in Section 3. All proofs of the theoretical
results are given in the Appendix.

2. METHODOLOGY AND MAIN RESULTS

The idea of our variance reduction strategy is as follows.
For each point of estimation, construct a linear combination
of local linear maximum likelihood estimates at three points
around the point of estimation such that the asymptotic bias
remains unchanged. Specifically, for any given point x, let
{βx,0, βx,1, βx,2} be an equally spaced grid of points with bin
width δh = βx,1 − βx,0 = βx,2 − βx,1 such that x = βx,1 + rδh,
where r ∈ (−1,1) \ {0} and δ > 0 are given constants. Then, as
in Cheng et al. (2005), a variance reduction estimator for θ(x)
is defined as

θ̃(x) = r(r − 1)

2
θ̂(βx,0) + (1 − r2)θ̂(βx,1)

+ r(r + 1)

2
θ̂(βx,2), (2.1)

where θ̂(x) = (θ̂1(x), . . . , θ̂d(x))T is the local linear maximum
likelihood estimate given in (1.2). If supp(X) were bounded,
supp(X) = [0,1], say, because x − (1 − r)δh = βx,0 < x <

βx,2 = x + (1 + r)δh, then the grid points βx,0 and βx,2 would
be outside supp(X) if x is close to the endpoints. Therefore, we
take

δ(x) = min

{
δ,

x

(1 + r)h
,

1 − x

(1 − r)h

}

such that {βx,0, βx,1, βx,2} ∈ supp(X) = [0,1] all the time.

Next we compare the asymptotic distributions of our vari-
ance reduction estimator θ̃(x) and the local linear maximum
likelihood estimator θ̂(x). For simplicity, we consider the case
d = 2. Generalization of the results to general d values is
straightforward. Define the local Fisher information matrix of
θ(x) = (θ1(x), θ2(x))T as

I(θ1(x), θ2(x)) =
(

I11(θ1(x), θ2(x)) I12(θ1(x), θ2(x))
I21(θ1(x), θ2(x)) I22(θ1(x), θ2(x))

)
,

where

Ist(θ1(x), θ2(x)) = Ex

{
− ∂2

∂θs ∂θt
log f (Y; θ1(x), θ2(x))

}

= Ex

{
∂

∂θs
log f (Y; θ1(x), θ2(x))

× ∂

∂θt
log f (Y; θ1(x), θ2(x))

}

and Ex denotes the expectation conditional on X = x. Let fX(x)
denote the marginal probability density function of X. De-
fine νi,j = ∫

ziKj(z)dz, C(s, t) = ∫
K(u − st)K(u + st)du, and

C(s) = 3
2 C(0, s) − 2C( 1

2 , s) + 1
2 C(1, s). The following theorem

states the asymptotic normality of our variance reduction esti-
mator θ̃(x).

Theorem 1. Under the same regularity conditions given by
Aerts and Claeskens (1997), for interior point x we have, as
n → ∞,

√
nh

{
θ̃(x) − θ(x) − 1

2
h2ν2,1θ

′′(x)
}

d→ Z1, (2.2)

where θ ′′(x) = (θ ′′
1 (x), θ ′′

2 (x))T and Z1 is a d-dimensional nor-
mal random vector with mean 0 and covariance matrix {ν0,2 −
r2(1 − r2)C(δ)}fX(x)−1I(θ1(x), θ2(x))−1.

It follows from Aerts and Claeskens (1997) that, as n → ∞,

√
nh

{
θ̂(x) − θ(x) − 1

2
h2ν2,1θ

′′(x)
}

d→ Z2, (2.3)

where Z2 is a d-dimensional normal random vector with mean 0
and covariance matrix ν0,2fX(x)−1I(θ1(x), θ2(x))−1.

Remark 1. When x is a boundary point, that is, x is close to
the endpoints of supp(X), θ̂(x) and θ̃(x) each still has an as-
ymptotic normal distribution, and only the constant factors in
the asymptotic bias vector and covariance matrix change. Typi-
cally, the asymptotic variances are inflated because of a reduced
number of data points there.

Define the asymptotic mean squared error (AMSE) of an es-
timator of θ(x) as the sum of the trace of the covariance matrix
and the squared norm of the asymptotic bias vector in its as-
ymptotic Normal distribution. Then, from (2.2) and (2.3), the
asymptotic mean squared errors of θ̃(x) and θ̂(x) are, respec-
tively,

AMSE{θ̃(x)} = {nhfX(x)}−1tr
{
I(θ1(x), θ2(x))

−1}

× {ν0,2 − r2(1 − r2)C(δ)}

+ 1

4
h4ν2

2,1

{
(θ ′′

1 (x))2 + (θ ′′
2 (x))2}, (2.4)
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AMSE{θ̂(x)} = {nhfX(x)}−1tr
{
I(θ1(x), θ2(x))

−1}ν0,2

+ 1

4
h4ν2

2,1

{
(θ ′′

1 (x))2 + (θ ′′
2 (x))2}. (2.5)

Comparing (2.4) and (2.5), note that the asymptotic mean
squared error of θ̃(x) differs from that of θ̂(x) by the term
−r2(1 − r2)C(δ){nhfX(x)}−1tr{I(θ1(x), θ2(x))−1}. Note that
0 < r2(1 − r2) ≤ 1/4 for any r ∈ (−1,1) \ {0} and it attains
the maximum at r = ±2−1/2. Moreover, for any symmetric
kernel K, 0 ≤ C(δ) ≤ 3ν0,2/2 for all δ > 0 and C(δ) is in-
creasing in δ if K is, in addition, unimodal and concave; see
Cheng et al. (2005). Hence, the variance reduction estimator
is better than the local linear maximum likelihood estimator in
terms of asymptotic mean squared errors.

Remark 2. Comparing (2.2) and (2.3), note that our variance
reduction method simultaneously reduces asymptotic variances
in estimating all the parameters θ1(x), . . . , θd(x) no matter
what d, the number of parameters in the local likelihood model,

is. This property holds for all our estimators, θ̃
( j)

(x), j = 1,2,3,
which are introduced in (2.6), (2.7), and (2.14) and are con-
structed based on θ̃(x).

Note that r in the definition of θ̃(x) is an arbitrary constant
in (−1,1) \ {0}. As discussed earlier, choosing r = ±2−1/2, we
achieve the most variance reduction regardless of what h, δ, and
K are, and the resultant estimators are

θ̃
(1)

(x) = 1 − 21/2

4
θ̂
(
x − (

1 + 2−1/2)δh
) + 1

2
θ̂
(
x − 2−1/2δh

)

+ 1 + 21/2

4
θ̂
(
x − (

2−1/2 − 1
)
δh

)
(2.6)

and

θ̃
(2)

(x) = 1 + 21/2

4
θ̂
(
x + (

2−1/2 − 1
)
δh

) + 1

2
θ̂
(
x + 2−1/2δh

)

+ 1 − 21/2

4
θ̂
(
x + (

2−1/2 + 1
)
δh

)
. (2.7)

The next theorem states the asymptotic mean squared error of
the preceding variance reduction estimators.

Theorem 2. Under the same regularity conditions given by
Aerts and Claeskens (1997), for interior point x we have, as
n → ∞,

AMSE
{
θ̃

( j)
(x)

} = {nhfX(x)}−1tr
{
I(θ1(x), θ2(x))

−1}

×
{
ν0,2 − C(δ)

4

}

+ 1

4
h4ν2

2,1

{
(θ ′′

1 (x))2 + (θ ′′
2 (x))2}, (2.8)

j = 1,2.

Remark 3. It follows from (2.5) that the optimal bandwidth
minimizing AMSE{θ̂(x)} is

h0 =
{

ν0,2

fX(x)ν2
2,1

}1/5{ tr(I(θ1(x), θ2(x))−1)

(θ ′′
1 (x))2 + (θ ′′

2 (x))2

}1/5

n−1/5. (2.9)

Similarly, for j = 1,2, the optimal bandwidth minimizing

AMSE{θ̃ ( j)
(x)} given in (2.8) is

hj =
{
ν0,2 − C(δ)

4

}1/5

ν
−1/5
0,2 h0. (2.10)

Remark 4. The bandwidth h0 given in (2.9) yields the opti-
mal AMSE of θ̂(x):

AMSE0(x) =
{

ν0,2tr(I(θ1(x), θ2(x))−1)

fX(x)

}4/5

× {
ν2

2,1

[
(θ ′′

1 (x))2 + (θ ′′
2 (x))2]}1/5

n−4/5. (2.11)

For j = 1,2, the optimal bandwidth given in (2.10) yields the

optimal AMSE of θ̃
( j)

(x):

AMSEj(x) =
{
ν0,2 − C(δ)

4

}4/5

ν
−4/5
0,2 AMSE0(x), (2.12)

and, hence, the asymptotic relative efficiency of θ̃
( j)

(x) com-
pared to θ̂(x) is

eff
{
θ̃

( j)
(x), θ̂(x)

} =
{
ν0,2 − C(δ)

4

}−4/5

ν
4/5
0,2 ≥ 1. (2.13)

Although theoretical results imply that more variance reduc-
tion is achieved by implementing larger δ values, that may
introduce large finite-sample bias effects. We suggest taking
δ = 1 for general purposes. Slightly larger values of δ, for ex-
ample, δ = 1.2, may be useful in applications when the second
derivatives of the curves θj(x), j = 1, . . . ,d, are small. A simple
way to judge is to examine departures of the curve estimates

θ̃
(1)

(·) and θ̃
(2)

(·) from θ̂(·) when using different δ choices.

Either of the variance reduction estimator θ̃
(1)

(x) or θ̃
(2)

(x)
uses more information from data points on one side of x than
those on the other side; see (2.6) and (2.7). One way to cancel
out these finite-sample biases is to take the average of the two
estimators

θ̃
(3)

(x) = 1

2

{
θ̃

(1)
(x) + θ̃

(2)
(x)

}
. (2.14)

When supp(X) = [0,1], to keep the points {βx,0, βx,1, βx,2} with
both r = 2−1/2 and r = −2−1/2 all within the data range [0,1],
we let

δ(x) = min

{
δ,

x

(1 + 2−1/2)h
,

1 − x

(1 + 2−1/2)h

}

for a given positive constant δ, δ = 1 say.

Theorem 3. Under the same regularity conditions of Aerts
and Claeskens (1997), for interior point x we have, as n → ∞,

√
nh

{
θ̃

(3)
(x) − θ(x) − 1

2
h2ν2,1θ

′′(x)
}

d→ Z3, (2.15)

where Z3 is a d-dimensional normal random vector with
mean 0 and covariance matrix {ν0,2 − C(δ)/4 − D(δ)/2} ×
fX(x)−1I(θ1(x), θ2(x))−1 and

D(δ) = ν0,2 − C(δ)

4
− 1

16

{
4(1 + √

2 )C(
√

2 − 1, δ/2)

+ (3 + 2
√

2 )C(2 − √
2, δ/2)
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+ 2C(
√

2, δ/2) + 4(1 − √
2 )C(

√
2 + 1, δ/2)

+ (3 − 2
√

2 )C(
√

2 + 2, δ/2)
}
.

It follows from (2.15) that the asymptotic mean squared error

of θ̃
(3)

(x) is

AMSE
{
θ̃

(3)
(x)

} = {nhfX(x)}−1tr
{
I(θ1(x), θ2(x))

−1}

×
{
ν0,2 − C(δ)

4
− D(δ)

2

}

+ 1

4
h4ν2

2,1

{
(θ ′′

1 (x))2 + (θ ′′
2 (x))2}. (2.16)

Remark 5. The optimal bandwidth of θ̃
(3)

(x) minimizing

AMSE{θ̃ (3)
(x)} in (2.16) is

h3 =
{
ν0,2 − C(δ)

4
− D(δ)

2

}1/5

ν
−1/5
0,2 h0, (2.17)

giving the optimal AMSE of θ̃
(3)

(x):

AMSE3(x) =
{
ν0,2 − C(δ)

4
− D(δ)

}4/5

ν
−4/5
0,2 AMSE0(x).

(2.18)

Hence, the asymptotic relative efficiency of θ̃
(3)

(x) compared
to θ̂(x) is

eff
{
θ̃

(3)
(x), θ̂(x)

} =
{
ν0,2 − C(δ)

4
− D(δ)

2

}−4/5

ν
4/5
0,2 ≥ 1.

(2.19)
For any kernel K, 0 ≤ D(δ) ≤ 5

8ν0,2 for all δ > 0. Comparing

(2.13) and (2.19), we find that θ̃
(3)

(x) has a better asymptotic

efficiency compared to θ̃
( j)

(x), j = 1,2, and the improvement is
significant.

Remark 6. The conclusions in Remarks 3–5 are all based
on the total mean squared error measure given in (2.4), (2.8),
and (2.16). In some circumstances, the coordinatewise mean
squared errors may be used to accommodate different accuracy
requirements. Then the coordinatewise optimal bandwidths for
the different estimators follow the same relations as in (2.10)
and (2.17), and the componentwise relative efficiencies of our
estimators compared to the local linear MLE remain as on the
right sides of (2.13) and (2.19).

Remark 7. Existing data-driven bandwidth selection rules
for the local linear maximum likelihood estimator θ̂(x) include
the cross-validation method of Aerts and Claeskens (1997) and
the grid search approach of Fan et al. (1998). To implement our
estimators, one can simply replace θ̂(x) by our estimators in the
previously mentioned procedures.

Remark 8. For any j = 1,2,3, in our construction of our vari-

ance reduction estimator θ̃
( j)

, the same value of δ is applied to
obtain all the d-parameter estimators θ̃

( j)
1 (x), . . . , θ̃ ( j)

d (x). If the
curvature in the parameter curves θ1(x), . . . , θd(x) varies largely
from one to another, then it may be more preferable to imple-
ment different δ values for θ̃

( j)
1 (x), . . . , θ̃ ( j)

d (x) and that can be
done coordinatewise.

3. SIMULATION STUDY AND REAL APPLICATION

3.1 Simulation Study

We consider the following two models in our simulation
study.

Model A (Extreme value distribution).

P(Y ≤ y|X = x) = exp

[
−

{
1 + γ (x)

y − µ(x)

σ (x)

}−1/γ (x)

+

]
, (3.1)

where θ(x) = (γ (x),µ(x), σ (x))T , σ(x) = 1 + x2, µ(x) = −1 +
2x, γ (x) = −.2 or 0, (u)+ = u for positive u and (u)+ = 0 oth-
erwise, and X is uniformly distributed on [0,1].

Model B (Logistic regression).

P(Y = 1|X = x) = exp{θ(x)}
1 + exp{θ(x)} and

P(Y = 0|X = x) = 1

1 + exp{θ(x)} ,

where θ(x) = θ1(x) = 7{exp{−(x + 1)2} + exp{−(x − 1)2}} −
5.5 or θ(x) = θ2(x) = 2 − x2 and X is uniformly distributed on
[0,1].

Note that γ (x), µ(x), and σ(x) in Model A are called the
shape, location, and scale parameter curves, respectively. The
reason that we consider γ (x) as being a constant is suggested
by the real data application in the next section. Model B was
considered by Fan et al. (1998) as well.

We drew 400 random samples of size n = 400 and n = 600
from both Models A and B and took

δ = δ(x) = min

{
1,

x

(1 + √
1/2 )h

,
1 − x

(1 + √
1/2 )h

}

in computing the variance reduction estimates. The biweight
kernel K(u) = 15

16 (1 − u2)2I(|u| ≤ 1) was employed.

For Model A, we kept the bandwidth h at .15 for both θ̂(x)

and θ̃
(3)

(x). For Model B, we employed the data-driven method
of Fan et al. (1998) to choose the optimal bandwidth. That is, we
searched the optimal h from .1 to .4 in increments of .01 to min-
imize the median of the integrated squared errors of the local
linear maximum likelihood estimate. Then this optimal band-

width was applied to both θ̂(x) and θ̃
(3)

(x). Under Model B, we
also experimented with h = .15 for both estimates.

One way to measure the relative performance of our variance

reduction estimate θ̃
(3)

(x) to the local linear maximum likeli-
hood estimate θ̂(x) on each sample is to compute the ratio of
the integrated squared error (ISE) of the latter to that of the for-
mer. Table 1 reports the mean and standard deviation of the ISE
ratios obtained from the 400 samples. From Table 1, we clearly
observe the effectiveness of the variance reduction techniques,
especially when a small bandwidth is employed. In addition, the
fact that, in all cases considered, the relative performance stays
roughly the same when n changed from 400 to 600 indicates

that θ̃
(3)

(x) already achieves the asymptotic relative efficiency
at moderate sample sizes.
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Table 1. Relative Performance

Model A
h γ = −.2, n = 400 γ = −.2, n = 600 γ = .0, n = 400 γ = .0, n = 600

.15 γ : 1.394(.504) γ : 1.359(.489) γ : 1.476(.488) γ : 1.468(.480)
µ: 1.419(.404) µ: 1.411(.425) µ: 1.406(.465) µ: 1.406(.457)
σ : 1.384(.455) σ : 1.332(.350) σ : 1.395(.405) σ : 1.404(.418)

Model B
h θ1(x), n = 400 θ1(x), n = 600 θ2(x), n = 400 θ2(x), n = 600

Optimal 1.041(.154) 1.027(.152) 1.044(.158) 1.052(.157)
.15 1.227(.380) 1.227(.372) 1.311(.474) 1.281(.416)

NOTE: The numbers denote the mean of ratios of the integrated squared errors of the local linear maximum likelihood estimate θ̂ (x) to those of the variance reduction estimate θ̃ (3)(x ) based on
both h =.15 and the optimal h in the sense of minimizing the median of the integrated squared errors of the local linear maximum likelihood estimate. The corresponding standard deviations are
given in brackets.

3.2 Real Application

We analyze the annual maximum temperatures (degrees
Celsius) measured at Station De Bilt, the Netherlands, from
January 1, 1901 to December 31, 2003, say y1, . . . , y103;
see Figure 1. Here xi = 1,900 + i was transformed to xi =
i/104 for i = 1, . . . ,103. This dataset is constructed by tak-
ing the maximum of daily maximum temperatures available
at http://www.knmi.nl/voorl/kd /lijsten/daggem/etmgeg_downl.
cgi?language=eng.

First, we applied the extreme value distribution (3.1) to this
dataset with γ (x) and σ(x) being constants. The setup for esti-
mation is the same as in the simulation study except the choice
of bandwidth. Here the cross-validation bandwidth method
of Aerts and Claeskens (1997) was employed. More specif-

ically, we first computed CV(h) = ∑n
i=1 log f (Yi; θ̂ [i]

(xi)) for

h = .1, .101, .102, . . . , .4, where θ̂
[i]

(x) is the local linear max-
imum likelihood estimate without the observation (xi, yi), and
then chose h to minimize the quantity CV(h). Figure 2 depicts
CV(h) versus h. Based on Figure 2, we employed h = .165 and
h = .191, which correspond to the largest two values of h where
local minima of CV(h) occur, to compute the local linear max-

Figure 1. Annual Maximum Temperatures (degrees Celsius) Mea-
sured at Station De Bilt, the Netherlands, During the Period January 1,
1901–December 31, 2003.

imum likelihood estimates and the corresponding variance re-
duction estimates θ̃ (3)(x); see Figures 3 and 4. In any of the
cases, our curve estimate has less fluctuations than the original
local linear estimate while the two suggest similar patterns of
the parameter curves. The results from h = .191 are more use-
ful because the curve estimates are smoother.

To estimate the variances of these estimates, a bootstrap-
ping approach similar to that of Davison and Ramesh (2000)
was employed. That is, we take with replacement 1,000 boot-
strapping samples {ε∗

1,j, . . . , ε
∗
103,j}1,000

j=1 from {(1 + γ̂ (xi)(yi −
µ̂(xi))/σ̂ (xi))

−1/γ̂ (xi), i = 1, . . . ,103}. For each of j = 1, . . . ,

1,000, form a bootstrap sample by setting y∗
i,j = µ̂(xi) +

σ̂ (xi){(ε∗
i,j)

−γ̂ (xi) − 1}/γ̂ (xi), i = 1, . . . ,103, and then recal-
culate the local linear maximum likelihood estimator θ̂(xi)

and the variance reduction estimator θ̃
(3)

(xi) based on the
bootstrap sample (x1, y∗

1,j), . . . , (x103, y∗
103,j) to give bootstrap

estimates. Finally, the bootstrap estimates of variances of

Figure 2. Cross-Validation Function for Annual Maximum Tempera-
ture Data When γ and σ Are Constants. The cross-validation function
CV(h) is plotted against h from .1 to .4 with increments of .001. The
largest two values of h where local minima of CV(h) occur are h = .165
and h = .191.

http://www.knmi.nl/voorl/kd/lijsten/daggem/etmgeg_downl.cgi?language=eng
http://www.knmi.nl/voorl/kd/lijsten/daggem/etmgeg_downl.cgi?language=eng
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Figure 3. Estimators for the Case When γ and σ Are Constants. The solid and dashed lines represent the local linear maximum likelihood
estimator and the variance reduction estimator with bandwidth h = .165, respectively. The upper left, upper right, and lower plots correspond to
γ (x), µ(x), and σ (x), respectively.

(γ̂ (xi), µ̂(xi), σ̂ (xi))
T and (γ̃ (3)(xi), µ̃

(3)(xi), σ̃
(3)(xi))

T are ob-
tained as the respective sample variances of the 1,000 bootstrap
estimates. They are depicted in Figures 5 and 6. We observe
from Figures 5 and 6 that, for each of the parameter curves, the
variance reduction estimator has a substantially smaller boot-
strap variance estimate than the local linear maximum likeli-
hood estimator for the interior points of x.

Second, we applied model (3.1) to this dataset with all three
parameters being functions of x. We took h = .191. As before,
the curve estimates and the bootstrapped variance estimates are
plotted in Figures 7 and 8. Again, we observe that the variance
reduction estimator has a substantially smaller bootstrap vari-
ance estimate than the local linear maximum likelihood estima-
tor for the interior points of x. Moreover, both Figures 7 and 8
indicate that γ and σ may be modeled as constants, especially

for interior points of x. From Figures 6 and 8, we see that, for

each θ̂(x) and θ̃
(3)

(x), the bootstrap variance estimate of µ(x) is
much smaller when γ and σ are treated as constants compared
to the case where they depend on x.

APPENDIX: PROOFS

Proof of Theorem 1

Put

Q1 =
(

1 0
0 ν2,1

)
, Q2 =

(
ν0,2 ν1,2
ν1,2 ν2,2

)
,

Q3 =
(

0 ν2,1
ν2,1 0

)
,
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Figure 4. Estimators for the Case When γ and σ Are Constants. The solid and dashed lines represent the local linear maximum likelihood
estimator and the variance reduction estimator with bandwidth h = .191, respectively. The upper left, upper right, and lower plots correspond to
γ (x), µ(x), and σ (x), respectively.

�x = fX(x)

(
I11(θ1(x), θ2(x))Q1 I12(θ1(x), θ2(x))Q1

I21(θ1(x), θ2(x))Q1 I22(θ1(x), θ2(x))Q1

)
,

�x = fX(x)

(
I11(θ1(x), θ2(x))Q2 I12(θ1(x), θ2(x))Q2

I21(θ1(x), θ2(x))Q2 I22(θ1(x), θ2(x))Q2

)
,

�x =
( d

dx { fX(x)I11(θ1(x), θ2(x))}Q3
d
dx { fX(x)I21(θ1(x), θ2(x))}Q3
d
dx { fX(x)I12(θ1(x), θ2(x))}Q3
d
dx {fX(x)I22(θ1(x), θ2(x))}Q3

)
,

Vn(x) = √
nh

(
θ̂1(x) − θ1(x),h{θ̂ ′

1(x) − θ ′
1(x)},

θ̂2(x) − θ2(x),h{θ̂ ′
2(x) − θ ′

2(x)}
)T

,

q1(y;u1,u2) = ∂

∂s
log f (y; s, t)

∣∣∣∣
(s,t)=(u1,u2)

,

q2(y;u1,u2) = ∂

∂t
log f (y; s, t)

∣∣
∣∣
(s,t)=(u1,u2)

,

Wn(x) = (
Wn1(x), . . . ,Wn4(x)

)T
,

Wn(2k+l−1)(x) =
√

h√
n

n∑

i=1

(X − xi)
lKh(Xi − x)

× qk
(
Yi; θ1(x) + θ ′

1(x)(Xi − x),

θ2(x) + θ ′
2(x)(Xi − x)

)
,
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Figure 5. Bootstrapped Variance Estimates for the Case When γ and σ Are Constants. The solid and dashed lines represent the bootstrapped
variances of the local linear maximum likelihood estimator and the variance reduction estimator with bandwidth h = .165, respectively. The upper
left, upper right, and lower plots correspond to γ (x), µ(x), and σ (x), respectively.

where k = 1,2, l = 0,1. Then it follows from Aerts and
Claeskens (1997) that

(�x + h�x)Vn(x) − E{Wn(x)}
= Wn(x) − E{Wn(x)} + op(1), (A.1)

E{Wn(x)} = √
nh

×






1
2 h2f (x)ν2,1

∑
j=1,2 I1j(θ1(x), θ2(x))θ ′′

j (x){1 + o(1)}
o(h2)

1
2 h2f (x)ν2,1

∑
j=1,2 I2j(θ1(x), θ2(x))θ ′′

j (x){1 + o(1)}
o(h2)






.

(A.2)

Define

V∗
n(x) = diag(1,h,1,h)

√
nh{θ̃∗(x) − θ∗(x)},

θ̃∗(x) =
∑

j=0,1,2

Aj(r)θ̂
∗(βx,j),

where A0(r) = 2−1r(r − 1), A1(r) = (1 − r2), and A2(r) =
2−1r(1 + r). Note that

θ̃∗(x) − θ∗(x)

=
∑

j=0,1,2

Aj(r){θ̂∗(βx,j) − θ∗(βx,j)}

+ Aj(r){θ∗(βx,j) − θ∗(x)}, (A.3)
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Figure 6. Bootstrapped Variance Estimates for the Case When γ and σ Are Constants. The solid and dashed lines represent the bootstrapped
variances of the local linear maximum likelihood estimator and the variance reduction estimator with bandwidth h = .191, respectively. The upper
left, upper right, and lower plots correspond to γ (x), µ(x), and σ (x), respectively.

1 =
∑

j=0,1,2

Aj(r),

0 =
∑

j=0,1,2

(−1 + j − r)Aj(r), (A.4)

0 =
∑

j=0,1,2

(−1 + j − r)2Aj(r).

Define

C∗
1(a,b) =

∫
K(s + aδh)K(s + bδh)ds,

C∗
2(a,b) =

∫
K(s + aδh)K(s + bδh)(s + aδh)ds,

C∗
3(a,b) =

∫
K(s + aδh)K(s + bδh)(s + aδh)(s + bδh)ds,

γij = cov

{ ∑

l=0,1,2

Al(r)Wni(βx,l),
∑

l=0,1,2

Al(r)Wnj(βx,l)

}
.

It is easy to check that γij = γji,

γll = fX(x)I11(θ1(x), θ2(x))

×
∑

i=0,1,2

∑

j=0,1,2

Ai(r)Aj(r)

× C∗
2l−1(1 − i + r,1 − j + r), l = 1,2,
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Figure 7. Estimators for the Case When All Three Parameters Depend on x. The solid and dashed lines represent the local linear maximum like-
lihood estimator and the variance reduction estimator with bandwidth h = .191, respectively. The upper left, upper right, and lower plots correspond
to γ (x), µ(x), and σ (x), respectively.

γ12 = fX(x)I11(θ1(x), θ2(x))

×
∑

i=0,1,2

∑

j=0,1,2

Ai(r)Aj(r)C
∗
2(1 − i + r,1 − j + r),

(γ13, γ14, γ23, γ24)
T = (γ11, γ12, γ12, γ22)

T I12(θ1(x), θ2(x))

I11(θ1(x), θ2(x))
,

(γ33, γ34, γ44)
T = (γ11, γ12, γ22)

T I22(θ1(x), θ2(x))

I11(θ1(x), θ2(x))
.

From (A.2)–(A.4), we have

E{(�x + h�x)V∗
n(x)}

=
∑

j=0,1,2

Aj(r)E{Wn(βx,j)}{1 + o(1)}

+
∑

j=0,1,2

Aj(r)diag(1,h,1,h)
√

nh{θ∗(βx,j) − θ∗(x)}

=
∑

j=0,1,2

Aj(r)E{Wn(x)}{1 + o(1)}

+
∑

j=0,1,2

Aj(r)diag(1,h,1,h)
√

nh

×
(

θ ′
1(x)(βx,j − x) + 1

2
θ ′′

1 (x)(βx,j − x)2 + O(h3),

θ ′′
1 (x)(βx,j − x) + O(h2),

θ ′
2(x)(βx,j − x) + 1

2
θ ′′

2 (x)(βx,j − x)2 + O(h3),
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Figure 8. Bootstrapped Variance Estimates for the Case When All Three Parameters Depend on x. The solid and dashed lines represent the
bootstrapped variances of the local linear maximum likelihood estimator and the variance reduction estimator with bandwidth h = .191, respectively.
The upper left, upper right, and lower plots correspond to γ (x), µ(x), and σ (x), respectively.

θ ′′
2 (x)(βx,j − x) + O(h2)

)T

= E{Wn(x)}{1 + o(1)} + O(
√

nhh3). (A.5)

Similar to the proof of (A.1), we have (A.2), and (A.5) implying
that

(�x + h�x)Ṽ∗
n(x) − E{Wn(x)}

=
∑

j=0,1,2

Aj(r)
[
Wn(βx,j) − E{Wn(βx,j)}

]{1 + op(1)}

d→ N(0, (γij)).

Hence, (2.2) can be shown by noting that

fX(x)
∣∣I(θ1(x), θ2(x))

∣∣�−1
x =

(
J22 −J12

−J21 J11

)
,

where Jij = diag(Iij(θ1(x), θ2(x)), ν
−1
2,1Iij(θ1(x), θ2(x))).

Proof of Theorem 2

Follows directly from Theorem 1.

Proof of Theorem 3

Similar to the proof of Theorem 1.
[Received May 2005. Revised May 2006.]
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