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Abstract

We suggest a method for reducing variance in nonparametric surface estimation. The

technique is applicable to a wide range of inferential problems, including both density

estimation and regression, and to a wide variety of estimator types. It is based on estimating

the contours of a surface by minimising deviations of elementary surface estimates along a

quadratic curve. Once a contour estimate has been obtained, the final surface estimate is

computed by averaging conventional surface estimates along a portion of the contour.

Theoretical and numerical properties of the technique are discussed.
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1. Introduction

We suggest a variance reduction method for nonparametric surface estimators,
based on approximating the projection of a contour into the design plane at the
point x where we wish to construct the estimate. The contour estimator is then used
as an axis along which a continuum of conventional surface estimates is averaged in
order to achieve a final estimate at x: Since our technique does not alter asymptotic
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bias then the reduction in variance that it offers leads directly to a reduction in
asymptotic mean squared error.
This method has several novel features. Firstly, it exploits the extra degree of

freedom that is available in the problem of surface estimation. Secondly, it provides
a new technique for estimating gradients and curvatures of contour lines, without
passing explicitly to derivatives of surface estimates. Thirdly, when applied to a
surface estimate that is always positive, in either density estimation or regression, our
method produces a boundary-corrected estimate that is always positive. Our
approach to estimating contours involves choosing either a line segment or a
quadratic along which a conventional surface estimator is least variable, in the
neighbourhood of the point x at which we wish to estimate the surface.
The technique is applicable to nonparametric methods in both density estimation

and regression. Indeed, it is not tied to a particular estimator type in either of these
settings; for example, in nonparametric regression it can be used in conjunction with
spline, local linear or Nadaraya–Watson methods. In the case of density estimation,
when a conventional kernel estimator is used as its basis, the technique can be viewed
as a device for re-computing kernel shape.
As implied two paragraphs above, the technique also has potential application for

overcoming edge effects. Modified boundary kernel methods have been proposed for
addressing this problem (see e.g. [14,19,20]), but like their univariate counterparts
they can produce negative estimates at boundaries. Local polynomial and
local parametric methods are more successful in this regard, although the
increase in variance of such techniques near the boundary means that good
asymptotic performance is often not visible unless sample size is particularly
large. Scott ([18], pp. 82–85) gives a particularly illuminating discussion of issues
such as these.
Multivariate generalisations are of course possible. However, since the multi-

variate analogue of a contour is not so familiar, not as readily depicted, and not as
easy to compute as in the bivariate case, then high-dimensional generalisations do
not offer as convenient a vehicle for illustrating the potential of the method.
If the distribution is d-variate then the contour corresponding to ‘‘height’’ H is the
set of points y such that gðyÞ ¼ H; and is a region with d � 1 degrees of
freedom.
Our variance reduction method is related to the so-called balloon kernel

techniques for density estimation. See [9,18, p. 149ff]. There is an extensive literature
on approaches for remedying boundary effects in density estimation and regression,
mainly in univariate cases. It includes methods based on special ‘‘boundary kernels’’,
for example those considered by Gasser and Müller [6], Gasser et al. [7], Granovsky
and Müller [8] and Müller [13]. Rice [15] suggested a dual-bandwidth approach. So-
called ‘‘reflection methods’’ include those of [1a,10,17]. The projection method of
Djojosugito and Speckman [2] is in the same spirit. Eubank and Speckman [3]
proposed a method that involves combining a conventional curve estimator with a
substantially undersmoothed estimator. Cheng, Fan and Marron [1] suggested
methods that have optimal asymptotic performance at boundaries. The natural
boundary-respecting properties of local polynomial methods have been discussed by
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Fan [4], Hastie and Loader [11], Ruppert and Wand [16] and Fan and Gijbels [5], for
example. See also [12].
Section 2 will introduce our method and discuss, in an heuristic and nontechnical

way, its variance-reduction properties. Theoretical results, underpinning the
informal arguments in Section 2, will be given in Section 3, and rigorous technical
details will be outlined in Section 5. Section 4 will summarise a simulation study that
complements the theory.

2. Methodology

2.1. The method

Let g denote a univariate function of a 2-vector; for example, g might be the
density of a bivariate distribution, or the mean in a regression problem where the
explanatory variable is bivariate and the response variable is scalar. We wish to
estimate g nonparametrically, making only smoothness assumptions and exploiting
the extra degree of freedom that is available in the context of surface estimation,
relative to the conventional case where the argument of g is univariate.
To this end we first construct an elementary nonparametric estimator ĝ of g: For

example, when g is a probability density we might take

ĝðxÞ ¼ ðnh2Þ�1
Xn

i¼1
K

x � Xi

h

� �
; ð2:1Þ

where K is a radially symmetric bivariate kernel, h is a bandwidth, and X1;y;Xn are
independent and identically distributed random variables with density g:
Next we describe construction of a local quadratic estimator of the level set, or

contour, of g in the neighbourhood of x; local linear estimators will be treated in

Section 2.2. Let Cðxjy; cÞ denote the parabola passing through x ¼ ðxð1Þ; xð2ÞÞ; with
its vertex at x and its tangent there in the direction of the unit vector ðcos y; sin yÞ;
and with curvature 2c at x: Thus, as a curve in the ðzð1Þ; zð2ÞÞ-plane, Cðxjy; cÞ has
equation

ðzð2Þ � xð2ÞÞ cos y� ðzð1Þ � xð1ÞÞ sin y

¼ cfðzð2Þ � xð2ÞÞ sin yþ ðzð1Þ � xð1ÞÞ cos yg2:

We shall constrain y and c by �p=2oypp=2 and �NocoN; which ensures that
each nondegenerate parabola in the plane is representable by Cðxjy; cÞ for a unique
triple ðx; y; cÞ:
Given l40; let Cðxjy; c; lÞ denote the set of points zACðxjy; cÞ that satisfy

jjz � xjjplh; where jj 	 jj denotes standard Euclidean distance. Let jCj denote the
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length of a finite segment C of a rectifiable curve, and put xðc; lÞ ¼ jCðxjy; c; lÞj;

ǧðxjy; c; lÞ ¼ xðc; lÞ�1
Z
Cðxjy;c;lÞ

ĝðzÞ ds;

Sðxjy; c; lÞ ¼ xðc; lÞ�1
Z
Cðxjy;c;lÞ

fĝðzÞ � ǧðxjy; c; lÞg2 ds; ð2:2Þ

ð#yx; ĉxÞ ¼ arg minðy;cÞ Sðxjy; c; lÞ; ð2:3Þ

where ds is an infinitesimal element of arc length along C ¼ Cðxjy; c; lÞ at the point
on C with coordinates z: Panel (a) of Fig. 1 depicts an example of the contour

estimator Cðxj#yx; ĉx; lÞ: Our final estimator of gðxÞ is

g̃ðxjlÞ ¼ ǧðxj#yx; ĉx; lÞ: ð2:4Þ

In practice, one would not necessarily use the same value of l when computing

ð#yx; ĉxÞ and when calculating g̃: That is, the l’s at (2.2) and (2.4) would not
necessarily be identical. We shall argue in Section 3 that a relatively large value of l
(asymptotically, l-N) should be used to give accurate estimation of the ‘‘true’’
quadratic approximation Cðxjyx; cxÞ to the contour line at x: On the other hand, a
relatively small value of l may be adequate for reducing variance and removing edge
effects in the estimator g̃:
To give an intuitive explanation of this point, note that estimation of y and c is

closely related to estimation of second derivatives of g; for which a larger bandwidth
is needed than when simply estimating g itself. This explains why lh; which is

effectively a bandwidth for computation of #yx and ĉx; should be relatively large.
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Fig. 1. Sausage-shaped kernel. In the context of density estimation, panel (a) depicts a portion of a point

cloud, and the true contour line (solid line) that passes x ¼ ð0:85; 1:04Þ (cross sign), when data are from the

bivariate normal Nð0; IÞ distribution and n ¼ 500: Dotted line is the contour line estimate Cðxj#yx; ĉx; lÞ;
calculated at that point based on the spherical biweight kernel, h ¼ 0:8; and l ¼ 1:25: Panel (b) shows a

perspective plot of the corresponding ‘‘sausage-shaped’’ kernel Kx; defined at (2.5).
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However, there is not the same pressing need for choosing lh large when estimating g

itself.

2.2. Choice of contour estimator

To appreciate why minimising Sðxjy; c; lÞ produces a parabola that approximates
the contourDðxÞ; note that we are in effect finding that choice of ðy; cÞ which renders
ĝðzÞ least variable as we move z along the curve Cðxjy; cÞ: Indeed, if we were to
replace ĝðzÞ by its true value, gðzÞ; when defining ǧðxjy; c; lÞ and Sðxjy; c; lÞ; then the
curve Cðxj#yx; ĉxÞ produced by minimising S would, if not constrained to have a

quadratic equation, be exactly DðxÞ: The curve Cðxj#yx; ĉxÞ represents an empirical,
quadratic approximation to this contour.
An alternative technique is to take C to be a line segment, rather than a piece of a

quadratic. The mechanics of implementing the approximation are virtually identical
in this setting: we replace Cðxjy; c; lÞ by Clinðxjy; lÞ; denoting the line segment of
length 2l centred at x and inclined at angle y; we replace xðc; lÞ at (2.2) by 2l; and
call the resulting integral Sðxjy; lÞ instead of Sðxjy; c; lÞ; and we choose y ¼ #yx to
minimise Sðxjy; lÞ: This approach is adequate for the results described in Sections
3.1–3.3, but for the higher-order analogues described in Section 3.4 a local quadratic
method, or something similar such as fitting local ellipses, is required.
A very different approach in estimating contour lines is to construct an

appropriately oversmoothed estimator of the function g; and compute its contours.
Oversmoothing is necessary in order to obtain sufficiently accurate estimates of
derivatives of the surface; these are used explicitly or implicitly in constructing an
estimate of the contour. We argue, however, that such a method is in general not as
attractive as that proposed here, owing to the relative difficulty of drawing contours
from differential-geometric properties of a surface.
Nevertheless, oversmoothing ĝ is beneficial when it is necessary to construct g̃ at a

place where the tangent plane to the surface is virtually horizontal. Minimising the
function Sðxjy; c; lÞ with respect to ðy; cÞ relies on detecting off-contour differences
in g through variation of g; if the gradient of g is low then so too will be the
variation. In such cases we rely on higher-order derivatives to provide ‘‘leverage’’ for
detecting the contour—hence the need for more dramatic smoothing.

2.3. Removing edge effects

Let R denote the support of the distribution of the points Xi on which the
estimator ĝ is based. In the context of density estimation R would be the support of
g; and in regression R would be the support of the density of Xi in the regression
problem Yi ¼ gðXiÞ þ error: The basic estimator ĝðxÞ potentially suffers from edge
effects whenever the support of the function kxðzÞ 
 Kfðx � zÞ=hg protrudes outside
R: However, assuming K is radially symmetric and vanishes outside a disc of unit
radius, this problem is solved by the following trivial modification of the estimator
suggested in Section 2.1: Re-define the parabola segment Cðxjy; c; lÞ to be the largest
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connected subset of Cðxjy; cÞ inside the disc fz: jjz � xjjplhg; subject to the set
Sfy; c;Cðxjy; c; lÞg being wholly contained within R; where

Sðy; c;TÞ 
 fz1: jjz1 � z2jjph for some z2ATg:

Fig. 2 illustrates the removal of edge effects in this context. Theoretical results, and
their derivations, in the presence of edge effects are entirely analogous to their
counterparts in the absence of those effects.

2.4. Why the estimator g̃ has advantages

The advantages stem from the property, established in Section 3, that g̃ is a good
approximation to the average of ĝ over a portion of the true contour of the surface
represented by y ¼ gðxÞ: Specifically, let DðxÞ denote the contour line that passes
through x; and let DðxjlÞ equal the largest connected subset of DðxÞ inside the disc
fz: jjz � xjjplhg; subject toSfy; c;DðxjlÞg being wholly contained withinR:Write
ǧcontðxjlÞ for the integral average of ĝðzÞ over zADðxjlÞ: Then, as we shall show in
Section 3.2, the difference between g̃ðxjlÞ and ǧcontðxjlÞ is of smaller order than the
difference between the latter function and the true value of gðxÞ:
It is easy to see why ǧcontðxjlÞ is likely to perform better than the conventional

estimator ĝðxÞ: Indeed, the averaging that is explicit in the definition of ǧcont will
clearly tend to reduce variance, by an order of magnitude if l is allowed to diverge
with n: And the bias of ǧcontðxjlÞ will equal the average value of the bias of ĝðzÞ over
values of z for which gðzÞ ¼ gðxÞ: Replacing bias by an average value is generally not
deleterious, and in fact the asymptotic bias of ǧcontðxjlÞ is identical to that of ĝðxÞ:
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Fig. 2. Removing edge effects. In the presence of edge effects the subset of Cðxjy; cÞ (dotted curve) that

comprises Cðxjy; c; lÞ (solid curve) is reduced, to ensure that the resulting regionSfy; c;Cðxjy; c; lÞg; from
which the estimator g̃ð	jlÞ is computed, lies wholly within the support R (right-hand side of the vertical

line) of the design distribution. The point x is marked by a cross. Panels (a) and (b) illustrate cases where

the contour is convex and concave, respectively, with respect to the boundary.
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2.5. Particular cases of g̃

In the case of density estimation the estimator g̃ may be thought of as having been
computed using a kernel whose shape is symmetric about the parabolic axis

represented by Cðxj#yx; ĉxÞ: If ĝ is given by (2.1) then this kernel is Kx; say, defined by

KxðvÞ 
 jCð0j#yx; ĉxh; l=hÞj�1
Z
Cð0j#yx;ĉxh;l=hÞ

Kðz þ vÞ ds: ð2:5Þ

In this notation the estimator g̃ has the standard form at (2.1):

g̃ðxjlÞ ¼ ðnh2Þ�1
Xn

i¼1
Kx

x � Xi

h

� �
;

where the support of Kx is sausage-shaped with its axis represented by the quadratic

Cð0j#yx; ĉxhÞ:
Fig. 1 illustrates a typical local quadratic contour estimate, and the associated

sausage-shaped kernel, in the case of nonparametric density estimation. There is an
obvious analogue of the figure in the case of a local linear approximation to the
contour.
In the context of kernel-based regression the estimator g̃ cannot be expressed

simply as the result of replacing K in the definition of ĝðxÞ by Kx: An approach like
this is still feasible, but it would generally involve at least two kernels like Kx; one
(Kx;1 say) designed for estimating contours of fg; where f is the design density, and

the other ðKx;2Þ designed to estimate contours of f : For example, in the case of local-
constant or Nadaraya–Watson estimation of g one would use Kx;1 and Kx;2 in the

numerator and denominator, respectively, of the estimator. The computational
complexity of such an approach makes it unattractive, however.

3. Theoretical properties

3.1. Contour approximation

Our aim in this section is to describe the accuracy with which the empirical

contour line Cðxj#yx; ĉxÞ estimates a nonrandom, quadratic approximation
Cðxjyx; cxÞ to DðxÞ: For brevity we confine our detailed treatment to the case of
nonparametric density estimation, noting in Section 3.6 the similarities to
nonparametric regression. We deal initially only with situations where edge effects
do not arise; Section 3.5 discusses how our results change in the presence of edge
effects.
Let S denote a bounded, open set in the plane. We assume of the kernel that

K is a compactly supported; radially symmetric; probability

density with Hölder-continuous first derivatives; ðCKÞ
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of h and l that

h^n�1=6; l2h=ðlog nÞ5=4-N; and lh ¼ Oðn�eÞ

for some e40; as n-N; ðCh;lÞ

and of the density g that it is differentiable on S and satisfies

the gradient of the steepest vector in the tangent plane at x to

the surface represented by y ¼ gðxÞ does not vanish for xAS ðC1gÞ

and

g has two Hölder-continuous derivatives; of all types; in S: ðC2gÞ

In respect of ðCh;l), note that h^n�1=6 is the optimal size of bandwidth for

estimating a density g with two derivatives.
Conditions ðC1gÞ and ðC2gÞ imply that, for each xAS; the contour line DðxÞ that

passes through x may be represented locally as a quadratic, in the sense that there
exist a real number cx; and yxAð�p=2; p=2�; both uniquely determined, such that the
distance from any given point z on DðxÞ to the nearest point on Cðxjyx; cxÞ
converges to 0 at rate oðr2Þ; uniformly in z satisfying jjz � xjjpr; as r-0:
From a sample X1;y;Xn of independent and identically distributed random

variables drawn from the distribution with density g; compute first the density

estimator ĝ given at (2.1), and then ð#yx; ĉxÞ defined at (2.3). Our first result describes

rates of convergence of the estimators #yx and ĉx to yx and cx; respectively.
Immediately below the theorem we discuss its analogue when contours are estimated
using local linear methods.
Given e40 let SeDS equal the set of all points xAS such that the closed disc of

radius e; centred at x; is contained in S: Let /y1 � y2S denote the distance between
arbitrary real numbers y1 and y2; modulo p:

Theorem 3.1. Assume conditions ðCKÞ; ðCh;lÞ; ðC1gÞ and ðC2gÞ: Constrain c to satisfy

jcjpC=ðlhÞ; where C40 is fixed, when choosing ðy; cÞ to minimise Sðxjy; c; lÞ; defined

at (2.2). Then for each e40; and with probability 1,

ðlog nÞ1=2 sup
xASe

ð/#yx � yxSþ lh jĉx � cxjÞ-0: ð3:1Þ

The theorem holds with only minor modifications if we use local linear, rather
than local quadratic, approximations to contour lines. Indeed, consistent estimation
of cx is not required for our method to produce asymptotic improvements on the
conventional estimator ĝ: If we take Sðxjy; lÞ to be the ‘‘linear’’ analogue of

Sðxjy; c; lÞ defined in Section 2.2, and #yx to be its minimiser; and if we assume ðCKÞ;
ðCh;lÞ; ðC1gÞ and ðC2gÞ; then (3.1) continues to hold in the sense that with

probability 1,

ðlog nÞ1=2 sup
xASe

/#yx � yxS-0: ð3:2Þ
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In practical terms, the assumption ‘‘l2h=ðlog nÞ5=4-N’’ in ðCh;lÞ asks that the
square of the radius, lh; of the parabola fragment Cðxjy; c; lÞ be of larger order than
the bandwidth, h:

3.2. Density estimation

In this section we show that any sufficiently accurate empirical, quadratic

approximation Cðxj*yx; c̃xÞ to Cðxjyx; cxÞ leads to an estimator ǧðxj*yx; c̃x; lÞ that is a
uniformly good approximation to ǧcontðxjlÞ:
Let *yx; c̃x denote general estimators of yx; cx respectively. Write l0 for a new

version of l; which for the sake of simplicity we shall keep fixed. Our next result

describes properties of the estimator ǧðxj*yx; c̃x; l0Þ: The version of (3.1) for *yx and c̃x;
and fixed l; is: with probability 1,

ðlog nÞ1=2 sup
xASe

ð/*yx � yxSþ hjc̃x � cxjÞ-0: ð3:3Þ

Recall the definition of

ǧcontðxjlÞ ¼ jDðxjlÞj�1
Z
DðxjlÞ

ĝðzÞ ds:

Theorem 3.2. Assume conditions ðCKÞ; ðC2gÞ and (3.3). Suppose too that h^n�1=6 and

l040 is fixed. Then with probability 1,

ǧðxj*yx; c̃x; l0Þ ¼ ǧcontðxjl0Þ þ opðh2Þ ð3:4Þ

uniformly in xASe; for each e40:

The estimators #yx; ĉx described in Theorem 3.1 are examples of *yx; c̃x; and then

(3.1) immediately implies (3.3). However, taking #yx to be a local linear estimator is
also adequate; there we should take ĉx ¼ 0; and (3.3) follows from (3.2).
We should stress that in Theorem 3.2 the value l0 of l is taken fixed, while in

Theorem 3.1 it diverges slowly with n: The latter requirement is symptomatic of the
degree of oversmoothing that is necessary when estimating quantities that are linked
to density derivatives, such as the tangent angle yx or the curvature cx; rather than
the density itself.

3.3. Performance advantages

To appreciate the variance reduction properties of the estimator ǧcont (and hence
of g̃), relative to its standard kernel counterpart ĝ; let LðvÞ denote the integral
average of Kðv þ zÞ over zAL where L is any line segment of length 2l0; and put

kM ¼
R

M2 for M ¼ K or L: We shall show shortly that the variances of ĝðxÞ and
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ǧcontðxjl0Þ are asymptotic to ðnh2Þ�1gðxÞ kM as n-N; where M ¼ K and L in the
respective cases. Moreover, kLokK ; and so our method reduces variance; and also,

kL=kKBCl�10 ; for a constant C40; as l0-N: The latter result shows that as the
fixed value of l0 becomes larger, the extent of variance reduction increases in
proportion to l0: (Note that kL does not depend on the particular choice of L:)
The asymptotic bias of ǧcontðxjl0Þ is readily seen to be identical to that of ĝðxÞ; and

in fact the expected value of either estimator equals gðxÞ þ 1
2
k2r2gðxÞ þ oðh2Þ; where

k2 ¼
R
ðvð1ÞÞ2 KðvÞ dv; vð1Þ denotes the first component of the vector v; andr2g equals

the Laplacian. Combining this result with that in the previous paragraph, and with

(3.4), we see that the empirical contour estimator ǧðxj*yx; c̃x; l0Þ has the same
asymptotic bias as the conventional kernel estimator ĝðxÞ; but has reduced
asymptotic variance.

Therefore the estimator ǧðxj*yx; c̃x; l0Þ has less minimum asymptotic mean squared

error (AMSE) than ĝðxÞ: In particular, if h ¼ Hn�1=6 then the AMSE equals

n�2=3 ALðHÞ; where

ALðHÞ ¼ 1
4

H4k22fr2gðxÞg2 þ H�2 gðxÞkL:

Through the fact that kLokK this is always (unless gðxÞ ¼ 0) strictly less than the

AMSE of ĝðxÞ; in the obvious notation the AMSE of ĝðxÞ equals n�2=3 AKðHÞ:
Likewise the asymptotic mean integrated squared error of ǧðxj*yx; c̃x; l0Þ; computed
for example over xASe; is less than that for ĝðxÞ:
The estimator ǧðxj*yx; c̃x; l0Þ is also asymptotically normally distributed, in the

sense that

ǧðxj*yx; c̃x; l0Þ ¼ gðxÞ þ 1
2 h4k2r2gðxÞ þ ðnhÞ�1=2fgðxÞkLg1=2Nn

þ opðn�1=3Þ; ð3:5Þ

where Nn is asymptotically distributed as normal Nð0; 1Þ:
To rigorously establish the claims made above, note that ǧcontðxjl0Þ may be

written in a form similar to that at (2.1):

ǧcontðxjl0Þ ¼ ðnh2Þ�1
Xn

i¼1
Kcont;x

x � Xi

h

� �
; ð3:6Þ

where

Kcont;xðvÞ 
 jD0j�1
Z
D0

Kðv þ zÞ ds; ð3:7Þ

with D0 denoting the image of the contour line segment DðxÞ after rescaling by h�1

in each coordinate and translating x to the origin. As h-0 the kernel Kcont;x

converges to L; if the line segment L is chosen to have its centre at the origin and to
be parallel to the contour tangent at x: (This does not affect the value of kL;
however.) Therefore, the claim that the variances of ĝðxÞ and ǧcontðxjl0Þ are
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asymptotic to ðnh2Þ�1gðxÞkM follows from standard arguments for the variance of a
kernel density estimator; see for example [22, pp. 19–23]. The result kLokK follows
from the Cauchy–Schwarz inequality; equality cannot arise unless l0 ¼ 0: It may be
shown too that

l0kL=kK-C 

Z

N

�N

ds

Z
KðvÞKfv þ ðs; 0ÞTg dv;

whence it follows that kLBCkK=l0: Result (3.5) follows from (3.4), (3.6) and
the bias properties of ǧcontðxjl0Þ noted in the paragraph containing (3.5). Asymptotic
normality of the variable Nn in (3.5) is an immediate consequence of the fact
that ǧcontðxjl0Þ is a sum of n independent and identically distributed random
variables.

3.4. High-order generalisations, and optimality

In Section 3.2 we simplified our theory by considering only the case where h is of
the size appropriate for optimal construction of ĝ; and l0 is fixed. In the present
section we discuss improvements in the overall convergence rate that are available
using other choices of bandwidth, and taking l0 to diverge with n: Our first result is a
version of Theorems 3.1 and 3.2 in this setting.

Theorem 3.3. Assume ðCKÞ; h ¼ c1n
�2=11 and l0 ¼ c2n

1=11 where c1; c240 are fixed,
and that

g has two Hölder continuous derivatives;

where the Hölder coefficient exceeds 2
3
: ð3:8Þ

Then estimators *yx and c̃x of yx and cx; respectively, can be constructed such that with

probability 1,

h�1ðlog nÞ1=2 sup
xASe

ð/*yx � yxSþ l0hjc̃x � cxjÞ-0: ð3:9Þ

Furthermore, if ð*yx; c̃xÞ satisfies (3.9), then (3.4) continues to hold with probability 1,
uniformly in xASe for each e40:

If the Hölder coefficient mentioned in (3.8) equals 1� x1Að0; 1
3
Þ; if, when

constructing ĝ for use with the local quadratic contour estimation method

outlined in Section 2.1, we take h ¼ n�ð3�x2Þ=22 where 0ox2o9x1=ð2þ 3x1Þ; and if

we take ð*yx; c̃xÞ to be ð#yx; ĉxÞ; defined in Section 2.1; then (3.9) holds. (An
outline proof will be given in Section 5.3.) Thus, as noted in the last paragraph of
Section 3.2, it is necessary to use a larger order of bandwidth when estimating
quantities such as yx and cx; which depend on derivatives of g; than when estimating
g itself.
The estimator ǧcont in (3.4) again admits representation (3.6), with kernel Kcont;x

given by (3.7). It may be shown from those formulae that ǧcontðxjl0Þ has standard
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deviation Ofðnh2l0Þ�1=2g and bias Oðh2Þ: Both are of order n�4=11; and so

ǧðxj*yx; c̃x; l0Þ ¼ gðxÞ þ Opðn�4=11Þ: This represents an improvement by an order of

magnitude on the rate of convergence, Opðn�1=3Þ; of the estimator discussed in

Theorem 3.2. Faster rates of convergence, up to Opðn�ð1=2ÞþxÞ for any given x40; can

be obtained for sufficiently smooth densities by using more accurate contour
estimators.
As is well known (see e.g. [21]), the optimal rate of convergence of estimators of

bivariate densities with two bounded derivatives equals Oðn�1=3Þ: The results
discussed in Section 3.3 might seem to contradict this result, since they signal the

possibility of achieving a convergence rate of oðn�1=3Þ by choosing n1=6h to decrease
to zero sufficiently slowly, and l0 to diverge to infinity sufficiently slowly, as n-N:
However, there is in fact no violation, since we need a little more than just two
bounded derivatives, specifically the Hölder continuity assumption in condition
ðC2gÞ; in order to achieve the rate. Likewise, the assumption in (3.8) that the Hölder

coefficient exceeds (rather than equals) 2
3
is slightly more than necessary for optimal

performance under minimal conditions. In each case, however, a biproduct of the
additional assumption is the uniform strong approximation of the empirical

contour-based estimator ǧðxj*yx; c̃x; l0Þ by its generalised kernel form ǧcontðxjl0Þ; as
evidenced by (3.4).

3.5. The case of edge effects

In Section 2.3 we showed that, in the context of density estimation, there is a
natural version of g̃ that addresses edge effects. As a prelude to stating the results of
Section 3.2 for estimators of this type, redefine the contour segment D0 at (3.7) by
taking it to be that subset of the original D0 which is as large as possible subject to

the support of
R
D0

Kfð	 þ zÞ=hg ds not protruding outside the support set R

(introduced in Section 2.3). With this modification, continue to define Kcont;x by (3.7)

and ǧcont by (3.6).
Take R to be a compact set whose boundary has two Hölder-continuous

derivatives and is such that at no point on the boundary is the tangent to the
boundary equal to the corresponding contour line; and assume the conditions of
Theorems 3.1 and 3.2 on R rather than S: Then (3.1) and (3.4) hold uniformly in
xAR (rather than xASe). Moreover, an argument identical to that in Section 3.2
shows that the asymptotic variance of ǧcontðxjl0Þ; and hence of g̃ðxjl0Þ; decreases to
0 at rate l�10 as l0-N:

3.6. Nonparametric regression

A model for nonparametric regression is that where data pairs ðXi;YiÞ are
generated by the formula Yi ¼ gðXiÞ þ ei; the errors ei having zero mean. Theory in
this case is similar to that for density estimation, although regularity conditions are
required on the design variables Xi and the error distribution. For the latter it is
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sufficient to suppose that the eis are independent and identically distributed with all
moments finite and zero mean. In this case, terms in log n in (3.1) and (3.3) should be

replaced by terms in nd; for d40 fixed but arbitrarily small. In this vein, the

assumption ‘‘l2h=ðlog nÞ5=4-N’’ in ðCh;lÞ should be replaced by ‘‘l2h=nd-N for

some d40’’. Let ðC0
h;lÞ denote the corresponding version of ðCh;lÞ:

Of the design variables it is adequate to suppose that they are independent and
identically distributed with density f ; which is bounded away from 0 on S and has
two Hölder-continuous derivatives there. With this assumption, ðCKÞ; ðC0

h;lÞ; ðC1gÞ
and ðC2gÞ; using l when estimating ð#yx; ĉxÞ; and employing a fixed l0 when
constructing g̃; and taking the basic estimator ĝ to be of either Nadaraya–Watson or
local-linear type; results described in Sections 3.2 and 3.3 hold in the case of
nonparametric regression.

4. Numerical examples

Three estimation methods, local quadratic approximation to contour lines (giving
g̃BðxjlÞ), local linear approximation (giving g̃LðxjlÞ), and the standard kernel
estimator ĝðxÞ; were used to estimate the probability density functions of two
distributions. We generated 200 random samples of size n ¼ 500 from each. For each
sample, integrated squared error (ISE) values for the three estimators were
approximated by numerical integration. Values of MISE were approximated by

averaging 200 of the respective ISE values. The spherical biweight kernel, KðzÞ ¼
15
8pð1� jjzjj2Þ2þ; was employed throughout.

Our first example is the unimodal bivariate normal Nð0; IÞ distribution. We took
the bandwidth to equal 0.8. To construct g̃BðxjlÞ and g̃LðxjlÞ; l in (2.2) was taken as
minð0:1þ 2

3
dðxÞ; 1:1Þ; where dðxÞ was the distance from x to the location of the

mode of ĝ: Three-quarters of this value was used for l in (2.4). See the second-last
paragraph of Section 2.1 and the last paragraph of Section 3.2. Notice that ‘‘radii’’ of
contour lines of the density surface degenerate near the mode, and that linearly
increasing the value of l ensures appropriate approximation of the contour lines.
Among the 200 random samples, the three samples that give median ISE values

for the three estimators are plotted in Fig. 3, which also shows the corresponding
values of ĝðxÞ; g̃LðxjlÞ and g̃BðxjlÞ: In multivariate cases, often a density surface
estimate fluctuates significantly due to data sparseness difficulties. The averaging
step of our contour approximation methods remedies this problem. This effect is
clearly demonstrated by the middle and bottom rows of Fig. 3. There, for each of the
three samples, the surfaces corresponding to g̃LðxjlÞ and g̃BðxjlÞ have less wiggly
contour lines than ĝ at places away from the mode.
Table 1 gives ISE values for the nine estimates. Table 2 provides average ISE

values, these being approximation to MISEs, for the three estimators. These results
demonstrate clear gains of g̃LðxjlÞ over ĝ:
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Fig. 3. Unimodal density estimates. The top row depicts three samples of size 500 drawn from the bivariate

normal Nð0; IÞ distribution. Middle and bottom rows show contour lines of the true density surface

(dashed lines), ĝ (dotted lines) and contour approximation estimators, for the three respective samples.

The middle row compares the local linear contour approximation method (solid lines) with ĝ: The bottom

row compares the local quadratic contour approximation method (solid lines) with ĝ:

Table 1

ISE values of the density estimates shown in Figs. 3 and 4

Unimodal normal

ĝðxÞ 0.001550 0.001660 0.001602

g̃LðxjlÞ 0.001398 0.001332 0.001450

g̃BðxjlÞ 0.001437 0.001635 0.001520

Bimodal normal mixture

ĝðxÞ 0.003616 0.003717 0.003610

g̃LðxjlÞ 0.003311 0.003261 0.003310

g̃BðxjlÞ 0.003548 0.003661 0.003553
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Our next example illustrates performance of our estimators in a more complex,
bimodal setting, a mixture of two bivariate normal distributions:

0:7N
0

0

 !
;

1 0

0 1

 ! !
þ 0:3N

1:5

�1

 !
;

0:26 0:1

0:1 0:26

 ! !
: ð4:1Þ

Bandwidth was h ¼ 0:6: To construct g̃ðxjlÞ we took l in (2.2) to be minð0:1þ
2
3

dðxÞ; 1:1Þ; and three-quarters of its value to be l in (2.4), where dðxÞ was the

distance from x to the location of the mode of ĝ nearest to x: This prevents our using
too-large values of l at places between the modes, where the contour lines are
curved, and hence helps preserve the bimodal feature of the density surface estimate.
(In practice, there may not be prior information about the number of modes of the
true distribution. In this case one can make a judgment from plots of preliminary
estimates, such as ĝ:) For this example our approach again reduces fluctuations in
the density surface estimates caused by stochastic variability, particularly in regions
away from either of the modes; see the panels in the middle and bottom rows of Fig.
4. The ISE and average ISE values are given in Tables 1 and 2.
In summary, our simulation results demonstrate advantages of the contour

approximation methods: the density surface estimates are more regularly shaped and
the MISE values are reduced, compared to the usual kernel density estimate.
Notably, the local linear contour approximation estimator enjoys good numerical
performance. The local quadratic approximation method performs less well; it
involves fitting two, rather than one, parameter, and thus will outperform ĝ in MISE
terms only when sample size is relatively large.

5. Proofs

5.1. Proof of Theorem 3.1

Put g ¼ EðĝÞ; %g ¼ EðǧÞ; D ¼ ĝ � g and %D ¼ ǧ � %g: Define A1ðxjy; c; lÞ; A2ðxjy; c; lÞ
and A3ðxjy; c; lÞ to equal the integrals of fgðzÞ � %gðxjy; cÞg2; fDðzÞ � %Dðxjy; cÞg2 and
fgðzÞ � %gðxjy; cÞg fDðzÞ � %Dðxjy; cÞg; respectively, over zACðxjy; c; lÞ: Then,

A2ðxjy; c; lÞ ¼
Z
Cðxjy;c;lÞ

DðzÞ2 ds � xðc; lÞ %Dðxjy; cÞ2; ð5:1Þ
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Table 2

Average ISE values of ĝðxÞ; g̃LðxjlÞ; and g̃BðxjlÞ when applied to 200 random samples of size 500, drawn

from the unimodal Nð0; IÞ or the bimodal normal mixture distribution at (4.1)

Unimodal normal Bimodal normal mixture

ĝðxÞ 0.001650 0.003724

g̃LðxjlÞ 0.001413 0.003377

g̃BðxjlÞ 0.001619 0.003678
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A3ðxjy; c; lÞ ¼
Z
Cðxjy;c;lÞ

gðzÞDðzÞ ds � xðc; lÞ%gðxjy; cÞ %Dðxjy; cÞ; ð5:2Þ

xS ¼ A1 þ A2 þ 2A3: ð5:3Þ

Without loss of generality, lX1 and lhp1: Let c denote a differentiable function
defined in the plane, write jDcjðzÞ for the supremum of the absolute value of the
directional derivative of c (at z) over all directions, let C40; and put Z ¼ /y� yxS
and z ¼ jc � cxj: There exists C140 with the property thatZ

Cðxjy;c;lÞ
�
Z
Cðxjyx;cx;lÞ

 !
cðzÞ ds

�����
�����

pC1ðZþ lhzÞðlhÞ2 sup
z: jjz�xjjplh

fjDcjðzÞ þ jcðzÞjg ð5:4Þ
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Fig. 4. Bimodal density estimates. Same as Fig. 3, except that the samples are from the bivariate normal

mixture distribution at (4.1).
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uniformly in ðy; cÞ such that jyj; jyxjpp; jcj; jcxjpC=ðlhÞ and Z; lhzpC: (Below we

shall refer to this uniform sense as ‘‘uniformn’’. At (5.4) and below the constants
C1;y;C4 depend only on C:) To derive (5.4), note that the distance between a given
point on Cðxjy; cÞ and its counterpart on Cðxjyx; cx; lÞ; to which the former may be
rotated about x; is dominated by a constant multiple of ðZþ lhzÞ lh: Therefore, the
difference of function values at the two points is dominated by a constant multiple of
ðZþ lhzÞ lh times supjDcjðzÞ: To obtain the bound at (5.4) this should be multiplied
by a constant times the lengths of the curves, i.e. by a constant times lh: There is an
additional contribution to the right-hand side, coming from the difference between 1
and the Jacobian of the transformation, based on a rotation, which takes Cðxjy; cÞ to
Cðxjyx; cx; lÞ; but it too is dominated by a constant multiple of the right-hand side
of (5.4).
The quantity xðc; lÞ; being the length of Cðxjy; c; lÞ; is asymptotic to 2lh

uniformly in jcjpC=ðlhÞ; and jxðc; lÞ � xðcx; lÞjpC2ðlhÞ3z uniformly in jcjpC such
that zpC=ðlhÞ: Therefore,

jxðc; lÞ�1 � xðcx; lÞ�1jpC3lhz; ð5:5Þ

in the same uniform sense. Combining (5.1) with the results in this paragraph, and

defining Bjðxjy; c; lÞ ¼ xðc; lÞ�1Ajðxjy; c; lÞ; we conclude that in the uniformn sense,

jB2ðxjy; c; lÞ � B2ðxjyx; cx; lÞj

pC4ðZþ lhzÞlh sup
z: jjz�xjjplh

fjDðzÞj jDDjðzÞ þ DðzÞ2g: ð5:6Þ

Given j ¼ 0; 1; let A4jðxjy; c; lÞ denote the integral of gðzÞjDðzÞ over zACðxjy; c; lÞ:
An argument similar to that leading to (5.6) implies that in the uniformn sense,

j%gðy; cÞ � %gðyx; cxÞjpC5ðZþ lhzÞlh; ð5:7Þ

where the constants C5;C6;C7 here and below depend only on C; g and K : From
(5.2), (5.7) and the properties of xðc; lÞ discussed in the previous paragraph, we

deduce that in the uniformn sense,

jB3ðxjy; c; lÞ � B3ðxjyx; cx; lÞj

pC6 ðlhÞ�1 max
j¼1;2

fjA4jðxjy; c; lÞ � A4jðxjyx; cx; lÞjg
	

þ ðZþ lhzÞlhmaxfjA40ðxjy; c; lÞj; jA40ðxjyx; cx; lÞjg


: ð5:8Þ
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Combining (5.3), (5.6) and (5.8) we conclude that in the uniformn sense,

jSðxjy; c; lÞ � Sðxjyx; cx; lÞ � fB1ðxjy; c; lÞ � B1ðxjyx; cx; lÞgj

pC7 ðlhÞ�1 max
j¼1;2

fjA4jðxjy; c; lÞ � A4jðxjyx; cx; lÞjg
 

þ ðZþ lhzÞlh sup
z: jjz�xjjplh

fjDðzÞj jDDjðzÞ þ DðzÞ2g
"

þmaxfjA40ðxjy; c; lÞj; jA40ðxjyx; cx; lÞjg
#!

: ð5:9Þ

The quantities T1 
 DðzÞ; T2 
 A40ðxjy; c; lÞ and T3 
 A4jðxjy; c; lÞ �
A4jðxjyx; cx; lÞ all have zero mean, and have variances equal to Oðs21Þ; Oðs22Þ and
Oðs23Þ; respectively, where s21 ¼ h4; s22 ¼ l2h6 and s23 ¼ ðZþ lhzÞðlh2Þ2: Also, T4 

jDDjðzÞ has mean square equal to Oðs24Þ; where s24 ¼ h2: For example, to obtain the

order of the variance of T3; note that the area between the curves Cðxjy; c; lÞ and
Cðxjyx; cx; lÞ equals OðaÞ; where a ¼ ðZþ lhzÞðlhÞ2: The variance of nh2T3 is
essentially the variance of a Poisson variable with mean OðnaÞ; and so the variance

of T3 equals Ofðnh2Þ�2nag; which, since h^n�1=6; equals Oðah2Þ ¼ Oðs23Þ:
Using Bennett’s inequality we may prove that, provided

n1�eh2si-N; for some e40 and i ¼ 1;y; 4; ð5:10Þ

the probability that U1 
 jT1T4j; U2 
 jT2j or U3 
 jT3j exceeds u1 
 C8s1s4 log n;

u2 
 C8s2ðlog nÞ1=2 or u3 
 C8s3ðlog nÞ1=2; respectively, equals Oðn�C9Þ in each case,
where C9 may be made arbitrarily large by choosing C8 sufficiently large; and these
probabilities are of the stated orders uniformly in x; zASe; and in c; cx; y; yx

complying with the ‘‘uniformn’’ sense. From this result, using standard methods of
approximation (see below), we may deduce that with probability 1 the right-hand
side of (5.9), denoted below by RHS, satisfies

RHS ¼ OðdnÞ

where dn ¼ ðZþ lhzÞ1=2hðlog nÞ1=2 þ ðZþ lhzÞl2h4ðlog nÞ1=2; ð5:11Þ

the former identity holding uniformly in xASe and in c; cx; y; yx complying with the

‘‘uniformn’’ sense. (Below we shall refer to this alternative uniform sense as

‘‘uniformw’’.)
The ‘‘standard methods of approximation’’ alluded to above may be summarised

as follows. Since S is bounded then, for any c40; a square lattice with edge width

n�c has only Oðn2cÞ of its vertices in S: Since the derivatives of K are Hölder
continuous then we may choose c so large that the difference between the value of Uj

at a general point u (say) within Se; and the value of Uj at the point of the lattice

(within S) that is nearest to u; equals Oðn�1Þ uniformly in u and in j ¼ 1; 2; 3; with
probability 1. Call this result ðR1Þ: By choosing C8 (introduced in the previous
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paragraph) so large that we may take C9X2c þ 2; and applying the Borel–Cantelli
lemma, we may show that the supremum of UjðuÞ; over all u in the lattice, equals

OðtjÞ for each j; with probability 1. Call this result ðR2). Since n�1 ¼ OðtjÞ then,
combining ðR1) and ðR2), we have shown that the supremum of UjðuÞ; over all

uASe; equals OðtjÞ for each j: This implies (5.11).

Define %gðxjy; c; lÞ to equal the integral of xðc; lÞ�1gðzÞ over zACðxjy; c; lÞ: Given
two bounded functions a and b defined in the plane, and a smooth, rectifiable, planar
curve C of finite length jCj; put

jja � bjjC ¼ jCj�1
Z
C

faðzÞ � bðzÞg2 ds

	 
1=2
:

The conditions assumed of g imply that g ¼ g þ Oðh2Þ; whence it follows that

B1ðxjy; c; lÞ1=2 ¼ jjg � %gðxjy; c; lÞjjCðxjy;c;lÞ þ Oðh2Þ; ð5:12Þ

in the uniformw sense. Moreover, writing bn ¼ bnðxÞ for a sequence of positive
functions satisfying bnðxÞ^1 uniformly in xASe; we claim that

jjg � %gðxjy; c; lÞjjCðxjy;c;lÞ ¼ b1=2n ðZþ lhzÞlh ð5:13Þ

in the uniformw sense.
To derive (5.13), note that each point on the curve segment Cðxjy; c; lÞ (the length

of which is asymptotic to 2lh) is distant OfðZþ lhzÞ lhg from the nearest point on
the true contour line that passes through x: Moreover, along a portion of the curve
segment, the portion having length equal to at least constant multiple of lh for all
sufficiently large n; the nearest distance is at least a constant multiple of ðZþ lhzÞlh:
Let %gcontðxjlÞ denote the average of gðzÞ for z in the contour segment DðxjlÞ: In view
of ðC1gÞ and the results just noted,

jjg � %gðxjy; c; lÞjjCðxjy;c;lÞ � jjg � %gcontðxjlÞjjDðxjlÞ ¼ b1=2n ðZþ lhzÞlh; ð5:14Þ

where bn has the properties claimed of the quantity at (5.13). A similar argument
shows that, since g has two Hölder-continuous derivatives in S;

jjg � %gðxjyx; cx; lÞjjCðxjyx;cx;lÞ � jjg � %gcontðxjlÞjjDðxjlÞ ¼ OfðlhÞ2þtg; ð5:15Þ

where t40 depends on the Hölder exponent. But by definition of the contour line
DðxÞ; %gcontðxjlÞ ¼ gðxÞ and gðzÞ ¼ gðxÞ for all zADðxÞ; and so (5.14) and (5.15) are
respectively identical to (5.13) and

jjg � %gðxjyx; cx; lÞjjCðxjyx;cx;lÞ ¼ OfðlhÞ2þtg: ð5:16Þ

Combining (5.12) and (5.13) we deduce that

B1ðxjy; c; lÞ ¼ bnfðZþ lhzÞlhg2 þ OfðZþ lhzÞlh3 þ h4g: ð5:17Þ

Likewise, (5.16) and the version of (5.12) for ðy; cÞ ¼ ðyx; cxÞ gives

B1ðxjyx; cx; lÞ ¼ OfðlhÞ4þ2t þ h4g: ð5:18Þ
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Combining (5.9), (5.11), (5.17) and (5.18), and noting that the quantity ðZþ lhzÞlh3

at (5.17) is of smaller order than the term ðZþ lhzÞlh3ðlog nÞ1=2 at (5.11), we see that
with probability 1, uniformly in xASe for each e40;

Sðxjy; c; lÞ � Sðxjyx; cx; lÞ ¼ bnfðZþ lhzÞlhg2 þ Ofdn þ ðlhÞ4þ2t þ h4g: ð5:19Þ

Therefore, in the operation of minimising Sðxjy; c; lÞ over y and c; en 
 Zþ lhz
can be made as small as a sufficiently large constant multiple of e0n 
 ðlhÞ�1fd1=2n þ
ðlhÞ2þt þ h2g: Now, the relation en^e0n is equivalent to

en^ðl2hÞ�2=3ðlog nÞ1=3 þ ðlhÞ1þt: ð5:20Þ

Note too that the property ðl2hÞ�2=3ðlog nÞ1=3 þ ðlhÞ1þt ¼ OðenÞ implies (5.10).
Therefore, with probability 1,

/#yx � yxSþ lhjĉx � cxj ¼ Ofðl2hÞ�2=3ðlog nÞ1=3 þ ðlhÞ1þtg:

The theorem follows directly from this result.

5.2. Proof of Theorem 3.2

In a slight abuse of notation, write ǧ; %g; C and x for ǧðxj*yx; c̃x; l0Þ; %gðxj*yx; c̃x; l0Þ;
Cðxj*yx; c̃x; l0Þ and xðc̃x; l0Þ; and let ǧ0; %g0; C0 and x0 denote the respective versions of
those quantities when ð*yx; c̃xÞ is replaced by ðyx; cxÞ: In a slight change of notation

from the previous proof, put Z ¼ ZðxÞ ¼ /*yx � yxS and z ¼ zðxÞ ¼ jc̃x � cxj:
Standard methods of strong approximation, similar to those used to derive (5.11),

may be used to show that under the conditions of the theorem, jĝðzÞ � gðzÞj ¼
Ofh2ðlog nÞ1=2g and jDðĝ � gÞjðzÞ ¼ Ofhðlog nÞ1=2g uniformly in zASe; for each
e40; with probability 1. Using this result, (5.4), (5.5) and the representations

ǧ � %g ¼ x�1
Z
C

ðĝ � gÞ; ǧ0 � %g0 ¼ x�10

Z
C0

ðĝ0 � gÞ;

we may prove that with probability 1,

jǧðxj*yx; c̃x; l0Þ � %gðxj*yx; c̃x; l0Þ � fǧðxjyx; cx; l0Þ � %gðxjyx; cx; l0Þgj

¼ OfðZþ hzÞh2ðlog nÞ1=2g: ð5:21Þ

Similarly, using the fact that jDðg� gÞjðzÞ ¼ OðhÞ uniformly in zASe; and
applying (5.4), (5.5) and the relation

%gðxj*yx; c̃x; l0Þ � %gðxjyx; cx; l0Þ ¼ x�1
Z
C

ðg� gÞ � x�10

Z
C0

ðg� gÞ;

we may prove that

j%gðxj*yx; c̃x; l0Þ � %gðxjyx; cx; l0Þj ¼ OfðZþ hzÞh2g: ð5:22Þ

Both (5.21) and (5.22) are valid uniformly in xASe; for each e40:
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Likewise, recalling that ǧcontðxjl0Þ is the average value of ĝ along the contour
segment Dðxjl0Þ; and noting that, in view of the Hölder continuity of second
derivatives of g; Dðxjl0Þ and the parabola segment Cðxjyx; cx; l0Þ are uniformly

distant h2n�e apart, for some e40; we may show that with probability 1,

jǧðxjyx; cx; l0Þ � ǧcontðxjl0Þj ¼ oðh2Þ: ð5:23Þ

Combining (5.21)–(5.23) we deduce that with probability 1, and uniformly in xASe;

ǧðxj*yx; c̃x; l0Þ � ǧcontðxjl0Þ ¼ OfðZþ hzÞh2ðlog nÞ1=2g þ oðh2Þ: ð5:24Þ

The theorem follows from this property and (3.4).

5.3. Proof of Theorem 3.3

Here we show that ðCKÞ; (3.8) and (3.9) are sufficient for (3.4) when h ¼ c1n
�2=11

and l0 ¼ c2n
1=11; and that estimators ð*yx; c̃xÞ satisfying (3.9) are readily constructed

when (3.8) holds.
The arguments leading to (5.21) and (5.22) apply as before, although the terms zh

and h2 on the right-hand sides of those formulae should be replaced by zl0h and

ðl0hÞ2; respectively. Therefore, in view of (3.9), for the present choices of h and l0;
the right-hand sides of (5.21) and (5.22) equal oðh2Þ with probability 1, uniformly in
xASe:
For some x40;

jEĝðy1Þ � gðy1Þ � fEĝðy2Þ � gðy2Þgj ¼ Oðh2 jy1 � y2jxÞ;

jĝðy1Þ � Eĝðy1Þ � fĝðy2Þ � Eĝðy2Þgj

¼ Ofðnh2l0Þ�1=2ðjjy1 � y2jj=hÞxðlog nÞ1=2g

uniformly in points y1ADðxjl0Þ and y2ACðxjyx; cx; l0Þ that are both distant s from x

and are on the same side of x; and are in xASe: (In the case of the second identity

the result holds with probability 1.) For some Z40; jjy2 � y1jj ¼ Ofðl0hÞ2þ2Zg ¼
Oðh1þZÞ; uniformly in pairs ðy1; y2Þ: Therefore, with probability 1 the difference

between the integral averages of ĝ � g over Dðxjl0Þ and Cðxjyx; cx; l0Þ equals oðh2Þ;
uniformly in xASe:
Given y1 and y2 as before,

gðy2Þ ¼ gðy1Þ þ
X2
i¼1

ðy2 � y1ÞðiÞ giðy1Þ þ Oðjjy2 � y1jj2Þ;

where g1 and g2 represent first partial derivatives, and bracketed superscripts denote
vector components. Recall that jjy2 � y1jj ¼ oðhÞ; uniformly in ðy1; y2Þ; and observe

that the integral average of ðy2 � y1ÞðiÞ giðy1Þ over y2ACðxjyx; cx; l0Þ is bounded by a
constant multiple of the integral average of jjy2 � y1jj2; and hence equals oðh2Þ:
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From this property and the fact that gðy1Þ ¼ gðxÞ for each y1 we deduce that the
integral average of gðy2Þ over Cðxjyx; cx; l0Þ equals the integral average of gðy1Þ over
Dðxjl0Þ; plus a term equal to oðh2Þ:
Combining these results we see that the difference between the integral averages of

ĝ over Dðxjl0Þ and Cðxjyx; cx; l0Þ equals oðh2Þ; uniformly in xASe: This is the
analogue of (5.23) in the present setting. Combining this property and the versions of

(5.21) and (5.22) we obtain the following version of (5.24): ǧðxj*yx; c̃x; l0Þ �
ǧcontðxjl0Þ ¼ oðh2Þ uniformly in xASe; with probability 1. This is equivalent to (3.4).

Next we show that, if (3.8) holds, estimators *yx and c̃x can be constructed such
that (3.9) is true. Note that, in view of the present choice of h and l0; (3.9) is
equivalent to

n2=11ðlog nÞ1=2 sup
xASe

/*yx � yxS-0; n1=11ðlog nÞ1=2 sup
xASe

jc̃x � cxj-0 ð5:25Þ

with probability 1. Now, (3.8) implies that, simply by forming the respective
derivatives of ĝ; one may estimate first and second derivatives of g with respective

rates n�ð5=22Þ�Z and n�ð1=11Þ�Z; for uniform convergence in Se with probability 1.
Therefore we may estimate contour tangent angle and contour curvature with the
same respective rates. (In fact we may achieve this end by fitting a local quadratic to
contours, as suggested in Section 2.1.) Result (5.25) follows from this property.
If, when using the local quadratic contour estimation method outlined in Section

2.1, we choose the bandwidth for ĝ to be h ¼ n�ð3�x2Þ=22 where 0ox2o9x1=ð2þ 3x1Þ
and x1Að0; 1

3
Þ is the Hölder coefficient mentioned in (3.8), then for some Z40 the

convergence rates n�ð5=22Þ�Z and n�ð1=11Þ�Z (for, respectively, first and second
derivatives of g) mentioned in the previous paragraph are obtained. It follows that
the local quadratic contour estimators also enjoy these rates.
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