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Abstract

There are close connections between the theory of statistical inference under order restrictions and the theory of tests for
unimodality. In particular, a result of Kiefer and Wolfowitz, on the error of convex approximations to empirical distribution
functions, is basic to limit theory for the dip test for unimodality. We develop a version of Kiefer and Wolfowitz® result
in the context of distributions that are strongly unimodal, and apply it and related limit theory to compare the powers,
against local alternatives, of three different tests of unimodality. In this context it is shown that the dip, excess mass and
bandwidth tests are all able to detect departures of size n~*° (measured in terms of the distribution function) from the
null hypothesis, where »n denotes sample size; but are not able to detect departures of smaller order. Thus, they have
similar powers. (©) 1998 Elsevier Science B.V. All rights reserved
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1. Introduction

There is a close relationship between the accuracy of empirical approximations to distributions and the
performance of tests for modality. Sometimes this is expressed through confidence bands. For example, if no
plausible unimodal density lies within a 95% confidence band for the density, then a test of the hypothesis
that the density is unimodal would be rejected at the 5% level. See for example Hall and Titterington (1988).
Alternatively, confidence bands could be constructed for the distribution function. For example, a distribution
function corresponding to a density that has a unique mode at a point xo is convex to the left of xp and
concave to the right, and so we could reject the null hypothesis of unimodality if no distribution with these
properties were sufficiently close to the empirical distribution function. This is the basis of the dip test of
Hartigan and Hartigan (1985); see also Hartigan (1985).

The problem of estimating a distribution under convexity or concavity assumptions is also of interest in
the theory of statistical inference under order constraints. The literature there has its roots in work of Brunk
(1956), van Eeden (1956) and Grenander (1956) on the greatest convex minorant of a distribution function,
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and has been surveyed by Barlow et al. (1972). Hartigan and Hartigan’s (1985) dip test statistic uses a
“string” construction adapted from the idea of a minorant. Specifically, the dip test employs that distribution
function U which is nearest to F in an L. sense, subject to being convex to the left and concave to the right
of some point x. Kiefer and Wolfowitz (1976) showed that if the true distribution function, F, is convex then
the greatest convex minorant, C, of the empirical distribution function of a random sample drawn from F, is
an order of magnitude closer to F than it is to F. This result implies that first-order empirical process theory
for C is identical to that for F, and that fact was employed in Hartigan and Hartigan’s (1985) development
of limit theory for the dip test statistic.
Kiefer and Wolfowitz (1976) actually proved, under regularity conditions that imply convexity of F, a
result that is marginally stronger than the following:
sup |C —F|=0,{n " (logn)**}, (1.1)
— 20 <X <00
where n denotes sample size. It is clear from their work that (1.1) fails if the distribution F is unimodal,
rather than convex, and if C is replaced by U. We shall prove that in the latter case, assuming mild additional
conditions, the exact rate of convergence is Op(n’”), a little slower than the rate at (1.1). In fact,

23 sup Iﬁ _ ﬁl —C(F)Z (1.2)
—o0 <X <O
in distribution, where the constant C(F') depends on F only through the second and third derivatives of F at
its mode, and where the random variable Z has a distribution that does not depend on F. This result will be
presented in Section 2.

Using the result at (1.2) we are able to give a concise account of asymptotic properties of the dip test
statistic under the null hypothesis of unimodality. Since the dip statistic is closely related to the excess mass
statistic of Miiller and Sawitzki (1991), our results also apply in that context. Indeed, the relationship between
the two statistics is employed to derive (1.2).

A formula similar to (1.2), but for Silverman’s (1981) bandwidth test of unimodality, has already been
given by Mammen et al. (1992). By generalizing all these results we are able to develop theory describing
performance of the bandwidth, dip and excess mass tests under local alternatives. In this way we show that all
three tests have approximately equal power, in the sense that each is just able to distinguish alternatives that
are distant 73, but no less, from the null hypothesis of unimodality. Here, distance is measured between
distribution functions, and in any L, metric for 1< p<oo. This work will be described in Section 3. Technical
arguments will be summarised in Section 4.

2. The dip test, and result (1.2)

Let % be the class of all unimodal distribution functions. The dip of a distribution function F is given by

D(F)= inf sup |F(x)— G(x)|.
GEW —xc<x<x

To test the null hypothesis Ho that the distribution F has a unimodal density f, against the alternative H; that
it has more than one mode, Hartigan and Hartigan (1985) proposed the statistic D(F ), where F denotes the
empirical distribution function of a random n-sample. They suggested a conservative testing procedure, based
on comparing the distribution of D(F ) with that which arises if F is the Uniform distribution function, H,
on [0,1]; and rejecting Hy in an a-level test if D(F) exceeds the a-level critical point under the assumption
F=H. That this approach is asymptotically conservative follows from the fact that n'2D(F) has a strictly
positive limiting distribution as » — oo, provided F =H; whereas D(F )=0,(n"12) for a wide variety of
strictly unimodal distributions. See Theorems 3 and 5 of Hartigan and Hartigan (1985).
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The simplicity and elegance of the assumption of uniformity make it attractive, but its high degree of
conservatism gives it poor performance against, for example, the bandwidth test, if both use the same nominal
level. We claim that, in order for the actual level of the test to be bounded away from 0 and 1 under the
null hypothesis, the critical point should be of size n~*° rather than n~'?. Moreover, if a critical point of
this size is employed then the test is only barely able to detect local alternative hypotheses distant > from
the null.

To make this claim explicit we introduce a class of local alternatives to F. Let Y be an antisymmetric
function with support equal to the compact interval [—v,v], having two continuous derivatives on the real
line, within (—v,v) having the property that ¥ vanishes at only a finite number of points, and such that
P(x)= [, ¥(u)du crosses the horizontal axis at least twice in (—v,v). Let #=n""", let ¢>0 be a constant,
let F be the distribution function corresponding to a fixed unimodal density with its mode at xy, and define

X — Xp

A (x)=(cn)’ ‘P( ) and  F,(x)=F(x) + 4,(x). (2.1)
The antisymmetric nature of ¥, and its boundedness and compact support, ensure that for each choice of
¢ the function F, is a proper distribution function for all sufficiently large »n. Furthermore, if F is strongly
unimodal (e.g. satisfies (2.2) below) then for all sufficiently large c, the density corresponding to F, has at
least two modes near xp for all sufficiently large n. (This follows from a Taylor expansion of F.) We could
also incorporate a location change into the definition of 4,, for example replacing ¥{(x — xo)/cn} there by

¥{(x — xo + dn)/cn} for an arbitrary constant d, but for the sake of simplicity have not done so.
Assume that

[’ exists on R, and is continuous and ultimately monotone in each tail; and /" exists within

a neighbourhood of the unique mode x(, and is Holder continuous there, with f*(x()<0. 22)
We also need an extra condition on y: defining @(y)=¥(y) — 1|f"(x0)| ¥* we ask that
sup  {O(»2) — O(y1) + O(ys) — O(y3)} — sup {O(y2) — O(y1)}>0. (2.3)

<<y n<y

This holds if | = const. v for a fixed, antisymmetric function g satisfying the conditions imposed on ¥ in
Section 2, provided the constant is sufficiently large. To appreciate why, consider a graph of @(y). It diverges
to +00 as y — — oo, and to —o0 as y — + oo. From this property, and the fact that ¥ crosses the horizontal
axis at least twice, we see that if | = const. i then @ has at least two local maxima and two local minima
for all sufficiently large values of the constant. This implies (2.3).

The theorem below shows that, under this condition, (a) the dip test statistic, after rescaling by a factor
n*3, converges in distribution under the null hypothesis; (b) the power of the test against F,,, defined by (2.1),
may be made arbitrarily close to 1 by choosing ¢ sufficiently large; and (c) for any fixed ¢>0 the power is
strictly less than 1.

Define C=C(F)={f(x0)*/|f"(x0)|}'°, and let Z denote a random variable whose distribution does not
depend on F and which we shall define in Section 4.

Theorem 2.1 (Dip test). Assume (2.2), and let t, =n’u for some u>0. Then,
Pr{D(F)>t,} — P(CZ>u) (2.4)
as n — oc. If in addition (2.3) holds then the limit

p(c) = liminf P, {D(F)>1,} (2.5)
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exists and satisfies 0 < p(c)<1 for each 0 <c<o0, and

(ll’nolc plc)=1. (2.6)
Since sup |fj —-F | =D(F) then (2.4) is equivalent to (1.2).

3. Power of excess mass and bandwidth tests

We begin by describing the excess mass test statistic. Define

Epm(2)=

the “empirical measure for m modes”, with the supremum being taken over all sequences {[j,...,[,} of
intervals, and ||/|| denoting the length of the interval /. Then the excess mass statistic for testing the null
hypothesis of unimodality against the alternative of two or more modes is

A= sup {Enn(d) — En(L)}.
>0
See Miiller and Sawitzki (1991). The null hypothesis of unimodality is rejected if 4, is too large.

Theorem 3.1. For every n,

A =2D(F). (3.1)

The version of (3.1) for the distribution function F also holds; i.e. 4,,(F)=2D(F). Of course, (3.1) is
an identity in the data {X;}, and so is valid regardless of the correctness of the null hypothesis. It implies
that, except for the obvious alteration (i.e. multiplying either C or Z by 2), Theorem 2.1 holds if D(I? ) is
replaced by 4,,. The validity of Theorem 3.1 was first noted by Miiller and Sawitzki (1991), but apparently
no proof has been published before.

The bandwidth test, introduced by Silverman (1981), is based on a standard kernel-type density estimator,

falhy=mh" Y K (" ‘hX"),
i=1

where K is taken to be the standard normal density (so that the number of modes of kernel estimates is
monotone in %), and k is the bandwidth. Define heit to be the infimum of values of A such that f ¢|h) is
unimodal, and reject Hy in favour of H; if Fresit exceeds a critical value, ¢, say.

Mammen et al. (1992) showed that under Hy, hcm is of size #, and in fact hcm/n—> C’Z’ in distribution,
where C'={f(x0)/f"(x0)*}'”® is a constant and the random variable Z’ has a continuous distribution which
does not depend on f. A sufficient regularity condition is the following:

the density f corresponding to F has a unique turning point at xp (say),
and has support equal to a compact interval .# =[a, b] on which it has 3.2)
two continuous derivatives, with f”'(x0) <0, f’(a+)>0 and f'(b—)<0.

Under (3.2) the function
BF(”) = nllnolc PF(;:crit >77u)
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is well-defined, satisfies 0 <fBr(u)<1 for all u>0, and Sr(u)T1 as u |0, Sr(u) ]| 0 as u T oo. This suggests
that the role of the critical point ¢, =#’u in Theorem 2.1 should here be played by nu.

Let F, be as in (2.1), with the functions y, ¥ and 4, having the definitions given in Section 2. Recall
that F, depends on a positive constant ¢, through 4,. Our next result is the analogue of Theorem 2.1 for
the bandwidth test, demonstrating that, like the dip and excess mass approaches, it is just able to distinguish
alternatives that are distant n~3° from the null hypothesis. Result (3.3) is due to Mammen et al. (1992).

Theorem 3.2 (Bandwidth test). Assume condition (3.2), and let t, =nu for some u>0. Then,
Pr(heri> 1) — P(C'Z' > u) (3.3)
as n — o<, the limit

p(c) = liminf P (heit > 1)
exists and satisfies 0< p(c)<1 for each 0<c<oo; and

lim p(e)=1. (3.4)

4. Outline of technical arguments

We begin with two lemmas, pertaining to the excess mass and bandwidth tests, respectively. Recall that
—1/5
n=n"".
Let a= f(xp), b=—1f"(x0) and W be a standard Wiener process, and given u € R define

w(yt, you| @ byc) =a W () = Wy} — b(3 — ») +u(y — y1) + & {P(3n/c) — P(ni/e)},

U(a,b,c)=  sup sup {w(yi, y2,ul|a,b,¢) + w(ys, ya,u|a,b,c)}

—00<uU<oC —o0 <y < < Yy <00

- sup w(y1, y2,u | a,b,c)} .
—o0 <y <y <o

For the most part we shall suppress a and b, writing U(a,b,c) as U(c). It may be proved that U(c) is finite

and positive with probability 1, and that its distribution has no atoms.

Lemma 4.1. Let F satisfy (2.2). Then, for each ¢=0 and u>0, Pr, (4, <nPu)— P{U(c)<u} as n — oo
If in addition (2.3) holds then P{U(c)<u}—0 as ¢ — oo.

Proof. Using the embedding of Komlés et al. (1975), and modifying the argument of Miiller and Sawitzki
(1991), we may show that A,,/n° — U(c) in distribution. This establishes the first part of the lemma. To
prove the second part, observe that with &(y)= ¥(y) — by,

U(c) = sup {w(cyi,cx2,0|a,b,c) +w(cys,cys,0|a,b,c)}

—oo <y < < Pq <00

- sup w(cyi,cya,0]a,b,c)

—00 <Y <F2 <X
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=c sup {0(y2) — O(y1) + O(ys) — O(y3)}

—oo <Y < < Py <00

- s {@(m)—@(y.)}] +0p(c*)

— 00

in probability as ¢ — oo, by (2.3). This completes the proof of the lemma. [

Put by =—f"(x0)>0, let W be a standard Wiener process, and define

y—rz

V(r,y)=V(r,y|a,bi,c) = —biy+c / W(

+a %3 /K"(y+z) W(rz)dz.

)K(z)dz

Let Z(c) denote the infimum of all values of » such that V(r, y), as a function of y, changes sign exactly once
on the real line. (We suppress a, b; and d from the notation for Z(c), since only ¢ will be varied.) Note that,
by differentiation with respect to y, with probability one V(r, y) (as a function of y) does not have any turning
points on any given interval [—yp, yo], for all sufficiently large »; that (since V(y,7)— — by as r — 00) it
must have at least one zero-crossing point there, and so have exactly one, for all sufficiently large r; and that
(since V(y,r)— — byy uniformly in y as r — o0) it has no zero-crossing points outside [— yo, yo], for large
r. Hence, with probability one, for all sufficiently large » the function V(r,-) has exactly one zero-crossing
point. More simply, with probability 1 it has at least two zero-crossing points for all sufficiently small r.
Therefore, Z(c) is well-defined.

Lemma 4.2. Let F satisfy (32). Then, for each u>0, Pr (hoin<nu)— P{Z(c)<u} as n— oo, and
P{Z(c)<u}—0 as ¢ = .

Proof. Arguing as in Mammen et al. (1992) we may show that, sampling from F,, rather than F, n~'f I(xo +
ny |nr) is closely approximated by ¥ (r, y) for an appropriate choice of W, and thence that };cm/ﬂ converges
in distribution to Z(c). (Mammen et al. (1992) treated the case ¢ =0.) This proves the first part of the lemma.
To establish the second part, note that the term involving ¢ in the definition of V(r, y) is

. / " (!15) K(z)dz=c{¥'(y/c) + o(1)}
(&

as ¢ — oo. The function /' changes sign at least four times on its support, and so for each fixed ro >0, and
all sufficiently large c, V(r,y) must change sign at least four times in the interval (—c~'s,c"'v) for all
0 <r<r. Therefore, Z(c) — oo as ¢ — oo, completing the proof of Lemma 4.2. O

Proof of Theorem 2.1 (The case of the excess mass test). Taking ¢ =0 we see from the first part of Lemma
4.1 that (2.4), with 4,, replacing D(I? ) and U(0)=U(a,b,0) replacing CZ, holds. Note that U(a,b,0) has
the same distribution as (a*/b)"> U(1,1,0); and that if C={f(x0)*/|f"(xo)|}"* then, in the case of the
excess mass test, the variable Z in the theorem has the distribution of 6'/° U(1,1,0). (In the context of the
dip test, for which the theorem was originally stated; and in the case of (1.2); it has the distribution of half
this variable.) Lemma 4.1 implies (2.5) with p(c)=P{U(c)>c}, and also implies (2.6) if (2.3) holds. O

Proof of Theorem 3.2. Taking ¢=0 and using the first part of Lemma 4.2 we see that (3.3) holds with
C'Z’ replaced by Z(0). The latter random variable is a function only of a and b,. Making a scale transform
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Fig. 1. Typical plots of F j:D(F ) and U. Panels (a) and (b) correspond to different samples of size n =20. The horizontal lines represent
F+ D(F ), the steadily increasing short-dashed line depicts U, the vertical dashed lines define the interval Jy, and the vertical dotted
lines indicate the interval J>. Note that xo >X(y/) in panel (a), and xo <X;) in panel (b).

of the the process W we may show that the bivariate stochastic process U,(r, y) = ¥ {(a/b?)""r, y|a,b1,0}
has the same distribution as U,(r, y)=b; V(r, ¥|1,1,0), and hence that Z(0) may be written as C’Z’, where
C' =(a/b?)" and the distribution of Z’ does not depend on unknowns. Result (3.4) follows from the second
part of Lemma 4.2. O

Proof of Theorem 3.1. Let H;(x) = I?(x)—}uc, with the analogous definition when x is replaced by an interval.
Note that

AnZ - _Hlo(b, C) :Hio [C’ d]

for some A9>0. Here b <c<d are data points, b,d are local maxima of H;,, and H, (b) =H;,(d). First we
prove that A,, <2 D(F). If to the contrary A4,;>2 D(F), then

H,,(c—)+ D(F)<H;,(d) — D(F)=H,,(b) - D(F).

Hence, if ¢4 denotes the set of distribution functions that are convex to the left of some point, and concave
to the right of that point, then no element of % has a graph that is contained within the band {(x, y) :
H(x)— D(F)<y <Hj,(x) + D(F )}. This contradicts the identity
D(F)=inf sup |F(x)=G)|=inf sup |H,() - gl
GE# _oo<x<o0 9€Y9 _o<x<o0
Therefore, 4, <2 D(F ).

To obtain the reverse inequality, let Jy = [X).X(v)] be the interval over which U has greatest constant
slope. From Theorem 6 of Hamgan and Hamgan (1985), |U (x0) — F(xo)l = D(F) for some xo &J; 3 where U
is the greatest convex minorant of F+ D(F } in (—00,Xzy) and is the least concave majorant of F - D(F )
in (X(U), +00). Let J; = [X4 ),X(B)] be the interval containing xo, where X ), Xz) are two successive vertices
of U. Denote the slopes of U in Jo and J; by A* and A1, respectively; then A* >,lT

First consider the case xo >Xv). Let J> = [X(¢), X(s)], where X(c) is given by DF)=U Xiey—)— F(X(c)—)
It follows that x; may be taken as any point strictly less than X{¢) and sufficiently close to X(c). Denote
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the vertices of U in [Xwy, +0) by Xu)y=u1 < - <u1 =Xy <41 =X8) < <Um <Umi1= + 00, where
u1,...,un are data points, and let 4; be the slope of U in [w;,uis1), for i=1,...,m. Note that A; > - >/1 For
each z—l ,m, the graph of U restricted to [u;, ;1] is just the line segment joining the points (u,,F (u;)—
D(F)) and (uz+1,F(ul+|) D(F)):

U(x)=F(u;) — D(F) + A(x — u;),x € [, uia )y (4.1)
where A = {F(uis1) — F(u)} /(w1 — u). Since |F(x) — U(x)| <D(F) then by (4.1),
H;, ()= H;,(ui1), (4.2)
2 D(FY<H; (x) — H,,(u)<0, x€[us,uin]. (43)

For any y>X(4)=uy, let u;<y be the vertex of U that is closest to y. Using (4.2), (4.3) and the fact
that At =4, > --- >y, we may show that

Hit [ Xy, y] = {Hy () — Hyr(u)} + {Hjr(u) — Hjs (u1)}

+{Hy1(ur) — H;: (X)—)}

J—1
= {H,,(y) — Hy,(us) + (g — Ay —u)} + DA = ) (wr — wi1)
1=l
+H;1 [ X1y, X))
< Hji[Xiw), X)) (4.4)

Furthermore,

His X X)) = {Hy Kay) = Hir (X))} + {Hp Kn) = Hn Xy )}
I—1
= Z (At = A (up — war) + {Hi (Xw)) = His (X)) =)}
I=1
> H;+(Xwy) — Hi: (Xy—)
= Hax(Xu)) — HxXy—) + A = D) Ky - Xwy)
= 2D(F) + (A* - A Xy — X))

> 2D(F), (4.5)

where the last equality follows from the fact that U restricted to Jp is the line segment joining (X(L),f X))+
D(F)) to (Xw),F(Xw)) — D(F))-
Next we show that for any y>x2X(),

Hilx, y)<2D(F). (4.6)
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Let ug, uy (where ux <x<u; <y) be the vertices of U that are closest to x and y. If ux Sx<y<ug+1, then
from (4.3) and since Ax <A,

Hylo vl = Hin () — Hys =) = Hy (9) = Hi(x=) + (G = 2D (0 = x)<2D(F).
Moreover, if ux <x<ugi1 <ur <y then (4.1)-(4.3) imply
Hulx,y] = {Hu(y) — Hu(uo)} + {Hu(ue) — Hs (uk+1)}

+{H;+(ug+1) — H1(x—)}

= {H;,(y)— Hy(u)+ (A — AN (y —u)}

L-1}
+ Y G =) (- i)

I=K+1

+{H; (ug+1) — Hi(x—) + (A — Ay (ugr — 1)}
< 2D(F).
It follows from (4.4)—(4.6) that
Cpi (AN C (=00, X)),

where C, (A7) denotes the interval maximizing F(1,) — At||I1|| over all intervals 1. Using (a) formula (3)
of Miiller and Sawitzki (1991), (b) our formulae (4.1) and (4.2), and (c) the results J> C Cp (A1) and
DFY=UXic)—-) — F(Xc)—), we may prove that

Ay = sup{En(d) — En(A)} 2 En(Al) — En(A7)

Ai>0

> Hyi(J,)=2D(F).

When xo <Xz, we have D(F)=F(X(c))— U(Xc)), and so we may take o =Xc). Let J» = [X4) X(0))- As
in the case xo>X(y) we may prove that Cy(A") C Xy, +00) and that H;t(J2) =2D(ﬁ ) holds. The desired
inequality follows from these properties.
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