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Abstract: We propose a local linear estimator of a smooth distribution function.

This estimator applies local linear techniques to observations from a regression

model in which the value of the empirical distribution function equals the value of

true distribution plus an error term. We show that, for most commonly used ker-

nel functions, our local linear estimator has a smaller asymptotic mean integrated

squared error than the conventional kernel distribution estimator. Importantly,

since this MISE reduction occurs through a constant factor of a second order term,

any bandwidth selection procedures for kernel distribution estimator can be easily

adapted for our estimator. For the estimation of a smooth quantile function, we

establish a regression model of the empirical quantile function and obtain a local

quadratic estimator. It has better asymptotic performance than the kernel quantile

estimator in both interior and boundary cases.
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1. Introduction

Suppose that X1, . . . ,Xn are independent and identically distributed ran-
dom variables from a common univariate distribution function F . One obvious
estimator of the distribution function F is the empirical distribution function
Fn(x) = 1

n

∑n
i=1 I(Xi ≤ x), where I(A) denotes the indicator function of set

A. Though Fn has good properties, one may prefer a smooth estimator of F .
An example is in the estimation of the receiver operating characteristic (ROC)
curves for continuous diagnostic tests (see Zou, Hall and Shapiro (1997)). Ker-
nel distribution estimators F̃ (x) = 1

n

∑n
i=1 K(x−Xi

h ) are smooth and have been
extensively studied in the literature. A potential problem is the boundary effect:
one may have substantial bias near the boundaries of the data range.

We introduce smooth distribution estimators that avoid boundary effects.
They are derived by writing

Fn(Xi) = F (Xi) + εi, i = 1, . . . , n, (1.1)
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where the ε′is are error terms. Having the ‘regression model’ (1.1), one can employ
nonparametric regression techniques, for example Nadaraya-Watson (1964b), and
local polynomial (Fan and Gijbels (1996)) methods, to the data (X1, Fn(X1)), . . . ,
(Xn, Fn(Xn)) to construct smooth estimators of F . In this paper we concentrate
on local linear smoothing.

The mean integrated squared errors of F̃ (x) and our local linear distribution
estimator both have the same leading term as that of the empirical distribution.
However, for many commonly used kernel functions, the local linear distribution
estimator has a smaller second order term, and hence asymptotic mean integrated
squared error, than F̃ (x). The reduction in the second order term, which arises
as effects of smoothing, is approximately 60% if the Epanechnikov, Biweight, or
triangular kernels are employed. Furthermore, the asymptotic mean integrated
squared error expressions suggest that any bandwidth selection procedure tai-
lored for F̃ can be used, with a simple constant adjustment, for implementation
of our estimator.

Quantile estimation plays an important role in a wide range of statistical
applications: the Q-Q plot, Value-at-Risk in financial risk management, etc. A
natural estimator for the quantile functionQ(p) is the empirical quantile function.
Several smooth quantile estimators have appeared in the literature. Nadaraya
(1964a) discussed a kernel estimator defined as the inverse of the kernel distribu-
tion estimator. Parzen (1979) proposed kernel quantile estimators, which were
subsequently investigated by Yang (1985), Falk (1985), Zelterman (1990), and
Sheather and Marron (1990). A unified kernel quantile estimator was given by
Cheng and Parzen (1997). We consider local quadratic regression estimation for
the quantile function through the relation

Qn(s) = Q(s) + error term, (1.2)

where Qn is the empirical quantile function. We show that, under stronger
smoothness assumptions, the local quadratic estimator of Q(p) is better than the
kernel quantile estimator Q̂k

n(p), defined in (3.1), both when p is a fixed number
in (0, 1) and when p tends to 0 or 1.

While F and Q are necessarily nondecreasing, it is possible that our esti-
mators of these functions are decreasing at some places. However, since the
response factors Fn(x) in (1.1) and Qn(s) in (1.2) are nondecreasing, the locally
fitted curves are not far from nondecreasing. When a nondecreasing estimated
curve is desired, it can be achieved by applying isotonic regression techniques,
see for example Mammen, Marron, Turlach and Wand (2001), to our estimator.
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Smoothing regression techniques have been applied to estimation of distri-
bution and density functions. Cheng, Fan and Marron (1997) obtained local
linear density estimators by constructing regression data based on binning the
original data. Wei and Chu (1994) regressed responses, obtain by differencing Fn

on design points i/n, to estimate a density function. Lejeune and Sarda (1992)
minimized a locally kernel-weighted L2 norm between Fn and a polynomial to
obtain a distribution estimator, and then used its derivative as an estimator of
the density. This distribution estimator is essentially the same as the kernel
quantile estimator in the interior. The regression functions in (1.1) and (1.2) are
exactly the respective functions to be estimated. Thus our estimation methods
are advantageous as they involve only denoising and not other operations, such
as differentiation.

This paper is organized as follows. In Section 2, the local linear distribution
estimator is derived, asymptotic results and a few remarks are given. Section 3
discusses local quadratic quantile estimation. Section 4 reports simulation studies
on the finite sample performance of the distribution and quantile estimators.
Proofs of the main results are given in the Appendix.

2. Distribution Estimation

The kernel distribution estimation was introduced by Nadaraya (1964a) and
is defined by

F̃ (x) =
1
n

n∑
i=1

K
(x−Xi

h

)
, (2.1)

where K is a given distribution function and h = h(n) > 0 (h → 0 as n → ∞)
is the bandwidth. This estimator is the distribution function corresponding to
the kernel density estimator based on the kernel k(t) = K ′(t) and bandwidth
h. Note also that this estimator can be obtained by smoothing the empirical
process Fn(x), using kernel k, in the same way we smooth the quantile process,
see Section 3. Theoretical properties of F̃ (x) as an estimator of the unknown
true distribution function F (x) have been investigated by several authors, see for
example Yamato (1973), Reiss (1981) and Falk (1983). For the Edgeworth expan-
sions, we refer to Garcia-Soidan, Gonzalez-Manteiga and Prada-Sanchez (1997).
Altman and Léger (1995) and Bowman, Hall and Prvan (1998) investigated the
optimal choice of bandwidth.

The optimal choice of the smoothing parameter h is obtained by minimizing
the mean integrated squared error defined by

MISE(h, F̃ ) = E

∫
(F̃ (x)− F (x))2W (x) dF (x) (2.2)
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in Altman and Léger (1995), and

MISE†(h, F̃ ) = E

∫
(F̃ (x)− F (x))2dx (2.3)

in Bowman, Hall and Prvan (1998). Here, W is a bounded, nonnegative weight
function supported on a compact set. As pointed out by Bowman, Hall and
Prvan (1998), this kind of optimal choice of h is asymptotic to one that produces
second order optimality. More specifically, the choice of bandwidth does not
affect the first order expansion of MISE†(h, F̃ ) or MISE(h, F̃ ), i.e., the n−1

term, only if
√
nh2 → 0.

It is known that, under some regularity conditions, the mean integrated
squared error for the kernel distribution estimation F̃ has the expansion

MISE(h, F̃ ) = v1n
−1 − 2c2v2n

−1h+
c21v3

4
h4 + o

(
nh−1

)
+ o

(
h4

)
, (2.4)

where v1 =
∫

F (x) [ 1 − F (x)]W (x)f(x) dx, v2 =
∫
f2(x)W (x) dx, v3 =∫

(f ′(x))2W (x)f(x) dx, c1 =
∫
x2k(x) dx, c2 =

∫
xk(x)K(x) dx and f(x) =

F ′(x). See, for example, Falk (1983). Obviously, kernel smoothing provides
a second order correction (i.e., deficiency): mean integrated squared error of
Fn(x) has the same leading term v1n

−1 which is independent of the smoothing
parameter h. The asymptotically optimal bandwidth that minimizes the sec-
ond order correction induced by smoothing, −2c2v2hn

−1 + c21v3h
4/4, is h∗(F̃ ) =

[2c2v2/(c21v3)]
1/3n−1/3. The optimal bandwidth h∗(F̃ ) gives rise toMISE(h∗(F̃ ),

F̃ ) = v1n
−1 − 3

4(2c2v2)4/3(c21v3)−1/3n−4/3 + o(n−4/3). The second term in this
asymptotic expression is negative. Therefore, kernel smoothing improves empir-
ical distribution estimator by a second order effect.

Now we derive our estimator based on (1.1) and local linear smoothing tech-
niques. Let k, called a kernel function, be a probability density and h > 0 be a
bandwidth. For simplicity of notation, we take k(t) = K ′(t) with K(t) defined in
(2.1). Let (â, b̂) be the value of (a, b) that minimizes the kernel weighted squared
errors

n∑
j=1

{Fn(Xj)− a− b(x−Xj)}2k
(x−Xj

h

)
.

Then the local linear distribution estimator is defined as â and has the follow-

ing explicit expression F̂ (x) =
∑n

j=1
wjFn(Xj)∑n

j=1
wj

, where wj = k(x−Xj

h )[sn,2 − (x −
Xj)sn,1], j = 1, . . . , n, with sn,l =

∑n
j=1 k(

x−Xj

h )(x − Xj)l for l = 1, 2. See Fan
(1992) for the derivation of F̂ (x).
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Throughout this paper we assume that the kernel function k is symmetric
about zero and has support [−1, 1]. The mean integrated squared error for our
local linear estimator, under some regularity conditions similar to those in Altman
and Léger (1995), is

MISE(h, F̂ ) = v1n
−1 − (4c2 − c3)v2n

−1h+
c21v3

4
h4 + o

(
nh−1

)
+ o

(
h4

)
, (2.5)

for C0n
−1+ε0 ≤ h ≤ C1n

−ε1, where ε0 ∈ (0, 2/3], ε1 ∈ (0, 1/3], C0 and C1

are positive constants, and c3 =
∫
x2k2(x) dx. Proof of (2.5) is given in the

Appendix. The constant factor 4c2 − c3 (≥ 2c2 − c3) in (2.5) is positive for most
commonly used kernels, see Table 1. So the bandwidth which minimizes −(4c2 −
c3)v2n

−1h +
c21 v3

4 h4 is h∗(F̂ ) =
[
(4c2 − c3)v2/(c21v3)

]1/3
n−1/3, and it results in

MISE(h∗(F̂ ), F̂ ) = v1n
−1 − 3

4 [(4c2 − c3)v2]
4/3(c21v3)−1/3n−4/3 + o(n−4/3).

Notice that MISE(h∗(F̂ ), F̂ ) ≤ MISE(h∗(F̃ ), F̃ ) is asymptotically equiv-
alent to 2c2 − c3 ≥ 0. In addition, comparing the asymptotic expressions of
MISE(h∗(F̂ ), F̂ ) and MISE(h∗(F̃ ), F̃ ), we see that {(2c2 − c3)/(2c2)}4/3 is the
relative improvement of F̂ over F̃ in terms of their second order performances.
Values of (2c2 − c3) and {(2c2 − c3)/(2c2)}4/3 are tabulated in Table 1 for some
kernels that are commonly used in practice. In particular, the improvement is
58% for the Epanechnikov kernel, 62% for the Biweight kernel, and 64% for the
triangular kernel. Such an improvement is particularly beneficial when the sam-
ple size is small or moderate, and is clearly seen in a simulation study given in
Section 4.

Table 1. Comparison of the second order terms of MISE
(
h∗(F̃ ), F̃

)
and

MISE
(
h(F̂ ), F̂

)
for some commonly used kernels.

Kernel 2c2 − c3
{
(2c2 − c3)/(2c2)

}4/3

Epanechnikov k(x) =
3
4
(1− x2)I(|x| ≤ 1) 6

35
(23 )

4/3 ≈ 0.5824

Biweight k(x) =
16
15
(1− x2)2I(|x| ≤ 1) 5

33
(
7
10
)4/3 ≈ 0.6215

Triangular k(x) = (1− |x|)I(|x| ≤ 1) 1
6

(
5
7
)4/3 ≈ 0.6385

Uniform k(x) =
1
2
I(|x| ≤ 1) 1

6
(
1
2
)4/3 ≈ 0.3969

Observe that the asymptotic expressions of MISE(h, F̂ ) and MISE(h, F̃ )
differ only in the n−1h term, and that the optimal bandwidths h∗(F̂ ) and h∗(F̃ )
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differ by a constant multiplication factor. These facts suggest that any bandwidth
rule for F̃ multiplied by a constant can be readily used for F̂ . Hence there is
no need to invent new bandwidth selector in order to implement our local linear
distribution estimator.

Remark 1. One can derive a Nadaraya-Watson type estimator of the distribu-
tion function based on the model (1.1). It can be shown that this estimator (with
an optimal bandwidth) has a greater MISE than F̃ for large n and any kernel
function.

Remark 2. The assumption that the kernel function k has support [−1, 1] may
be dropped through a more careful analysis.

3. Quantile Estimation

In this section we discuss estimation of quantile functions. The quantile
function corresponding to the distribution function F is defined as Q(p) = inf{x :
F (x) ≥ p} for p ∈ (0, 1]. The empirical quantile estimator is

Qn(p) =

{
Xn,s, if (s− 1)/n < p ≤ s/n, s = 1, . . . , n,
Xn,1, if p = 0,

where Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . ,Xn. The kernel
quantile estimator, proposed by Parzen (1979), is given by

Q̂k
n(p) =

∫ 1

0
h−1k

(s− p

h

)
Qn(s)ds, (3.1)

where k is a probability density function and h > 0 is the bandwidth. As we
see later, this type of kernel quantile estimators has a slower rate of convergence
when p is a boundary point than when p is a fixed interior point.

To estimate the quantile Q(p) we utilize (1.2), which establishes a regression
relation between the empirical quantile function and the true quantile function,
and apply a local quadratic technique as follows. Find the values of a, b and c

that minimize the weighted integral of squared error of a quadratic approximation∫ 1

0

[
Qn(s)− a− b(p− s)− c(p − s)2

]2
k
(p− s

h

)
ds,

where k is a density function and h > 0 is the bandwidth. Then the local
quadratic quantile estimator is defined to be the value of a in the above solution.
It has the form

Q̂(p) =
(a2a4 − a2

3)A0(p)− (a1a4 − a2a3)A1(p) + (a1a3 − a2
2)A2(p)

a0(a2a4 − a2
3)− a1(a1a4 − a2a3) + a2(a1a3 − a2

2)
,
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where ai=
∫ 1
0 (p−s)ik(p−s

h )ds, i=0, 1, . . . , 6, and Ai(p)=
∫ 1
0 (p−s)ik(p−s

h )Qn(s)ds,
i = 0, 1, 2. Note that the a′is are functions of p and h. For simplicity of notation
we suppress this dependence. Throughout this section we assume that k is a
symmetric density about zero and has support [−1, 1]. In the case that p is a
fixed interior point in (0, 1), Q̂k

n(p) is the same as a local linear quantile estimator
(see Section 3.1), which is defined as the solution in a that minimizes

∫ 1
0 [Qn(s)−

a−b(p−s)]2k(p−s
h )ds. This is the reason why we consider local quadratic estimator

instead of local linear estimator. Another local quadratic estimator is obtained by
minimizing

∑n
i=1 [Qn(Xi)− a− b(p−Xi)− c(p−Xi)2]

2k(p−Xi
h ) . This estimator

is asymptotically equivalent to Q̂k
n(p). Asymptotic properties of the quantile

estimators Q̂k
n(p) and Q̂(p) are considered in the following two subsections.

3.1. Interior quantiles

In this subsection p is a fixed interior point in (0, 1). Under this circumstance,
as n is large enough and h is small enough, a0 = h, a1 = a3 = a5 = 0, a2 =
h3

∫ 1
−1 s

2k(s) ds, a4 = h5
∫ 1
−1 s4k(s) ds, a6 = h7

∫ 1
−1 s6k(s) ds. Hence the local

quadratic quantile estimator becomes Q̂(p) = a4A0(p)−a2A2(p)
a0a4−a2

2
. Also, if we define

a kernel function k2 by k2(u) =
h(a4−a2u2h2)

a0a4−a2
2

k(u) then we can write Q̂(p) =∫ 1
0

1
hk2(p−s

h )Qn(s)ds, which is a kernel quantile estimator, see (3.1), with the
kernel k2.

If the second derivative of Q is continuous in a neighborhood of p, then the
asymptotic mean squared error of Q̂k

n(p) is

MSE(Q̂k
n(p)) = n−1p(1− p)[Q′(p)]2 − 2n−1h[Q′(p)]2

∫ 1

−1
sk(s)K(s)ds

+
1
4
h4[Q′′(p)]2

[∫ 1

−1
s2k(s) ds

]2

+ o(n−1h) + o(h4), (3.2)

whereK(u) =
∫ u
−1 k(s) ds (see Sheather and Marron (1990)). If the fourth deriva-

tive of Q is continuous in a neighborhood of p and EX2
1 < ∞, then the mean

squared error of our local quadratic estimator Q̂(p) has the asymptotic expression

MSE(Q̂(p)) = n−1p(1− p)[Q′(p)]2 − 2n−1h[Q′(p)]2σ2
1

+
1
242

h8[Q(4)(p)]2
[∫ 1

−1
s4k2(s)ds

]2

+o(n−1h) +O(n−3/2 log n) + o(h8), (3.3)

where σ2
1 =

∫ 1
−1 sk2(s)K2(s) ds with K2(s) =

∫ s
−1 k2(t) dt. Proof of (3.3) is given

in the Appendix. We remark tha.t the condition EX2
1 < ∞ may be removed by

a more careful analysis, similar to that in Falk (1984), for example.
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From (3.2) and (3.3) we have the following conclusions. First, Q̂(p) and
Q̂k

n(p) have the same leading term in their mean squared errors and the leading
term is independent of the smoothing. Second, the minimal asymptotic mean
squared error of Q̂k

n(p), with respect to the smoothing parameter h, is n
−1p(1−

p)[Q′(p)]2−C1n
−4/3 and that for Q̂(p) is n−1p(1−p)[Q′(p)]2−C2n

−8/7. Here, C1

and C2 are some positive constants. Therefore, Q̂(p) has a better mean squared
error performance than Q̂k

n(p).

3.2. Boundary quantiles

Throughout this subsection we assume that the distribution function F has a
finite left end point, i.e., Q(0−) ∈ (−∞,∞). In order to investigate the boundary
effect of the kernel quantile estimator and the local quadratic estimator, we
assume p = lh where l ∈ (0, 1). We can investigate the right boundary case
similarly by taking p = 1− lh where l ∈ (0, 1).

In the boundary case, Q̂k
n(p)−Q(p)/

∫ l
−1 k(s)ds

p→ 0 and Q̂k
n(p) is no longer

a consistent estimator of Q(p) unless Q(p) = 0. Consider the modified kernel
estimator

Q̄k
n(p) =

∫ 1
0 k(s−p

h )Qn(s) ds∫ 1
0 k(s−p

h ) ds
.

Then, if Q′ is continuous in a neighborhood of zero and n1/2h/ log n → ∞ as
n → ∞, we may show, in a similar way as Falk (1984), that

h−1{Q̄k
n(p)−Q(p)} p→

∫ l

−1
sk(s) ds/

∫ l

−1
k(s) ds. (3.4)

Note that the optimal choice of h = O(n−1/3) for kernel quantile estimation,
in the sense of minimizing the second order error term in (3.2), satisfies the
condition n1/2h/ log n → ∞ (see Sheather and Marron (1990)). Hence we may
conclude from (3.4) that the kernel quantile estimator does not perform as well
at near boundary points as at interior points.

Next we study the boundary effect of the local quadratic estimator. In this
case, for p = lh, l ∈ (0, 1), with n tending to infinity and h tending to zero,
we have ai = hi+1

∫ l
−1 sik(s) ds, i = 0, 1, 2, 3, 4, 5, and k2(u) = h

d [(a2a4 − a2
3) −

(a1a4 − a2a3)hu + (a1a3 − a2
2)h

2u2]k(u), where d = a0(a2a4 − a2
3) − a1(a1a4 −

a2a3)+a2(a1a3−a2
2). If the third derivative of Q is continuous in a neighborhood

of zero and EX2
1 < ∞, then the mean squared error of Q̂(p) has the asymptotic

expression

MSE(Q̂(p))=n−1h[Q′(p)]2l−2n−1h[Q′(p)]2σ2
2+

1
36

h6[Q(3)(p)]2
[∫ l

−1
s3k2(s)ds

]2

+o(n−1h) +O(n−3/2 log n) + o(h6), (3.5)



DISTRIBUTION AND QUANTILE FUNCTIONS 1051

where σ2
2 =

∫ l
−1 sk2(s)K2(s)ds with K2(s) =

∫ s
−1 k2(t)dt. Proof of (3.5) is similar

to proof of (3.3). We remark again that the condition EX2
1 < ∞ may be removed

by a more careful analysis similar to that in Falk (1984). Note that (3.4) implies
MSE(Q̄k

n(p)) = O(n−2/3), which is much larger than MSE(Q̂(p)) = O(n−1) in
this boundary case.

4. Simulation Studies

4.1. Distribution estimation

AMonte Carlo study was conducted to compare the mean integrated squared
error performances of local linear and kernel distribution estimators. A discrete
approximation to MISE(h, F̃) is ASE(h, F̃)=n−1 ∑n

i=1 [F̃ (Xi)−F (Xi)]
2W (Xi).

The Epanechnikov kernel k(x) = 3
4(1 − x2)I(|x| ≤ 1) was used to construct

the two estimators. To compute the average squared errors of F̃ (x) and F̂ (x),
i.e., ASE(h, F̃ ) and ASE(h, F̂ ), we generated 500 samples from Weibull(θ, τ)
distributions Fθ,τ (x) = 1 − exp(−θxτ ) (x > 0), where θ, τ > 0. The weight
function W was chosen as W (x) ≡ 1. The sample size was n = 10, 30, 50
or 70. Noting that h∗(F̂ ) differs from h∗(F̃ ) only by a constant factor, the
plug-in approach proposed by Altman and Léger (1995) was employed to choose
the bandwidths for both estimators. In this simulation study we replaced F̂ (x)
by Fn(x) whenever the value of the denominator

∑n
j=1 wj defined in F̂ (x) is

zero. Moreover F̂ (x) can be easily modified to be a distribution, for example, by
defining F̂ (x) = 0 if x ≤ inf{y : F̂ (y) > 0}, F̂ (x) = 1 if x ≥ sup{y : F̂ (y) < 1}
and F̂ (x) = F̂ (x) otherwise.

The ratio of the empirical mean of ASE(h∗(F̃ ), F̃ ) to that of ASE(h∗(F̂ ), F̂ )
is reported in Table 2. In Table 3 we report the average of the ratios of
ASE(h∗(F̃ ), F̃ ) to ASE(h∗(F̂ ), F̂ ) with the corresponding standard error in
parentheses. The figures of Tables 2 and 3 show that our local linear estimator
performs better than the kernel distribution estimator in all cases considered.
In particular, Table 3 demonstrates clear gains of F̂ ; the average ratios are all
significantly greater than 1.

In Figure 1 we plot the empirical distribution Fn(x), kernel distribution
estimate F̃ (x), and local linear estimate F̂ (x) based on one random sample from
the Weibull(6,2) or Weibull(3,2) distribution. Observe that F̂ (x) is better than
Fn(x) and F̃ (x) as F (x) is away from zero and one. In another simulation, which
is not reported here, of 500 samples of size 50 from the same two distributions,
we also observed that F̂ (x) has the smallest mean squared error among the three
estimators for x that has F (x) away from zero and one.
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Table 2. Ratio of the empirical mean of ASE(h∗(F̃ ), F̃ ) to the empirical
mean of ASE(h∗(F̂ ), F̂ ).

Distribution n = 10 n = 30 n = 50 n = 70

Weibull(6,2) 1.371 1.267 1.199 1.156

Weibull(3,2) 1.032 1.092 1.090 1.088

Weibull(6,1) 1.659 1.812 1.933 1.838

Weibull(3,1) 1.133 1.390 1.434 1.392

Table 3. Average of the ratios of ASE(h∗(F̃ ), F̃ ) to ASE(h∗(F̂ ), F̂ ) with
the corresponding standarderror in parentheses.

Distribution n = 10 n = 30 n = 50 n = 70

Weibull(6,2) 2.438 (0.097) 1.635 (0.037) 1.382 (0.024) 1.213 (0.015)

Weibull(3,2) 1.690 (0.064) 1.300 (0.029) 1.185 (0.020) 1.110 (0.013)

Weibull(6,1) 2.100 (0.051) 2.240 (0.058) 2.605 (0.064) 2.792 (0.088)

Weibull(3,1) 1.448 (0.036) 1.877 (0.047) 2.195(0.079) 2.172(0.080)

4.2. Quantile estimation

Next we report results of a Monte Carlo study which was conducted to
compare the performance of the local quadratic estimator Q̂(p) with the modified
kernel quantile estimator Q̄k

n(p) for a range of values of p. We generated 300
pseudo-random samples of size 100 from the exponential distribution with mean
1 and the Weibull(3,2) distribution. The Epanechnikov kernel k(x) = 3

4(1 −
x2)I(|x| ≤ 1) was used. The MSE of the two estimators were calculated for
p = 0.05, 0.10 and with values of the bandwidth ranging from 0.002 to 0.4.

Figures 2 and 3 show that local quadratic estimator Q̂(p) with its optimal
bandwidth behaves better than the modified kernel estimator Q̄k

n(p) with its own
optimal bandwidth for smaller quantiles. Notice that the optimal bandwidths
that achieved minimal mean squared errors of Q̄k

n(p) are much smaller than those
for Q̂(p). Thus, these Q̄k

n(p) estimates would have very similar appearance to the
empirical quantile estimate which is not smooth. By contrast, our estimator Q̂(p)
does not have this problem. More importantly, Q̂(p) is much less sensitive to the
bandwidth choice than Q̄k

n(p). This is important if we use global bandwidth, for
example, choosing h∗ = argmin

∫ 1−α
α |Q̂(s)−Q(s)|2 ds, where α ∈ (0, 1/2).
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Figure 1. Distribution Function Estimation Based on One Sample. Solid line
represents the true distribution, Weibull (6,2) (top panel) or Weibull (3,2)
(bottom panel). Dashed line, dot-and-dash line, and dotted line represent
the kernel distribution estimate F̃ (x), the local linear estimate F̂ (x) and the
empirical estimate Fn(x), respectively, based on one sample of size 50.
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(b) p=0.10

Figure 2. Quantile Estimation for Exponential (1) distribution. Solid line
and broken line plot the mean squared errors, against bandwidth h, for the
local quadratic estimator Q̂(p) and the modified kernel quantile estimator
Q̄k

n(p), respectively. Sample size n is 100.
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Figure 3. Quantile Estimation for Weibull (3,2) distribution. Solid line and
broken line represent the mean squared errors for the local linear estimator
Q̂(p) and the modified kernel quantile estimator Q̄k

n(p), respectively. Sample
size n is 100.
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Appendix

Proof of (2.5). In order to simplify the proof, we work on

F̂ (x)− F (x) =
∑n

j=1 wjFn(Xj)∑n
j=1 wj + n−q

− F (x) =
n−2h−4 ∑n

j=1 wj [Fn(Xj)− F (x)]
n−2h−4

∑n
j=1 wj + n−q

,

where q > 0 is some large constant. This trick was used by Fan (1993) for analysis
of the local linear regression estimator. First we have

(nh3)−1sn,1
a.s.−→−f ′(x)c1, (nh3)−1sn,2

a.s.−→f(x)c1, (n2h4)−1
n∑

i=1

wi
a.s.−→f2(x)c1. (4.1)

Let Uj = F (Xj), j = 1, . . . , n. Put Gn(u) = 1
n

∑n
i=1 I(Ui ≤ u) and αn(u) =√

n(Gn(u) − u). From Csörgő, Csörgő, Horváth and Mason (1986), there exists
a sequence of Brownian bridges Bn(u), 0 ≤ u ≤ 1, n = 1, . . ., such that

lim sup
n→∞

sup
0≤u≤1

n1/4|αn(u)−Bn(u)|/((log n)1/2(log log n)1/4) = 2−1/4 a.s. (4.2)

Because of the new version of F̂ (x), we can treat equations (4.1) and (4.2) as
true in the whole space instead of almost surely. Note that

(n2h4)−1
n∑

j=1

wj [Fn(Xj)− F (x)]

= n−2h−4
n∑

j=1

k

(
x−Xj

h

)
[sn,2 − (x−Xj)sn,1] [Fn(Xj)− F (x)]

= (nh)−1
n∑

j=1

k
(x−Xj

h

) [
n−1h−3sn,2 − f(x)c1

]
[Fn(Xj)− F (x)]

−(nh)−1
n∑

j=1

(x−Xj)k
(x−Xj

h

) [
n−1h−3sn,1 + f ′(x)c1

]
[Fn(Xj)− F (x)]

+(nh)−1c1

n∑
j=1

k
(x−Xj

h

)
[f(x) + (x−Xj)f ′(x)][Fn(Xj)− F (x)]

:= I1 + I2 + I3.
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Write

I3 = h−1c1

∫ ∞

−∞
[Fn(s)− F (x)]k

(x− s

h

)
[f(x) + (x− s)f ′(x)] dFn(s)

= (2h)−1c1

∫ 1

−1
k(y)[f(x) + hyf ′(x)] d[Fn(x− yh)− F (x)]2

= (2h)−1c1

∫ 1

−1
[Fn(x− yh)− F (x)]2[k′(y)f(x) + yk′(y)hf ′(x)+k(y)hf ′(x)] dy

= (2h)−1c1

∫ 1

−1
[Gn(F (x− yh))− F (x)]2g(y) dy

= (2nh)−1c1

∫ 1

−1
[αn(F (x− yh))−Bn(F (x− yh))]2g(y) dy

+(nh)−1c1

∫ 1

−1
[αn(F (x− yh))−Bn(F (x− yh))]

×[Bn(F (x− yh)) + n1/2(F (x− yh)− F (x))]g(y) dy

+(2nh)−1c1

∫ 1

−1
B2

n(F (x− yh))g(y) dy

+(n1/2h)−1c1

∫ 1

−1
Bn(F (x− yh))[F (x − yh)− F (x)]g(y) dy

+(2h)−1c1

∫ 1

−1
[F (x− yh)− F (x)]2g(y) dy

= II1 + · · ·+ II5,

where g(y) = k′(y)f(x) + yk′(y)hf ′(x) + k(y)hf ′(x). By (4.2) we have

II1 + II2 = O(n−3/2h−1(log n)2 + n−5/4h−1 log n+ n−3/4 log n),

E(II2
3 )+E(II3II4)=O(n−2h−1+n−3/2) and II5=2−1h2c21f

2(x)f ′(x)+O(h3).

Furthermore,

E(II2
4 )=c21n

−1h−2
∫ 1

−1

∫ 1

−1
E [Bn(F (x−y1h))Bn(F (x−y2h))] [F (x−y1h)−F (x)]

×[F (x− y2h)− F (x)]g(y1)g(y2) dy1dy2

=c21n
−1f4(x)[F (x)−F 2(x)]+c21c3n

−1hf5(x)−4c21c2n−1hf5(x)+O(n−1h2),

where the last equality follows from moments of Brownian bridges, Taylor ex-
pansions and integration by parts. Thus we may show that

E
( I3

n−2h−4
∑n

j=1 wj

)2
= b2n(x) + σ2

n(x) +O
(
n−2h−2n−1/2(log n)2

)

+O
(
n−2h−1)+O(n−3/2(log n)2

)
+o

(
h4

)
+o

(
n−1h

)
,
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where b2n(x) = 4−1(f ′(x))2c21h4 and σ2
n(x) = (F (x)−F 2(x))n−1−4f(x)c2n−1h+

f(x)c3n−1h. The above result and the fact that E (I1+I2+I3)
2=E(I2

3 ) (1+o(1))
yield E(F̂ (x)−F (x))2 =

(
b2n(x)+σ2

n(x)
)
(1+o(1)). Further calculations lead to

(2.5).

Proof of (3.3). Let Ui = F (Xi), i = 1, . . .. Csörgő et al. (1986) have con-
structed a probability space carrying U1, U2, . . . and a sequence of Brownian
bridges Bn(s), 0 ≤ s ≤ 1, n = 1, . . . , such that, for the quantile process βn(s) =
n1/2{s− Un(s)}, 0 ≤ s ≤ 1, and

Un(s) =




Un,k, if (k − 1)/n < s ≤ k/n, k = 1, . . . , n

Un,1, if s = 0,

with Un,1 ≤ · · · ≤ Un,n denoting the order statistics of U1, . . . , Un, we have


sup
0≤s≤1

n1/2|βn(s)−Bn(s)| = O(log n), a.s.

sup
0≤s≤1

|βn(s)| = O(log n) a.s.
(4.3)

Since EX2
1 < ∞ we can treat (4.3) as true in the whole space instead of a.s.

Write

(a0a4 − a2
2)

[
Q̂(p)−Q(p)

]

= n−1/2
∫ 1

0
[− a4+a2(p− s)2]k(

p− s

h
)Q′(s)[βn(s)−Bn(s)][1+O(n−1/2 log n)] ds

+n−1/2
∫ 1

0
[− a4 + a2(p− s)2]k(

p− s

h
)Q′(s)Bn(s)[1 +O(n−1/2 log n)]ds

+
∫ 1

0
[a4 − a2(p − s)2]k(

p− s

h
)[Q(s)−Q(p)]ds

= I1 + I2 + I3.

One can check that

|I1| = O
(
h6n−1 log n

)
, |I3| = 1

24
Q(4)(p)(a0a4 − a2

2)h
4

∫ 1

−1
s4k2(s)ds+ o(h10),

E
{
I2
2

}
= n−1[1 +O(n−1/2 log n)][Q′(p)]2

{
(a0a4 − a2

2)
2(p− p2) + o(h3)

−2h3
∫ 1

−1

∫ y1

−1
[a2

4y1+a2
2h

4y3
1y

2
2 − a2a4h

2(y1y
2
2+y3

1)]k(y1)k(y2)dy2dy1

}
.

Hence (3.3) follows from the above results and the identity

2(a0a4 − a2
2)

2σ2
1 = 2h

2
∫ 1

−1

∫ y1

−1
(a4y1 − a2h

2y3
1)k(y1)(a4 − a2h

2y2
2)k(y2)dy2dy1.
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