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Abstract: We suggest an adaptive, error-dependent smoothing method for reducing

the variance of local-linear curve estimators. It involves weighting the bandwidth

used at the ith datum in proportion to a power of the absolute value of the ith

residual. We show that the optimal power is 2/3. Arguing in this way, we prove that

asymptotic variance can be reduced by 24% in the case of Normal errors, and by

35% for double-exponential errors. These results might appear to violate Jianqing

Fan’s bounds on performance of local-linear methods, but note that our approach

to smoothing produces nonlinear estimators. In the case of Normal errors, our esti-

mator has slightly better mean squared error performance than that suggested by

Fan’s minimax bound, calculated by him over all estimators, not just linear ones.

However, these improvements are available only for single functions, not uniformly

over Fan’s function class. Even greater improvements in performance are achiev-

able for error distributions with heavier tails. For symmetric error distributions the

method has no first-order effect on bias, and existing bias-reduction techniques may

be used in conjunction with error-dependent smoothing. In the case of asymmetric

error distributions an overall reduction in mean squared error is achievable, involv-

ing a trade-off between bias and variance contributions. However, in this setting,

the technique is relatively complex and probably not practically feasible.

Key words and phrases: Bandwidth, kernel method, nonparametric regression, tail

weight, variance reduction.

1. Introduction

There is a great variety of bias reduction methods for nonparametric curve
estimation, ranging from high-order kernel techniques (e.g., Wand and Jones
(1995), Chapters 2 and 5) to local bandwidth adjustments (e.g., Abramson (1982,
1984), Jones (1990)), methods based on varying location and scale (e.g., Samiud-
din and el-Sayyad (1990), Jones, McKay and Hu (1994)), empirical transforma-
tions (e.g., Ruppert and Cline (1994)), weights (e.g., Jones, Linton and Nielsen
(1995)), and skew computation (e.g., Choi and Hall (1998)). All have variants for
both nonparametric density estimation and nonparametric regression, although
often they are introduced first in the former setting. However, very few methods
have been suggested for reducing the impact of variance. Those that do exist
involve principally deterministic adjustments to bandwidth, altering the local
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trade-off between variance and squared bias in the context of mean integrated
squared error.

In the present paper, and in the context of nonparametric regression, we
suggest a new and entirely different approach to variance reduction. It involves
adjusting bandwidth in a stochastic, rather than deterministic, way, with the aim
of providing improved performance by giving greater weight to data pairs that
correspond to smaller absolute errors. In an extreme case, if an error were exactly
zero then we would wish to use the corresponding data pair for interpolation,
rather than simply for smoothing. Interpolation would correspond to using a
bandwidth of zero, and so our “error dependent” method involves taking the
bandwidth to be a function of the error — or more practically, of the residual.
The function is non-degenerate, even in the asymptotic limit. For local-linear
estimators we suggest that it be taken proportional to the two-thirds power of
the absolute value of the error (or residual). Different powers are appropriate for
higher-order methods, with the power increasing to 1 as order increases.

The idea of allowing the bandwidth for the ith datum to depend nontrivially
on the ith error is reminiscent of Abramson’s (1982) approach to bias reduction
in density estimation. There, the bandwidth for smoothing Xi when estimat-
ing the density f is ideally taken proportional to a negative power of f(Xi).
While this approach has an analogue for nonparametric regression (Hall (1990)),
it nevertheless reduces bias rather than variance, and is not closely related to
the technique suggested here. In particular, error-dependent smoothing reduces
variance by a constant factor, and has no first-order impact on bias (in the case
of symmetric error distributions); most bias reduction methods reduce bias by
an order of magnitude and inflate variance by a constant factor.

In large samples, our method reduces the variance contribution to mean
integrated squared error by 24% in the case of Normal errors, by 35% for double-
exponentially distributed errors, and by even greater amounts for very heavy-
tailed error distributions. These figures might appear to violate the bounds as-
serted by Fan (1993) for performance of local-linear estimators. There is in fact
no contradiction, however, principally for the following reason. Fan’s minimax
theory applies to classes of regression functions that have, in effect, two bounded
derivatives. By way of contrast, our results require the functions to have two
continuous derivatives. Our claim about improved performance does need conti-
nuity of the second derivative, and in particular does not hold uniformly across
the function class addressed by Fan. Other dissimilarities too should be born in
mind. For example, Fan’s (1993) result about local-linear estimators applies only
within the class of linear techniques, and (after error-dependent smoothing) our
estimators are nonlinear. Furthermore, Fan’s other minimax bounds, measuring
performance against nonlinear techniques, do not specifically address the range
of heavy-tailed error distributions that are considered in the present paper, since
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his class C2 of models for the “max” part of “minimax” contains models with
Normal errors.

Our methods are relatively simple when the error distribution is symmetric
or nearly symmetric, and that is the context in which they have greatest practical
significance. In the case of asymmetry, however, error-dependent smoothing can
introduce an additional bias term to the estimator. This makes it relatively
complex to minimise mean squared error. For the sake of completeness we briefly
explore the general case from a theoretical viewpoint but, since the practical
attraction of the asymmetric setting is not high, we do not describe its numerical
properties.

From a practical viewpoint, empirical bandwidth choice methods that pro-
duce overly variable bandwidths can require relatively large samples in order to
achieve theoretically optimal levels of performance. The rule proposed in this
paper, where the bandwidth is proportional to a power of a residual, can be
subject to excessive fluctuation when residuals are either close to 0 or large in
absolute value. This suggests that a truncation argument be used to dampen
variability and improve performance. The need to choose truncation points adds
to the complexity of the method, however, as does the necessity of selecting a
pilot bandwidth in order to calculate residuals. The result is that, in small to
moderate sized samples, mean squared error reductions offered by a practical
version of our method may be some distance from theoretically optimal levels.
Nevertheless, our theory and simulation analysis show clearly the potential of
the methods.

Provided errors are stochastically independent, conditional on design points,
there is no difficulty in combining error-dependent smoothing with a bias-
reduction method. The effect is to reduce bias by an order of magnitude, and
reduce variance by a constant factor relative to the value it would assume if only
bias reduction were employed. Likewise, error-dependent smoothing may be
applied in conjunction with a spatially-local bandwidth choice procedure, such
as that suggested by Fan and Gijbels (1995): one simply takes the scale factor
h, in formulae such as hi = hH(ε̂i) discussed in Section 2, to depend on spatial
location x. The method is also applicable to the case of heteroscedasticity, no
matter whether the variance function is modelled parametrically or estimated
nonparametrically. See Section 2.7 for discussion.

2. Methodology and Main Results

2.1. Model and estimator

Assume that independent and identically distributed data pairs (X1, Y1), . . . ,
(Xn, Yn) are generated by the model

Yi = g(Xi) + εi , (2.1)
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where Xi is independent of εi, and E(εi) = 0. In the “ideal” case, where the
errors εi are known, we define a bandwidth hi by hi = hH(εi). Here, h = h(n)
denotes a sequence of positive constants, and H is a fixed positive function. More
realistically, we might approximate εi by a residual ε̂i, and put hi = hH(ε̂i). In
either case, and for fixed x, let (â, b̂) denote the pair that minimises

n∑
i=1

{Yi − a− b (Xi − x)}2 h−1
i K{(Xi − x)/hi} ,

where K is a kernel function, and put ĝ(x) = â.
We expect H(x) to be an increasing function of |x|, in which case smaller

absolute errors (or residuals) produce less smoothing. In the “realistic” case,
where residuals are used rather than the errors themselves, particularly large
absolute values of residuals may not necessarily reflect similar values of errors.
Rather, they might result from inaccuracies in the pilot estimator of g that is
used to compute residuals. This means that we should usually threshold the
smoothing parameter, to guard against outlying values. Thresholding is also
useful if we are to ward off problems with sparse design, which do not make
themselves felt through the asymptotic distribution of ĝ. These difficulties do
not arise in the “ideal” case, which therefore offers more insight into the operation
of level-dependent thresholding. We address the “ideal” and “realistic” cases in
Sections 2.4 and 2.5, respectively.

2.2. Overview of theory

First we deal with the “ideal” setting. In the case of classical local-linear
smoothing, where H ≡ 1, it is well-known that the local-linear estimator has bias
of size h2 and error about the mean of size (nh)−1/2. Specifically, under mild
regularity conditions (see Fan (1993)),

ĝ = g + 1
2h

2g′′κ2 + (nh)−1/2f−1/2κ1/2σNn + op(h2) , (2.2)

where κ2 =
∫
u2K(u) du, κ =

∫
K2, σ2 = var(ε), and Nn denotes a random

variable whose distribution is asymptotically Normal N(0, 1). The second term on
the right-hand side of (2.2) represents systematic error, and the third is stochastic
error.

More generally, suppose H is a non-degenerate function. If E{H(ε)2} < ∞
then we may standardise H so that E{H(ε)2} = 1. We claim that in these
circumstances, provided the error distribution is symmetric and H is an even
function, the expansion at (2.2) continues to hold, except that the third term is
multiplied by the factor ρ, where ρ2 = E{ε2H(ε)−1}/σ2:

ĝ = g + 1
2h

2g′′κ2 + (nh)−1/2ρf−1/2κ1/2σNn + op(h2) . (2.3)
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As in (2.2), Nn denotes a random variable that is asymptotically Normal N(0, 1),
although it will assume different numerical values in appearances at (2.2) and
(2.3).

Minimising ρ subject to E{H(ε)2} = 1 is an elementary variational problem.
The minimum is achieved when H(ε) equals a constant multiple of |ε|2/3, in which
case ρ2 = ρ2

0 where
ρ2
0 ≡ {E(|ε|4/3)}3/2/σ2 < 1 . (2.4)

Of course, taking H(ε) proportional to |ε|2/3 is all that is needed for optimal
reduction of asymptotic mean squared error. The particular constant is absorbed
into the non-random multiplier, h, and so is immaterial.

For Normal errors, and for our estimator rather than a conventional local-
linear estimator, our results are suggestive of a version of Fan’s (1993) Theorem
4 in which his constant 0.8962 is replaced by 1.00, this being the value (to two
decimal places) of

(1.243 ρ8/5
0 )−1 = (1.243 × [2 {Γ(7/6)/π1/2}3/2]4/5)−1 ≈ 1.00242 . (2.5)

The formula here represents the efficiency, defined as the ratio of mean squared
errors, of our estimator relative to the “optimal” nonlinear regression function
estimator, when estimating a fixed, twice continuously differentiable target g.
The “optimal” estimator here is the one that gives minimum mean squared error
in a minimax sense, uniformly over functions that have two bounded derivatives;
it does not make use of continuity of the second derivative. Details of the origin
of the formula are given by Donoho and Liu (1991), and in fact the figure 1.243 is
taken from Donoho and Liu’s Table 1. It was apparently derived by combining,
in a conservative way, numerical results obtained by Donoho, Liu and MacGib-
bon (1990). The exact value of ρ2

0 in the Normal case may be shown to equal
2 {Γ(7/6)/π1/2}3/2 ≈ 0.757.

Note that our results rely on continuity of the second derivative of g, whereas
Fan’s results apply uniformly over a class of g’s that have only a uniformly
bounded derivative. The requirement for continuity is the key to reconciling
Fan’s results with our own. The fact that the “ideal” estimator is not a true
estimator in the usual sense is not an issue in comparing Fan’s results with our
own. Indeed, we show in Section 2.5 that, for any particular functions f and g

with two continuous derivatives, the level of asymptotic performance evinced by
the ideal estimator is achievable by a realistic version. In this case a pilot estima-
tor g̃ is constructed, and used to calculate ε̂i = Yi − g̃(Xi). Then, possibly after
centering or thresholding these residuals, we compute the empirical bandwidth
ĥi = h |ε̂i|2/3. We use ĥi in place of hi to construct ĝ. Modulo regularity con-
ditions, and truncation to alleviate difficulties caused by too large or too small
values of |ε̂i|, formula (2.3) continues to hold.
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Since Fan’s minimax function class C2 contains models where the error distri-
bution is Normal, results such as those discussed above do not relate to improve-
ments in performance that error-dependent smoothing can achieve in the case of
heavy-tailed error distributions. Indeed, the value of ρ2

0 tends to be smaller for
distributions with heavier tails. Values in the cases of double Exponential, Nor-
mal and Uniform errors are respectively 0.650, 0.757 and 0.842. For errors with
Student’s t distribution on 5, 10 or 20 degrees of freedom, the values are 0.676,
0.726 and 0.743, respectively. Figure 2.1 plots ρ2 as a function of the number
of degrees of freedom (interpreted in the continuum) for Student’s t errors. For
non-Normal errors one can also construct estimators that are more efficient than
ĝ by replacing local least-squares by a robust method such as local M -estimation.

5 10 15 20

0
.0

0
.2

0
.4

0
.6

Figure 2.1. Values of ρ2 versus number of degrees of freedom for Student’s
t error distributions.

In the case of asymmetric errors, or whenH is not an even function, a formula
similar to (2.3) is valid, except that an extra bias term of size h2 is introduced.
This quantity is proportional to E{εH(ε)2}, and so is typically small if the
error distribution is close to being symmetric. More generally, it is possible to
either choose both h and H (in the formula hi = hH(εi)) so that asymptotic
mean squared error is minimised; or to choose H to minimise the asymptotic
variance term subject to both E{H(ε)2} = 1 and E{εH(ε)2} = 0. The first
rule produces a particularly complex function H, and is quite unattractive for
practical implementation. The second rule gives

H(u) =



c1 u

2/3 if u > 0,

c2 |u|2/3 if u < 0,
(2.6)
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where

c1 =
[
E{ε4/3 I(ε > 0)} +

E{|ε|4/3 I(ε < 0)}E{ε7/3 I(ε > 0)}
E{|ε|7/3 I(ε < 0)}

]−1/2

,

c2/c1 =
[
E{ε7/3 I(ε > 0)}/E{|ε|7/3 I(ε < 0)}

]1/2
.

Thus, using error-dependent smoothing in the case of asymmetric errors requires
relatively detailed inference about the error distribution, and is not as attractive
as in the case of symmetry.

Note, however, that there is always a strict reduction in the variance contri-
bution to asymptotic mean squared error. For example, if H is given by (2.6),
with the constants c1, c2 defined above, then (without requiring the assumption
of symmetry) (2.3) holds with ρ < 1.

2.3. Generalisations and extensions

The main idea behind these results — that the variance of a nonparametric
regression estimator may be reduced by using an error-dependent smoothing
parameter — is applicable to a wide range of settings. For example, it is valid for
linear, second-order methods such as the Nadaraya-Watson estimator (see e.g.,
Härdle (1990), p.25; Wand and Jones (1995), p.119), the Gasser-Müller estimator
(Wand and Jones (1995), p.131) and the Priestley-Chao estimator (Wand and
Jones (1995), p.130). In all these cases the asymptotically optimal form of H is
the same as that described above in the local-linear context. Moreover, if the
error distribution is symmetric then bias is unaffected, to first order, by error-
dependent smoothing.

Error-dependent smoothing is also applicable to general local-polynomial
estimators of regression means and their derivatives (see e.g., Ruppert and Wand
(1994)). There, if the method is of order r (meaning that, in the case of a non-
random bandwidth h, bias is of size hr), the natural analogue of the condition
E{H(ε)2} = 1 is E{H(ε)r} = 1. This ensures that, if the error-dependent
bandwidth is hi = hH(εi), if H is an even function, and if the error distribution
is symmetric, the bias term is the same (to first order) as it would be if the
bandwidth were simply h. If we are estimating the sth derivative of g, for s ≥ 0,
then the variance contribution to asymptotic mean squared error is also the
same to first order, except that it is reduced by the multiplicative factor ρ =
E{ε2H(ε)−(2s+1)}/σ2.

The minimum of this quantity, subject to the constraint E{H(ε)r} = 1, is
achieved when H(ε) is proportional to |ε|2/(r+2s+1). Thus, the general form of ρ2

0

(given at (2.4) in the case (r, s) = (2, 0)) is

ρ2
0 = {E(|ε|2r/(r+2s+1))}(r+2s+1)/r/σ2 < 1 .
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In the case of symmetric errors, this represents the greatest amount by which
variance may be reduced using error-dependent smoothing, when estimating an
sth derivative by an rth order method.

2.4. Theory in “ideal” case

Assume that h = h(n) → 0 and nh → ∞ as n → ∞, and that H is a
continuous, positive function satisfying

E{H(ε)3} <∞ , E{H(ε)−1} <∞ , E[ε2{H(ε) +H(ε)−1}] <∞ . (2.7)

Let K be a bounded, compactly supported, symmetric probability density, and
let f denote the marginal density of Xi, assumed to exist in a neighbourhood of
x. Assume that f and g have two continuous derivatives in a neighbourhood of
x, and that f(x) > 0.

Theorem 2.1. Under the above conditions,

ĝ(x) = g(x) + 1
2 h

2 κ2 [g′′(x)E{H(ε)2} + f ′′(x) f(x)−1E{εH(ε)2}]
+[(nh)−1 κ f(x)−1E{ε2H(ε)−1}]1/2Nn(x) + op(h2) , (2.8)

where Nn(x) denotes a random variable whose distribution is asymptotically Nor-
mal N(0, 1).

Corollary. Assume the conditions of Theorem 2.1. If E{εH(ε)2} = 0 — in
particular, if the distribution of ε is symmetric and H is an even function — and
if E{H(ε)2} = 1, then (2.3) holds at x, with ρ2 = E{ε2H(ε)−1}/σ2.

Conditions (2.7) hold if, for example, (a) C1|ε|1−δ ≤ H(ε) ≤ C2(1 + |ε|)
for constants C1, C2, δ > 0, (b) E(|ε|3) <∞, and (c) the probability density of ε
exists in a neighbourhood of the origin and is bounded away from 0 there. If H(ε)
has the optimal form C |ε|2/3 then (2.7) is valid if (c) holds and E(|ε|8/3) < ∞.
The theorem may be extended to a variety of other settings, for example to the
case where x is a boundary point.

2.5. Theory in “realistic” case

Suppose f and g have two continuous derivatives in a neighbourhood of x,
and that f(x) > 0. Assume too that K is a bounded, compactly supported,
symmetric probability density, and K ′ exists and satisfies a Hölder condition;
that H ′ exists and satisfies a Hölder condition, and C1 ≤ H ≤ C2 for constants
0 < C1 ≤ C2 < ∞; that h = h(n) → 0 and nh → ∞ as n → ∞; that E(ε2) <
∞. Call these assumptions (A1). (We say that a function ψ satisfies a Hölder
condition, or is Hölder continuous with exponent η, if there exists a constant
C > 0 such that |ψ(x) − ψ(y)| ≤ C |x− y|η for all x and y.)
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In view of the continuity of f ′′ and g′′, the quantity

ξ(δ) ≡ sup
u : |x−u|≤δ

{|f ′′(x) − f ′′(u)| + |g′′(x) − g′′(u)|} (2.9)

converges to 0 as δ → 0. Let h0 = h0(n) denote a bandwidth, chosen to converge
to 0 sufficiently slowly for n1/5 h0 → ∞, and sufficiently quickly for n1/5 h0 =
O(nη) for all η > 0 and n1/5 h0 ξ(h0)1/2 → 0. Call this assumption (A2). For
example, if both f ′′ and g′′ are Hölder continuous then ξ(δ) = O(δη) for some
η > 0, and so h0(n) � n−1/5 log n is an adequate choice.

Let g̃ denote a standard local-linear estimator of g, computed using band-
width h0. Put ε̂i = Yi − g̃(Xi) and ĥi = hH(ε̂i), and redefine ĝ(x) as the value
â in the pair (a, b) = (â, b̂) that minimises

n∑
i=1

{Yi − a− b (Xi − x)}2 ĥ−1
i K{(Xi − x)/ĥi} .

Theorem 2.2. Under assumptions (A1) and (A2), (2.8) holds for the new esti-
mator ĝ, with Nn again denoting a random variable that is asymptotically Nor-
mal N(0, 1).

Neither Theorem 2.1 nor Theorem 2.2 is available uniformly in a function
class such as Fan’s C2. One reason, complementary to that given in Section 2.2, is
that the rate at which the “op(h2)” terms converge to 0 depends explicitly on the
modulus of continuity of both f ′′ and g′′, and can be arbitrarily slow. In the case
of Theorem 2.2 this in turn influences choice of the pilot-estimator bandwidth h0.
Taking that quantity to be equal to a fixed constant multiple of n−1/5, rather than
of larger order than n−1/5 (as required by assumption (A2)), results in inflation
of variance relative to that achieved by the “ideal” estimator. For sufficiently
heavy-tailed error distributions, such an inflation still produces a reduction in
variance, relative to that for a classical local-linear estimator. This is readily
apparent in both theoretical analysis and numerical simulations. For Normal
data, however, slight oversmoothing of the pilot estimator and relatively large
sample sizes are necessary in order to achieve obvious improvements.

The conditions imposed on H in Theorem 2.2 preclude the optimal form
H(u) = γ |u|2/3. However, the level of performance in that case may be achieved,
up to a constant factor that converges to 1 as n→ ∞, by considering successive
approximations to the optimal H by functions satisfying the conditions of the
theorem. Likewise, conditions on the kernelK prevent it from being the Epanech-
nikov function that attains asymptotically minimal mean squared error, but we
may circumvent this problem by considering a sequence of approximations.

For example, the following is an empirical, thresholded version of the asymp-
totically optimal “ideal” procedure suggested in Section 2.2. Let g̃ be defined
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as before, and assume the conditions imposed in Theorem 2.2 on K and on the
bandwidths h and h0. Additionally, suppose K is a compactly supported prob-
ability density with two bounded derivatives, that f and g have three bounded
derivatives in a neighbourhood of x, that f(x) > 0, that E(ε4) <∞, and that H
is defined by

H(u) =



γ |u|2/3 if n−α ≤ |u| ≤ nβ,

γ n−2α/3 if |u| < n−α,

γ n2β/3 if |u| > nβ ,

(2.10)

where α, β, γ denote positive constants. Then it is possible to choose α, β > 0
such that, for all γ > 0, (2.7) holds for the new version of ĝ (constructed using
the bandwidths ĥi = H(ε̂i)). The proof is particularly complex, and so will not
be given here. The function H at (2.10) achieves the asymptotic performance
represented by (2.8) with H(u) ≡ γ |u|2/3.

2.6. Bandwidth choice

Note that in view of property (2.3) the optimal bandwidth, hed
opt say, for an

error-dependent smoothing rule is hed
opt =hllin

opt ρ
2/5, where hllin

opt is the optimal band-
width for the conventional local-linear estimator, and ρ2 = E{ε2 H(ε)−1}/σ2. (It
is assumed here that H has been standardised so that E{H(ε)2} = 1.) Therefore,
to construct an empirical approach to bandwidth choice for an error-dependent
smoothing rule we can use our “favourite” technique (such as a plug-in method
or cross-validation) to compute an empirical approximation ĥllin to hllin

opt, and take
ĥed = ĥllin ρ̂2/5 to be our empirical approximation to hed

opt, where

ρ̂2 =
{
n−1

n∑
i=1

ε̂2i H(ε̂i)−1
} {

n−1
n∑

i=1

H(ε̂i)2
}1/2 (

n−1
n∑

i=1

ε̂2i

)−1

.

(The second factor here gives an empirical version of the standardisation E{H(ε)2}
= 1.) It may be proved that if the error distribution is symmetric, and if (in
the construction of ĝ(x)) we take ĥi = ĥllin ρ̂2/5 H(ε̂i), and replace h on the
right-hand side of (2.8) by hed

opt, then (2.3) continues to hold.
There is also a more complex cross-validation approach which adjusts im-

plicitly for error-dependent smoothing, and does not require the multiplicative
adjustment by ρ̂2/5. It is very computer intensive, however.

2.7. Heteroscedastic errors

For simplicity and brevity we have presented results only for models with
independent and identically distributed errors. However, our methods apply vir-
tually without change in heteroscedastic cases, where the error variance changes
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with x. The simplicity with which this setting can be treated derives from the
fact that, provided error variance is a smooth function of x, the model is “locally
homoscedastic”.

Indeed, suppose Yi = g(Xi)+εi where εi = ζi σ(Xi), the variables X1, ζ1, . . . ,

Xn, ζn are independent, the Xi’s are identically distributed, the ζi’s are identi-
cally distributed with zero mean and unit variance, and the function σ is contin-
uous. Denote these conditions by assumption (A3) (it replaces the overarching
assumption made in Section 2.1 that the pairs (Xi, Yi) are independent and iden-
tically distributed, which implies that the εi’s are independent and identically
distributed). If we continue to define ε̂i = Yi − g̃(Xi), if we continue to take
ĥi = hH(ε̂i), if on the right-hand side of (2.8) we replace ε in all the expecta-
tions by ζ σ(x), and if we assume (A1)–(A3), then Theorem 2.2 continues to hold.
The method of proof is virtually identical.

The only essential difference between homoscedastic and heteroscedastic
cases lies in the way bandwidth is computed. We discuss this issue in the setting
of local bandwidth choice, which seems more appropriate when error variance
changes with location. Assume the distribution of ζ is symmetric, and for sim-
plicity consider the case where H(u) = |u|2/3. (Truncated versions of H, such as
those considered at the end of Section 2.5, are approximations to this function.
There is no need to include a constant multiplier, since it may be incorporated
into the bandwidth.) Put µ = E(|ζ|4/3). Then, noting the result reported in the
previous paragraph, we show that

ĝ(x) = g(x) + 1
2 h

2 κ2 g
′′(x)µσ(x)4/3

+[(nh)−1 κ f(x)−1 µσ(x)4/3]1/2 Nn(x) + op(h2) .

It may be proved from this formula that the bandwith hed
opt(x) that min-

imises asymptotic mean squared error at x may be expressed as hed
opt(x) =

hllin
opt(x){µσ(x)4/3}−1/5, where hllin

opt(x) = {κσ(x)2/nκ2f(x)g′′(x)2}1/5 is the band-
width that minimises mean squared error of the standard local linear estimator.

Therefore, given an empirical version ĥllin
opt(x) of hllin

opt(x) (see e.g., Fan and
Gijbels (1995)), and estimators µ̂ and σ̂(x) of µ and σ(x) respectively, we may
calculate an empirical version ĥed

opt(x) = ĥllin
opt(x) {µ̂ σ̂(x)4/3}−1/5 of hed

opt(x). There
are several ways of computing µ̂ and σ̂(x); we give only two here. In the first,
σ(·) is modelled parametrically by a smooth function, for example a linear or
a quadratic function. Parameters of the model, and hence σ(·), can be consis-
tently estimated by treating centered residuals as though they were true values
of the εi’s. In this way, an estimator σ̂(·) of σ(·) can be calculated. Residual
values of the ζi’s can now be computed as ζ̂i = ε̂i/σ̂(Xi), and µ estimated by
µ̂ = n−1 ∑

i |ζ̂i|4/3. In the second approach, σ(·) is estimated nonparametrically
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by considering the nonparametric regression problem in which squares of centered
residuals are regressed on their expected values. Once σ̂(·) has been calculated
in this way, µ̂ can be computed as before.

3. Numerical Properties

In this section we report a simulation study conducted to examine nu-
merical properties of error-dependent smoothing rules. In this work we took
g(x) = 4 sin(2πx) and used equally-distributed design points on (0, 1). The er-
ror distribution was either Normal N(0, 2.25) or Student’s t with 5 degrees of
freedom. Sample size n was 50, 100, 200 or 500. The biweight kernel K(u) =
(1 − u2)2 I(−1<u<1) was employed.

When plotting integrated squared biases, variances and mean squared errors
against bandwidth, h ranged over 51 logarithmically equispaced values. We do
not explore empirical bandwidth choice, since the additional variation that it
introduces may confound differences between conventional local-linear techniques
and our method. In theory the second bandwidth, h0, used for the for the pilot
estimator has only a second-order effect on the results, although it should be
taken larger than the theoretically optimal bandwidth. In all the work reported
here we chose h0 to be 25% larger than the standard optimal value.

Three estimators were considered: (i) ĝL, the standard local-linear estimator;
(ii) ĝI , the “ideal” error-dependent local-linear estimator with hi = h|εi|2/3; and
(iii) ĝR, the “realistic” error-dependent local-linear estimator using the function
H at (2.10) with (n−α, nβ) = (0.22/3, 82/3) and residuals obtained from a pilot
estimation. For every setting, 1000 random samples were generated. Each esti-
mator was evaluated over a equispaced grid of 400 points with the interpolation
method of Hall and Turlach (1997) used to guard against sparse design problems
caused by too-small choices of bandwidth. The mean integrated squared biases
and variances were approximated by averaging over the 1000 realizations.

Figure 3.1 summarises results when n = 100 and the error distribution
was Student’s t with 5 degrees of freedom. First, we note that error-dependent
smoothing rules lead to significant decrease in the mean integrated variance (see
panel (c)) while maintaining almost the same level of mean integrated squared
bias (panel (b)). This is as predicted by our asymptotic theory. Furthermore,
the minimum mean integrated squared error (MISE) values for ĝL, ĝI and ĝR are
0.137, 0.096 and 0.119. Equivalently, the “ideal” and “realistic” error-dependent
smoothing rules reduced MISE by 30% and 13% respectively. Greater reductions
occurred for larger values of n until they asymptoted to the large-sample limit
predicted in Section 2.
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Figure 3.1. Simulation results for the sine regression function, depicted in
panel (a), and for sample size n = 100 and t5 errors. In panels (b), (c) and
(d), respectively, the integrated squared biases, variances and mean squared
errors of ĝL (solid lines), ĝI (dotted lines) and ĝR (dashed lines) are plotted
against bandwidth on a log-log scale. The vertical lines, with consistent
line types, locate the optimal bandwidths that produced minimum mean
integrated squared errors.

Figure 3.2 is the analogue of Figure 3.1 except that the error distribution
is now Normal N(0, 2.25). The “ideal” error-dependent smoothing rule again
produces significant MISE reduction. However, MISE reductions in the “real-
istic” case only become significant for n = 500. In the case of Normal errors,
error-dependent smoothing rules tend to slightly inflate the bias while reducing
the variance. The increase in bias is of course a second-order effect, since it is
not evident in the first-order theoretical analysis in Section 2. More generally,
simulations with Student’s t errors with a range of degrees of freedom show that
the extent of MISE improvement offered by ĝR declines, and the extent of bias
inflation increases, as the error tail-weight decreases.
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Figure 3.2. Simulation results for the sine regression function, n = 100 and
Normal (0, 2.25) errors. Functions and line types are the same as in Figure
3.1.

In summary, tail weight of the error distribution, and second-order contribu-
tions from bias, can have significant affect on the performance of error-dependent
smoothing rules. In relation to the bias issue we found that, for a given error
distribution, performance of ĝR relative to ĝL could be made better or worse by
using target functions that produced lesser or greater amounts of bias, respec-
tively. For example, by taking the sinusoid g to have only half a wavelength over
the interval (0, 1) we could enhance performance of ĝR relative to ĝL; and by
giving it more than one wavelength we could reduce relative performance.

A reviewer expressed concern that our use of grids for computation implied
the method might be excessively computationally expensive. We use grids only
to numerically determine mean squared integrated errors. In particular, no grid
search methods are required. All our techniques involve only explicit calculation;
nothing is defined implicitly, and no equations have to be solved in order to con-



ERROR-DEPENDENT SMOOTHING 443

struct our estimators. In practice one could use binning procedures to accelerate
calculation. See for example page 238 of Scott (1992).
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Appendix

A.1 Proof of Theorem 2.1.

We may write ĝ = (S2T0 − S1T1)/(S2S0 − S2
1), where, defining Ki(x) =

K{(Xi − x)/hi} and, for a vector a = a(x) = (a1, . . . , an), setting U(a) =
n−1 ∑

i h
−1
i aiKi, we put Sj = U(a) for ai(x) = (Xi − x)j , and Tj = U(a) for

ai(x) = Yi (Xi − x)j . Let Tj1 = U(a) with ai(x) = g(Xi) (Xi − x)j , Tj2 = U(a)
with ai(x) = εi (Xi − x)j , and Rj = U(a) with ai = hj

i . Then, Tj = Tj1 + Tj2.
(For the sake of simplicity we shall often suppress the argument x.)

It may be proved by Taylor expansion that

S2T01 − S1T11 = g (S2S0 − S2
1) + 1

2 g
′′ [κ2 h

2 f E{H(ε)2}]2 + op(h4) (A.1)

and S2S0 − S2
1 = κ2 h

2 f2E{H(ε)2} + op(h2). Therefore,

ĝ1 ≡ (S2T01 − S1T11)/(S2S0 − S2
1) = g + 1

2 g
′′ κ2 h

2E{H(ε)2} + op(h2) . (A.2)

Noting that (2.7) implies E{|ε|H(ε)2} < ∞, it may be proved that for j =
0, 1,

E(Tj2) = hj κj f(x)E{εH(ε)j} + hj+1 κj+1 f
′(x)E{εH(ε)j+1}

+1
2h

j+2 κj+2 f
′′(x)E{εH(ε)j+2} + o(hj+2) , (A.3)

var(Tj2) ∼ n−1h2j−1E{ε2H(ε)2j−1} f
∫
y2jK(y)2 dy , (A.4)

where in (A.3), when j = 1, it is understood that we take the expansion only up
to a remainder of o(h2). Lindeberg’s condition for the series T02, normalised by
its standard deviation, holds provided that, for any C1, C2 > 0,

(nh)−1
n∑

i=1

E[ε2i H(εi)−2 I(|Xi − x| ≤ C1hi) I{|εi|H(εi)−1 > C2 (nh)1/2}] → 0 .

(A.5)
(See e.g., Chung (1974), p.205, for Lindeberg’s condition.) Result (A.5) follows
from the fact that E{ε2H(ε)−1} < ∞, and so by Lindeberg’s central limit theo-
rem, (T02 −ET02)/(var T02)1/2 is asymptotically Normal N(0, 1). Combining this
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result with (A.3) and (A.4) we deduce that, for fixed values of the argument x,

ĝ2 ≡ (S2T02 − S1T12)/(S2S0 − S2
1)

= 1
2 f

′′ f−1 κ2 h
2E{εH(ε)2} + [(nh)−1 f−1 κE{ε2H(ε)−1}]1/2Nn + op(h2) ,

where Nn is asymptotically Normal N(0, 1). The theorem follows from this ex-
pansion and (A.2), on noting that ĝ = ĝ1 + ĝ2.

A.2. Proof of Theorem 2.2.

Put K̂i = K{(Xi − x)/ĥi} and Û(a) = n−1 ∑
i ĥ

−1
i ai K̂i, and let Ŝj, T̂j1,

T̂j2, T̂j and R̂j denote the versions of Û(a) that arise with ai(x) = (Xi − x)j,
g(Xi) (Xi−x)j , εi (Xi−x)j, Yi (Xi−x)j and ĥj

i , respectively. Then, T̂j = T̂j1+T̂j2

and ĝ = (Ŝ2T̂0 − Ŝ1T̂1)/(Ŝ2Ŝ0 − Ŝ2
1). Since H is assumed bounded away from

zero and infinity then R̂j = Op(hj), for each j. Therefore, the following analogue
of (A.1) holds, derived in a similar manner:

Ŝ2T̂01 − Ŝ1T̂11 = g (Ŝ2Ŝ0 − Ŝ2
1) + 1

2 g
′′ (Ŝ2

2 − Ŝ1Ŝ3) + op(h4) . (A.6)

Let C1, C2, . . . denote generic finite, strictly positive constants, let η > 0 be a
Hölder exponent appropriate for both H ′ and K ′, and put ∆ = g̃−g, H1 = H ′/H
and hi = hH(εi). Since C1 ≤ H ≤ C2 then we may choose C3, C4, C5 > 0 such
that, by Taylor expansion and uniformly in i,∣∣∣∣H(ε̂i) −H(εi)

H(εi)
+ ∆(Xi)H1(εi)

∣∣∣∣ ≤ C3 |∆(Xi)|1+η , (A.7)

∣∣∣∣K(Xi − x

ĥi

)
−K

(Xi − x

hi

)
+

( ĥi − hi

hi

) (Xi − x

hi

)
K ′(Xi − x

hi

)∣∣∣∣
≤ C4

∣∣∣∣ ĥi − hi

hi

∣∣∣∣1+η

I(|Xi − x| ≤ C5h) . (A.8)

Combining (A.7) and (A.8) we see that, with L(u) = uK ′(u),∣∣∣∣K(Xi − x

ĥi

)
−K

(Xi − x

hi

)
− ∆(Xi)H1(εi)L

(Xi − x

hi

)∣∣∣∣
≤ C6 |∆(Xi)|1+η I(|Xi − x| ≤ C5h) . (A.9)

Similarly but more simply, withH2 =H ′/H2 we have |h(ĥ−1
i −h−1

i )−∆(Xi)H2(εi)|
≤ C7 |∆(Xi)|1+η . Combining this result with (A.9), and defining M = K + L,
we deduce that for any sequence A1, . . . , An,∣∣∣∣

n∑
i=1

ĥ−1
i (Xi−x)j AiK{(Xi−x)/ĥi}−

n∑
i=1

h−1
i (Xi−x)j AiK{(Xi−x)/hi}
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−h−1
n∑

i=1

∆(Xi) (Xi − x)j AiH2(εi)M{(Xi − x)/hi}
∣∣∣∣

≤ C8 h
−1

n∑
i=1

|∆(Xi)|1+η |Xi − x|j |Ai| I(|Xi − x| ≤ C5h) . (A.10)

Put λn = n1/5h0. It is straightforward to prove that ∆(Xi) = Op(n−2/5λ2
n)

uniformly in values of i such that |Xi −x| ≤ C5h. Hence, when Ai ≡ 1 we obtain
from (A.10) the result

∣∣∣∣
n∑

i=1

ĥ−1
i (Xi − x)j K{(Xi − x)/ĥi} −

n∑
i=1

h−1
i (Xi − x)j K{(Xi − x)/hi}

∣∣∣∣
= Op(n3/5 hj λ2

n) .

Equivalently, Ŝj − Sj = Op(n−2/5hjλ2
n), where Sj is as in the proof of Theorem

2.1. From this result and the property n−2/5λ2
n = o(1) it may be shown that

Ŝj = κj h
j f E{H(ε)j} + op(hj). The latter relation, and (A.6), imply that

Ŝ2T̂01 − Ŝ1T̂11 = g(Ŝ2Ŝ0 − Ŝ2
1) + 1

2 g
′′ [κ2 h

2 f E{H(ε)2}]2 + op(h4) , (A.11)

Ŝ2Ŝ0 − Ŝ2
1 = κ2 h

2 f2E{H(ε)2} + op(h2) . (A.12)

The only other sequence A1, . . . , An in which we are interested is Ai ≡ εi,
and there we may deduce from (A.10) the bound

∣∣∣∣
n∑

i=1

ĥ−1
i (Xi−x)jεiK{(Xi−x)/ĥi}−

n∑
i=1

h−1
i (Xi − x)jεiK{(Xi−x)/hi}−Vj

∣∣∣∣
= Op(n(3−2η)/5 hj λ2(1+η)

n ) , (A.13)

where Vj ≡ h−1 ∑
i ∆(Xi)(Xi−x)jεiH2(εi)M{(Xi−x)/hi}. By Taylor-expanding

the ratio formula for a local-linear estimator (see e.g., the expression for â given by
Fan (1993, p.197) it may be proved that ∆(u) = h2

0ψn(u) + (nh0)−1f(u)−1 ∑
i εi

×K{(Xi−u)/h0}+Op(h4
0), uniformly in values u in a neighbourhood of x, where

ψn denotes a deterministic function that satisfies ψn(u) = 1
2 g

′′(u)κ2 + o(ξn)
uniformly in a neighbourhood of x, and ξn = ξ(h0), ξ(·) being as defined at (2.9).
Therefore, Vj = Vj1 + Vj2 + op(n3/5hj), where

Vj1 = h−1 h2
0

n∑
i=1

(Xi − x)j ψn(Xi) εiH2(εi)M{(Xi − x)/hi} ,

Vj2 = (nhh0)−1f(x)−1
n∑

i1=1

n∑
i2=1

εi1εi2H2(εi2)(Xi2−x)jK{Xi1−Xi2

h0
}M{Xi2−x

hi2

} .
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Noting that
∫
uj M(u) du = 0 for j = 0, 1 we may prove that for j = 0, 1 and

k = 1, 2, E(Vj1) = o(n3/5hj), E(Vj2) = o(n3/5hj), Vjk − E(Vjk) = op(n3/5hj).
When treating Vj2 we consider the diagonal and off-diagonal terms separately.
The absolute value of the sum of the diagonal terms is adequately bounded by
the sum of the absolute values of the summands. Since, conditional on the Xi’s,
the εi’s are independent, then the variance of the sum of the off-diagonal terms in
Vj2 is readily computed under the assumption that E(ε2) <∞; in particular, we
do not need finite fourth moments. However, to prove that var(Vj2) = o(n6/5h2j)
we do require the assumption that n1/5h0 → ∞.

Therefore, Vj = op(n3/5hj) for j = 0, 1, and so by (A.13),

T̂j2 = Tj2+n−1(Vj1+Vj2)+Op(n−2(1+η)/5 hj λ2(1+η)
n ) = Tj2+op(n−2/5 hj) (A.14)

for j = 0, 1, where Tj2 is as in the proof of Theorem 2.1. We know from that
proof that |T02| + |h−1T12| = Op{h2 + (nh)−1/2}. Hence, by (A.12) and (A.14),

Ŝ2T̂02 − Ŝ1T̂12 = f−1 (Ŝ2Ŝ0− Ŝ2
1)T02 +op[h2 {h2 +(nh)−1/2}+n−2/5h2] . (A.15)

Combining (A.11), (A.12) and (A.15) we deduce that

ĝ = {(Ŝ2T̂01 − Ŝ1T̂11) + (Ŝ2T̂02 − Ŝ1T̂12)} (Ŝ2Ŝ0 − Ŝ2
1)−1

= g + 1
2 g

′′ κ2 h
2E{H(ε)2} + f−1 T02 + op{h2 + (nh)−1/2} . (A.16)

We showed during the proof of Theorem 2.1 that T02 = 1
2 f

′′ κ2 h
2E{εH(ε)2} +

[(nh)−1 f κE{ε2 H(ε)−1}]1/2 N ′
n +op(h2), where N ′

n converges to Normal N(0, 1).
Theorem 2.2 follows from this result and (A.16).
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