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very attractive and increase exponentially as the number of covariates increases. Data-

driven bandwidth selection procedures for the new estimators are straightforward given
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1 Introduction

Nonparametric regression methods are useful for exploratory data analysis and for rep-

resenting underlying features that can not be well described by parametric regression

models. In the recent two decades, many attentions have been paid to local polynomial

modeling for nonparametric regression which was first suggested by Stone (1977) and

Cleveland (1979). Fan (1993) and many others investigated the theoretical and numerical

properties. Ruppert and Wand (1994) established theoretical results for local polynomial

regression with multiple covariates. Wand and Jones (1995), Fan and Gijbels (1996) and

Simonoff (1996) provided excellent reviews. We consider reducing variance in multivariate

local linear regression. This is of fundamental interests since local linear techniques are

very useful and efficient in a wide range of fields including survival analysis, longitudinal

data analysis, time series modeling and so on.

The nonparametric regression model with multiple covariates is as follows

Yi = m(Xi) + ν1/2(Xi) εi, (1.1)

where {Xi = (Xi1, · · · , Xid)T}n
i=1 are i.i.d. random vectors with density function f and

independent of ε1, · · · , εn, which are i.i.d. random variables with mean zero and variance

one. The local linear estimator of the conditional mean function m(·) at x = (x1, · · · , xd)T

is α̂, the solution for α to the following locally kernel weighted least squares problem

min
α,β

n
∑

i=1

{

Yi − α− βT (Xi − x)
}2 Πd

j=1K
(Xij − xj

bjh

)

, (1.2)

where K(·) is a one-dimensional kernel function, h > 0, and bi > 0, i = 1, · · · , d, are

constants. Here b1, · · · , bd are tuning parameters which allow us to choose different band-

widths for each direction: in (1.2) the bandwidth for kernel smoothing along the i-th

covariate is bih, i = 1, · · · , d. The kernel weight function in (1.2) is taken as a product

kernel and the bandwidth matrix H1/2 = diag{hb1, · · · , hbd} is diagonal. From standard

weighted least squares theory, the local linear estimator is given by

m̂(x) = eT (XT
x WxXx)−1XT

x WxY, (1.3)
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where e = (1, 0, · · · , 0)T is a (d + 1)-vector, Y = (Y1, · · · , Yn)T ,

Wx = diag
{

Πd
j=1K

(X1j − xj

bjh
)

, · · · , Πd
j=1K

(Xnj − xj

bjh
)

}

, Xx =







1 (X1 − x)T

...
...

1 (Xn − x)T





 .

Define

B = diag{b2
1, · · · , b2

d}, µ2(K) =
∫

s2K(s) ds, R(K) =
∫

K2(s) ds,

M2(x) =







∂2

∂x1∂x1
m(x), · · · , ∂2

∂x1∂xd
m(x)

...
...

...
∂2

∂xd∂x1
m(x), · · · , ∂2

∂xd∂xd
m(x)





 .

If x is an interior point, Ruppert and Wand (1994) showed that, under regularity condi-

tions,

E
{

m̂(x)−m(x)
∣

∣X1, · · · , Xn
}

=
1
2
h2µ2(K) tr

{

BM2(x)
}

+ op
(

h2) , (1.4)

Var
{

m̂(x)
∣

∣X1, · · · , Xn
}

=
ν(x)

nhdf(x)Πd
i=1bi

R(K)d{1 + op(1)
}

. (1.5)

Here, that x is an interior point means that the set Sx,K =
{

(z1, · · · , zd)T : Πd
j=1K

(

(zj −
xj)/(bjh)

)

> 0
}

, i.e. support of the local kernel weight function in the local least squares

problem (1.2), is entirely contained in the support of the design density f . Expressions

(1.4) and (1.5) reveal behaviors of m̂(x). The conditional variance has a slower rate of

convergence as the number of covariates d increases and the conditional bias is of the same

order h2 for any value of d. Performance of m̂(x) can be measured by the asymptotically

optimal conditional mean squared error, i.e. the asymptotic conditional mean squared

error minimized over all bandwidths. It has the order n−4/(d+4) and deteriorates for larger

values of d. This is known as the curse of dimensionality problem. It occurs naturally

because, with the same sample size, the design points X1, · · · , Xn are much less dense in

higher dimensions so the variance inflates to a slower rate. Therefore, reducing variance

of multivariate local linear regression becomes very important and it is investigated in the

subsequent sections.

We propose two types of estimators of m(x) that improve the multivariate local linear

regression estimator m̂(x) in terms of reducing the asymptotic conditional variance while

keeping the same asymptotic conditional bias. The first variance reducing estimator is
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introduced in Section 2.1. It has a very appealing property of achieving variance reduction

while requiring even much less computational effort, by a factor decreasing exponentially

in d, than the original local linear estimator. Our second method, proposed in Section

2.2, is even more effective in the sense that its pointwise relative efficiency with respect to

m̂(x) is uniform and is the best that the first method can achieve at only certain points.

The way it is constructed can be easily explained by the first method.

Section 2 introduces the variance reducing techniques and investigates the asymp-

totic conditional biases and variances. Bandwidth selection, the most crucial problem

in nonparametric smoothing, is discussed in Section 3. Section 4 studies the asymptotic

relative efficiencies and issues such as implementation and boundary corrections. A sim-

ulation study and a real application are presented in Section 5. All proofs are given in

Section 6.

2 Methodology

2.1 Method I – Fixed Local Linear Constraints

Let G = (G1, · · · , Gd)T be a vector of odd integers, and for each i = 1, · · · , d let {αi,j :

j = 1, · · · , Gi} be an equally spaced grid of points with bin width

δibih = αi,j+1 − αi,j for j = 1, · · · , Gi − 1,

where δi > 0, i = 1, · · · , d, are given tuning parameters. In practice, choosing δi ∈
[0.5, 1.5], i = 1, · · · , d, for moderate sample sizes is preferred. Then Λ =

{

(α1,u1 , · · · , αd,ud)
T :

ui = 1, · · · , Gi for each i = 1, · · · , d
}

is a collection of grid points in the range D =

[α1,1, α1,G1 ]× · · · × [αd,1, αd,Gd ] ⊂ Rd. Denote

Dv = [α1,2v1 , α1,2v1+2]× · · · × [αd,2vd , αd,2vd+2],

where 2vi ∈ {1, 3, · · · , Gi−2} for i = 1, · · · , d. Then the Dv’s form a partition of D. And

for any fixed point x = (x1, · · · , xd)T ∈ D, there exist two vectors v = (v1, · · · , vd)T and

r = (r1, · · · , rd)T , where ri ∈ [−1, 1] for i = 1, · · · , d, such that x is expressed as

xi = αi,2vi+1 + riδibih for each i = 1, · · · , d. (2.1)

3



So the vector v indicates the subset Dv of D that x belongs to and the vector r marks

the location of x relative to the set of grid points that fall within Dv, i.e.,

Λv = Λ ∩Dv = Λ ∩ [α1,2v1 , α1,2v1+2]× · · · × [αd,2vd , αd,2vd+2]

=
{

x∗(k1, · · · , kd) = (α1,2v1+k1 , · · · , αd,2vd+kd)
T : (k1, · · · , kd)T ∈ {0, 1, 2}d}. (2.2)

The local linear estimator m̂(x) involves an inverse operation associated with the

local design matrix in which only a few design points have positive weights, see (1.2)

and (1.3). That contributes much instability to m̂(x). Therefore, our idea of variance

reduction in local linear estimation of m(x) at any x ∈ Dv ⊂ D is the following. Given

{m̂(α) : α ∈ Λ}, i.e. the local linear estimates evaluated over Λ, we form a linear

combination of the values m̂(α), α ∈ Λv ⊂ Λ, to be a new estimate of m(x) instead of

recomputing m̂(x) at x as in (1.3). In this way the resultant estimate is not allowed to

differ too much from the values m̂(α), α ∈ Λv, where Λv is a degenerate subset of Dv, and

its source of variability is restricted to their variances and covariances. In other words,

our new estimator at any x ∈ Dv is constrained by m̂(α), α ∈ Λv, and in general will

have a smaller variance than m̂(x). Meanwhile, to ensure the asymptotic conditional

bias unchanged, the new estimator has to be subject to certain moment conditions. This

can be accomplished by forcing the coefficients in the linear combination to fulfill the

corresponding requirements.

Formally, put δ = (δ1, · · · , δd)T and let

A0(s) =
s(s− 1)

2
, A1(s) = 1− s2, A2(s) =

s(s + 1)
2

. (2.3)

Our first variance reduced estimator is defined as

m̃(x; r, δ) =
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

m̂
(

x∗(k1, · · · , kd)
)

=
∑

x∗(k1,··· ,kd)∈Λv

{

Πd
i=1Aki(ri)

}

m̂
(

x∗(k1, · · · , kd)
)

. (2.4)

That is, m̃(x; r, δ) is a linear combination of m̂(α), α ∈ Λv ⊂ Λ, the original local linear

estimates at the 3d grid points in Λv ⊂ Dv where x ∈ Dv.

Since the functions A0(s), A1(s) and A2(s) satisfy A0(s) + A1(s) + A2(s) = 1 for all

s ∈ [−1, 1], it is clear from (2.3) and (2.4) that m̃(x; r, δ) = m̂(x) for all x ∈ Λ and of
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course m̃(x; r, δ) and m̂(x) have the exactly same finite and large sample behaviors over

Λ. So the interesting part is D \ Λ where m̃(x; r, δ) and m̂(x) are not equal. The fact

that m̃(x; r, δ) has a smaller variance than m̂(x) for all x ∈ D \ Λ can be explained in

two ways. First, compared to m̂(x), m̃(x; r, δ) is constructed using more data points as

the collection {m̂(α) : α ∈ Λv} is based on observations with their X-values falling in a

larger neighborhood of x. Another reason is that m̃(x; r, δ) is constrained by the local

linear estimates m̂(α), α ∈ Λv, instead of being built from a separate local linear fitting

or in any modified way, so its source of variation is restricted to the local linear fittings

at α ∈ Λv.

Concerning the bias of m̃(x; r, δ) as an estimator of m(x), the expected values of

m̂(α), α ∈ Λv, differ from m(x) by more than the usual h2-order bias of m̂(x). For

m̃(x; r, δ) to have the same asymptotic bias as m̂(x), noting that points in Λv are all distant

from x at the order h, the coefficients in the linear combination defining m̃(x; r, δ) have to

sum up to one and cancel the extra order-h and order-h2 biases contributed by m̂(α), α ∈
Λv. Since A0(s), A1(s) and A2(s) defined in (2.3) satisfy conditions (6.2), the coefficients

Πd
i=1Aki(ri) in the linear combination defining m̃(x; r, δ) fulfill these requirements.

Throughout this paper we assume the following regularity conditions:

(A1) The kernel K is a compactly supported, bounded kernel such that µ2(K) ∈ (0,∞);

(A2) The point x is in the support of f . At x, ν is continuous, f is continuously

differentiable and all second-order derivatives of m are continuous. Also, f(x) > 0

and ν(x) > 0;

(A3) The bandwidth h satisfies h = h(n) → 0 and nhd →∞ as n →∞.

Our main result is as follows.

Theorem 1. Suppose that x is any point in D with the corresponding vectors v and r

as in (2.1). Assume that every element of Λv is an interior point. Then, under conditions

(A1)–(A3), as n →∞,

E
{

m̃(x; r, δ)−m(x)
∣

∣X1, · · · , Xn
}

=
1
2
h2µ2(K) tr

{

BM2(x)
}

+ op
(

h2), (2.5)
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Var
{

m̃(x; r, δ)
∣

∣X1, · · · , Xn
}

=
ν(x)

nhdf(x)Πd
i=1bi

Πd
i=1

{

R(K)− r2
i (1− r2

i )C(δi)
}

+op
{

(nhd)−1} , (2.6)

where

C(s) =
3
2
C(0, s)− 2C(

1
2
, s) +

1
2
C(1, s) ,

C(s, t) =
∫

K(u− st)K(u + st) du.

Hence, from (1.4), (1.5), (2.5) and (2.6), m̂(x) and m̃(x; r, δ) have the same asymp-

totic conditional bias and their asymptotic conditional variances differ only by the con-

stant factors Πd
i=1R(K) and Πd

i=1

{

R(K)−r2
i (1−r2

i )C(δi)
}

. Therefore, comparison between

the asymptotic conditional variances lies on the vector δ of the bin widths for Λ and the

vector r indicating the location of x in Dv ⊂ D, but not the vector v. The two quantities

Πd
i=1R(K) and Πd

i=1

{

R(K) − r2
i (1 − r2

i )C(δi)
}

are equal when r2
i (1 − r2

i )C(δi) = 0 for

i = 1, · · · , d. Concerning δ, C(δ1) = · · · = C(δd) = 0 if and only if δ1 = · · · = δd = 0,

which corresponds to m̃(x; r, δ) = m̂(x) for all x ∈ D and is not meaningful at all. The

case that some δi are zero is not of any interest either, since in that case Λ is degenerate

in the sense that it does not span D. So we are only interested in the case where all the

bin widths are positive:

δi > 0, i = 1, · · · , d.

This condition is assumed throughout this paper. As for r, note that r2
i (1 − r2

i ) = 0

if and only if ri ∈ {−1, 0, 1}. Under the assumption that δi > 0, i = 1, · · · , d, the two

asymptotic conditional variances are equal if and only if ri ∈ {−1, 0, 1} for all i = 1, · · · , d

and that corresponds to x ∈ Λ, which coincide with the fact that m̃(x; r, δ) = m̂(x) for

x ∈ Λ. On the other hand, r2
i (1−r2

i ) > 0 for all ri ∈ [−1, 1]\{−1, 0, 1} and, for commonly

used kernels, such as the Epanechnikov kernel K(u) = 0.75(1 − u2)I(−1 < u < 1) and

the Normal kernel K(u) = exp(−u2/2)/
√

2π, C(s) > 0 for all s > 0; see Cheng, Peng and

Wu (2005). Hence we have, for all x ∈ D \ Λ,

Var
{

m̃(x; r, δ)
∣

∣X1, · · · , Xn
}

< Var
{

m̂(x)
∣

∣X1, · · · , Xn
}

asymptotically.

Ratio of the asymptotic conditional variance of m̃(x; r, δ) to that of m̂(x) is

Πd
i=1

{ R(K)
R(K)− r2

i (1− r2
i )C(δi)

}

.
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Given B and δ, this ratio, as well as the pointwise asymptotic relative efficiency of

m̃(x; r, δ) with respect to m̂(x), differs as x varies in Dv. And, irrelevant to the vec-

tor v, m̃(x; r, δ) attains the most relative variance reduction when x has its associated

vector r = (r1, · · · , rd)T taking the values ri = ±
√

1/2 for all i = 1, · · · , d. That is, within

each Dv, m̃(x; r, δ) is asymptotically most efficient relative to m̂(x) at the 2d points

x = (α1,2v1 , · · · , αd,2vd)
T +h

(

(1+r1)δ1b1, · · · , (1+rd)δdbd
)T , r ∈ {−1/

√
2, 1/

√
2}d. (2.7)

And the maximum is uniform, hence unique, across all such points and over all subsets

Dv of D. Asymptotic relative efficiency of m̃(x; r, δ) with respect to m̂(x) is investigated

in further details in Section 4.1.

2.2 Method II – Varying Local Linear Constraints

As observed in Section 2.1, our first variance reduced estimator m̃(x; r, δ) improves m̂(x)

in a non-uniform manner as x varies in D. And the same best pointwise relative variance

reduction occurs at the 2d points given in (2.7) in each subset Dv of D. Our second

variance reducing estimator is then constructed to achieve this best relative efficiency

everywhere. The approach is that, fixing at any vector r ∈
{

− 1/
√

2, 1/
√

2
}d and for

each x, evaluate the usual local linear estimates at 3d points surrounding x and then

linearly combine these estimates to form a new estimator in the same way as in Section

2.1. But now these 3d neighboring points are determined by x and r and hence differ as

x changes.

Consider that given both B and δ being positive vectors. Fix any r = (r1, · · · , rd)T ∈
{−1/

√
2, 1/

√
2}d. Then, for every x where m(x) is to be estimated, let

αx,r = x− h
(

(1 + r1)δ1b1, · · · , (1 + rd)δdbd
)T ,

Λx,r =
{

x∗k1,··· ,kd
(x; r) = αx,r + h (k1δ1b1, · · · , kdδdbd)T : (k1, · · · , kd)T ∈ {0, 1, 2}d} .

Define a variance reduced estimator of m(x) as

m̃r(x; δ) =
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

m̂
(

x∗k1,··· ,kd
(x; r)

)

=
∑

x∗k1,··· ,kd
(x;r)∈Λx,r

{

Πd
i=1Aki(ri)

}

m̂
(

x∗k1,··· ,kd
(x; r)

)

.
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Thus m̃r(x; δ) is a linear combination of the local linear estimates over Λx,r and m̃(x; r, δ) is

a linear combination of the local linear estimates at Λv. The coefficients in the linear com-

binations are parallel. These facts explain clearly that m̃r(x; δ) enjoys the same variance

reducing property as m̃(x; r, δ). The main difference between m̃r(x; δ) and m̃(x; r, δ) is

that the set Λx,r in the definition of m̃r(x; δ) varies as x changes and r ∈ {−1/
√

2, 1/
√

2}d

is fixed, while the grid Λv for defining m̃(x; r, δ) is fixed for all x ∈ Dv = [α1,2v1 , α1,2v1+2]×
· · · × [αd,2vd , αd,2vd+2] and r depends on x. See also (2.7). Again, δ1, · · · , δd are given

tuning parameters and, for moderate sample sizes, choosing δi ∈ [0.5, 1.5], i = 1, · · · , d,

is preferred. If support of X is bounded, say Supp(X) = [0, 1]d, then to keep Λx,r within

Supp(X), in practice we take δi(xi) = min
{

δi, xi/[(1+
√

1/2)h], (1−xi)/[(1+
√

1/2)h]
}

,

i = 1, · · · , d, for given δ1, · · · , δd.

The following theorem follows immediately from Theorem 1.

Theorem 2. Suppose that r is any given vector in {−1/
√

2, 1/
√

2}d and every element

of Λx,r is an interior point. Then, under conditions (A1)–(A3), as n →∞,

E
{

m̃r(x; δ)−m(x)
∣

∣X1, · · · , Xn
}

=
1
2
h2µ2(K) tr

{

BM2(x)
}

+ op
(

h2) , (2.8)

Var
{

m̃r(x; δ)
∣

∣X1, · · · , Xn
}

=
ν(x)

nhdf(x)Πd
i=1bi

Πd
i=1

{

R(K)− C(δi)/4
}{

1 + op(1)
}

. (2.9)

Therefore the asymptotic conditional biases of m̃r(x; δ) and m̂(x) are again the

same. And the ratio of the asymptotic conditional variances is constant over all values of

x satisfying the conditions in Theorem 2.

There are 2d such estimators indexed by r ∈
{

− 1/
√

2, 1/
√

2
}d. For a particular

value of r, since the set Λx,r is skewed around x, i.e. the 3d points in Λx,r are asymmetri-

cally distributed about x, finite sample bias of m̃r(x; δ) may be more than the asymptotic

prediction. A way to avoid potential finite sample biases arising from this skewness is to

take an average of all the 2d estimates. That is, given B and δ, the averaged variance

reduced estimator is defined as

m̄(x; δ) = 2−d
∑

r∈{−1/
√

2,1/
√

2}d

m̃r(x; δ) ,

for every x. The following theorem is proved in Section 6.
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Theorem 3. Suppose that every element of Λx,r is an interior point for every r ∈
{−1/

√
2, 1/

√
2}d. Then, under conditions (A1)–(A3), as n →∞,

E
{

m̄(x; δ)−m(x)
∣

∣X1, · · · , Xn
}

=
1
2
h2µ2(K) tr

{

BM2(x)
}

+ op
(

h2), (2.10)

Var
{

m̄(x; δ)
∣

∣X1, · · · , Xn
}

=
ν(x)

nhdf(x)Πd
i=1bi

Πd
i=1

{

R(K)− C(δi)
4

− D(δi)
2

}

+op
{

(nhd)−1} , (2.11)

where

D(s) = C(0, s)− 1
4
C(s)− 1 +

√
2

4
C

(

√
2− 1
2

, s
)

− 3 + 2
√

2
16

C
(2−

√
2

2
, s

)

−1
8
C

(

√
2

2
, s

)

− 1−
√

2
4

C
(

√
2 + 1
2

, s
)

− 3− 2
√

2
16

C
(

√
2 + 2
2

, s
)

.

The quantity D(δi) in (2.11) is always nonnegative for δi ≥ 0, see Cheng, Peng and

Wu (2005). Therefore, from (2.8)–(2.11), besides being equally biased asymptotically as

m̃r(x; δ), m̄(x; δ) has an even smaller asymptotic conditional variance.

3 Bandwidth Selection

The asymptotically optimal local bandwidth that minimizes the asymptotic conditional

mean squared error of m̂(x) is

h0(x) =
[ ν(x)R(K)d

nf(x)µ2(K)2 tr{BM2(x)}2Πd
i=1bi

]1/(d+4)
, (3.1)

and those for m̃(x; r, δ), m̃r(x; δ) and m̄(x; δ) are respectively

h1(x) = B1(x, r; δ) h0(x) , h2(x) = B2(δ) h0(x) , h3(x) = B3(δ) h0(x) , (3.2)

where

B1(x, r; δ) = Πd
i=1

[

{

R(K)− r2
i (1− r2

i )C(δi)
}

/R(K)
]1/(d+4)

,

B2(δ) = Πd
i=1

[

{

R(K)− C(δi)/4
}

/R(K)
]1/(d+4)

,

B3(δ) = Πd
i=1

[

{

R(K)− C(δi)/4−D(δi)/2
}

/R(K)
]1/(d+4)

.
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Many popular and reliable data-driven bandwidth selection rules for kernel smooth-

ing are constructed based on the asymptotically optimal bandwidth expressions. Note

that C(δi)’s and D(δi)’s in (3.2), relating the asymptotically optimal local bandwidths,

are all constants determined by δ and the kernel K. Then an important implication

of (3.2) is that data-based local bandwidth selection for any of the proposed estimators

m̃(x; r, δ), m̃r(x; δ) and m̄(x; δ) is simply a matter of adjusting any local bandwidth se-

lector for m̂(x) by multiplying the constant factors accordingly.

Asymptotically optimal global bandwidths for a kernel estimator m̄(x; h) of m(x)

based on bandwidth h are usually derived from global measures of discrepancy such as

IAMSE
(

m̄; h
)

=
∫

D
AMSE

{

m̄(x; h)
}

f(x) w(x) dx , (3.3)

where AMSE
{

m̄(x; h)
}

is the asymptotic conditional mean squared error of m̄(x; h) and

w(x) is a known weight function. Asymptotically optimal global bandwidths for m̃(x; r, δ)

and m̂(x) that minimize this IAMSE measure with respect to h usually do not admit the

simple relation the local counterparts have in (3.2). The reason is that the relative variance

reduction achieved by m̃(x; r, δ) is non-uniform over every Dv. However, suppose that the

conditional variance function ν(x) has a low curvature within each Dv. Then, since the bin

widths δibih, i = 1, · · · , d, of Λ are all of order h, a sensible data-driven global bandwidth

for m̃(x; r, δ) can be obtained from multiplying one for m̂(x) by the constant factor
[ ∫

D
Πd

i=1

{

R(K)− r2
i (1− r2

i )C(δi)
}

w(x) dx /
∫

D
R(K)d w(x) dx

]1/(d+4)

, (3.4)

see (1.4), (1.5), (2.5) and (2.6). Hence, the task of automatically choosing a global

bandwidth for the proposed estimator m̃(x; r, δ) can be done analogously, or at least with

not much more difficulty, as that for m̂(x).

Denote as h0, h2 and h3 the asymptotically optimal global bandwidths of m̂(·),
m̃r(·; δ) and m̄(·; δ). They are defined as the bandwidths minimizing the global measure

in (3.3) for the respective estimators, with D being the set of points where the estimators

are all defined. Then, from (2.5), (2.6), (2.8)–(2.11),

h2 = B2(δ) h0, h3 = B3(δ) h0 , (3.5)

where B2(δ) and B3(δ) are exactly as given in (3.2). The constants B2(δ) and B3(δ)

depend only on the known kernel function K and the given bin width vector δ. Hence,
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automatic global bandwidth selection procedures for both m̃r(x; δ) and m̄(x; δ) can be

easily established from adjusting those for the usual multivariate local linear estimator

m̂(x) by the appropriate constants. For example, Ruppert (1997) and Yang and Tschernig

(1999) established automatic bandwidth procedures for multivariate local linear regres-

sion. Thus the new estimators m̃r(x; δ) and m̄(x; δ) both enjoy the appealing advantage

that they achieve a great extent of variance reduction and improvement of efficiency with-

out introducing any further unknown factors to bandwidth selection, the most important

issue in nonparametric smoothing.

All the above adjustments are rather easy compared to bandwidth selection problems

created by other modifications of local linear estimation, which usually change both the

asymptotic conditional bias and variance. The reason for this major advantage is that the

pointwise asymptotic conditional bias is unaffected everywhere no matter which of the

variance reduction methods is applied. An even more promising feature of both m̃r(x; δ)

and m̄(x; δ) is that they each has its pointwise asymptotic variance as the same constant

multiple of that of m̂(x) at all x.

4 Comparisons

This section is devoted to examine in details impacts of the new estimators on several

essential issues in nonparametric smoothing, including relative efficiency, implementation

and boundary effects.

4.1 Relative Efficiencies

The pointwise asymptotically optimal conditional mean squared error of m̂(x), achieved

by h0(x) in (3.1), is

AMSE
{

m̂(x); h0(x)
}

=
5
4

{ ν(x)R(K)d

nf(x) Πd
i=1bi

}4/(d+4)[

µ2(K)2 tr{BM2(x)}2
]d/(d+4)

. (4.1)
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The asymptotically optimal local bandwidths in (3.2) respectively yield the pointwise

asymptotically optimal mean squared errors of m̃(x; r, , δ), m̃r(x; δ) and m̄(x; δ) as

AMSE
{

m̃(x; r, δ); h1(x)
}

= B1(x; r, δ)4 AMSE
{

m̂(x); h0(x)
}

,

AMSE
{

m̃r(x; δ); h2(x)
}

= B2(δ)4 AMSE
{

m̂(x); h0(x)
}

,

AMSE
{

m̄(x; δ); h3(x)
}

= B3(δ)4 AMSE
{

m̂(x); h0(x)
}

.

Thus, given B and δ, the pointwise asymptotic relative efficiencies of the new estimators

with respect to m̂(x) are

Eff
{

m̃(x; r, δ), m̂(x)
}

= B1(x; r, δ)−4, (4.2)

Eff
{

m̃r(x; δ), m̂(x)
}

= B2(δ)−4, Eff
{

m̄(x; δ), m̂(x)
}

= B3(δ)−4 , (4.3)

for every x. Similarly, taking the asymptotically optimal global bandwidths in (3.5) yields

that the global asymptotic relative efficiencies of m̃r(x; δ) and m̄(x; δ) with respect to m̂(x)

are

Eff
{

m̃r(·; δ), m̂(·)
}

= B2(δ)−4 , Eff
{

m̄(·; δ), m̂(·)
}

= B3(δ)−4 . (4.4)

Therefore, for each of m̃r(x; δ) and m̄(x; δ), local and global asymptotic relative efficiencies

compared to m̂(x) are the same and depend only on δ and K. Global asymptotic relative

efficiency of m̃(x; r, δ) with respect to m̂(x) has a more complex form since the pointwise

relative variance reduction is non-uniform. However, it is well approximated by a simple

expression, not elaborated here, arising from the constant adjustment (3.4) to the global

bandwidth.

Rewrite the pointwise and global asymptotic relative efficiencies B2(δ)−4 and B3(δ)−4,

in (4.3) and (4.4), as

B2(δ)−4 = Πd
i=1 S(δi)−4/(d+4) , B3(δ)−4 = Πd

i=1 T (δi)−4/(d+4) ,

where S(u) =
{

R(K)− C(u)/4
}

/R(K) and T (u) =
{

R(K)− C(u)/4−D(u)/2
}

/R(K).

Consider the simplest case that δ1 = · · · = δd = δ0. Then

Eff
{

m̃r(x; δ), m̂(x)
}

= Eff
{

m̃r(·; δ), m̂(·)
}

= S(δ0)−4d/(d+4) ,

Eff
{

m̄(x; δ), m̂(x)
}

= Eff
{

m̄(·; δ), m̂(·)
}

= T (δ0)−4d/(d+4) . (4.5)
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For commonly used kernels, S(δ0)−1 is greater than one for all δ0 > 0, increases in δ0,

and has an upper limit 8/5. Also, T (δ0)−1 is greater than one for all δ0 > 0, increases

in δ0, and has an upper limit 16/5. If K is supported on [-1,1], the respective upper

limits occur when δ0 = 2 and δ0 = 2/(
√

2 − 1) in which case variances of the proposed

estimators consist of only variances and no covariance of the local linear estimates in the

linear combinations. Then, from (4.5), an important property of our variance reduction

techniques is that the relative efficiency improvements increase as the dimensionality d of

the covariates X = (X1, · · · , Xd)T grows. Table 1 contains some values of S(δ0)−4d/(d+4)

and T (δ0)−4d/(d+4) when K is the Epanechnikov kernel.

Table 1: Relative efficiencies Eff
{

m̃r(·; δ), m̂(·)
}

(upper half) and Eff
{

m̄(·; δ), m̂(·)
}

(lower
half) when δ1 = · · · = δd = δ0 and when K is the Epanechnikov kernel.

δ0 d=1 d=2 d=3 d=4 d=5
0.6 1.064 1.110 1.143 1.169 1.189
0.8 1.088 1.151 1.198 1.235 1.264
1.0 1.113 1.195 1.257 1.306 1.345
1.2 1.166 1.292 1.391 1.469 1.533
1.6 1.293 1.535 1.735 1.902 2.043
2.0 1.456 1.871 2.238 2.560 2.842
0.6 1.089 1.153 1.201 1.238 1.268
0.8 1.121 1.210 1.278 1.332 1.375
1.0 1.168 1.295 1.394 1.473 1.538
1.2 1.237 1.425 1.576 1.700 1.804
1.6 1.393 1.737 2.033 2.288 2.509
2.0 1.580 2.142 2.663 3.136 3.560
2/(
√

2− 1) 2.536 4.716 7.345 10.240 13.260

4.2 Implementation

Since there is no parametric structural assumptions on the unknown regression function

m(·) in nonparametric smoothing, nonparametric regression estimators are usually eval-

uated over a range of x-values in practice. Consider computing estimators of m(x) over

a fine grid Λ0 to provide sensible comprehension of the regression function m(·) over a

range of interest. Then the local linear estimator m̂(x) requires to perform the local least

13



squares fitting (1.2) at every x ∈ Λ0.

To compute our first variance reduced estimator m̃(x; r, δ) for all x ∈ Λ0 one can

proceed as follows. Form D and Λ as in Section 2.1 such that D covers Λ0 and Λ is

coarser than Λ0, and then compute the estimates m̃(x; r, δ), x ∈ Λ0, using m̂(α), α ∈ Λ,

as described in Section 2.1. One appealing feature of m̃(x; r, δ) is that it is very easy to

implement since the coefficients in the linear combination are just products of the simple

one dimensional functions A0, A1 and A2. Therefore, implemented in the above mentioned

way, m̃(x; r, δ) amounts to a considerable saving of computational time compared to m̂(x).

This is a particularly important advantage in the multivariate case. For example, if the

number of grid points at each dimension in Λ is a fixed proportion of that in Λ0, then

the number of evaluations of the local linear estimator is reduced exponentially as the

dimension d increases. Hence, the better asymptotic conditional mean squared error

performance of m̃(x; r, δ) compared to m̂(x) is true at virtually little cost but a great

saving of computational effort.

The estimators m̃r(x, δ) and m̄(x, δ) are more computationally involved. For ex-

ample, in order to evaluate m̃r(x, δ) at each x, one needs to calculate the 3d local linear

estimates m̂(α), α ∈ λx,r. In a naive way, that requires 3d times the effort compared to

what m̂(x) needs. Fortunately, there are ways to avoid such an increase of computational

effort. Suppose that again m̃r(x, δ) is to be evaluated over a grid Λ0. One approach

is to take the bin widths of the grid Λ0 to be in proportions to the bin widths δi bi h,

i = 1, · · · , d, of Λx,r so that m̂(α), α ∈ Λx,r, can be reused for other values of x ∈ Λ0.

Also, the set of coefficients in the linear combination is the same for all x ∈ Λ0 so needs

to be evaluated once only. Hence, in this manner, m̃r(x, δ) is computed with about the

same amount of effort as the local linear estimator m̂(x). The estimator m̄(x, δ) can be

constructed in a similar way to alleviate computational effort.

4.3 Behaviors at Boundary Regions

One reason that the local linear technique is very popular in practice and in many contexts

is that it does boundary correction automatically. For instance, when x is a boundary
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point, the conditional bias and variance of m̂(x) are both kept at the same orders as in the

interior. Theorem 2.2 of Ruppert and Wand (1994) formally defines a boundary point in

multivariate local linear regression and provides asymptotic expressions of the conditional

bias and variance. The theorem shows that only the constant factors involving K and

x are changed and the constant factors depend on how far, relative to the bandwidth

matrix, x is away from the boundary.

Clearly from the form of m̃(x; r, δ), Theorem 1 can be extended to include the

case where Λv is not entirely contained in the interior, so that asymptotic results of the

conditional bias and variance of m̃(x; r, δ) are given for every x ∈ D. This is not elaborated

here because it is straightforward but the notation becomes much more complicated. One

can show that the conditional bias and variance is of the same orders at all x ∈ D as long

as Λv is in the support of f , which is of course true in general. Therefore, m̃(x; r, δ) also

achieves automatic boundary corrections.

For a boundary point x, comparison between the conditional variances of m̂(x)

and m̃(x; r, δ) becomes tedious as the constant coefficients are both very complex. How-

ever, we can argue that Var
{

m̃(x; r, δ)
∣

∣X1, · · · , Xn
}

is again asymptotically smaller than

Var
{

m̂(x)
∣

∣X1, · · · , Xn
}

at boundary regions in the following way. Our estimator m̃(x; r, δ)

is a linear combination of m̂(α), α ∈ Λv. It is well known that Var
{

m̂(α)
∣

∣X1, · · · , Xn
}

is

much smaller than Var
{

m̂(x)
∣

∣X1, · · · , Xn
}

for those α ∈ Λv that are more away from the

boundary than x. The weight in m̃(x; r, δ) put on any m̂(α) with α closer to the boundary

than x becomes close to one only when x is right nearby it. Otherwise, m̃(x; r, δ) spreads

its weights on m̂(α) for those α ∈ Λv more away from the boundary than x.

The constant multiplier in the asymptotic expression of E2
{

m̂(x)−m(x)
∣

∣X1, · · · , Xn
}

changes and it generally becomes smaller as x moves from the interior to the boundary

region. Therefore, m̃(x; r, δ) no longer has the same asymptotic conditional bias as m̂(x)

at a boundary point x. However, it is generally true that, as x moves more toward the

boundary, the decrease in E2
{

m̂(x)−m(x)
∣

∣X1, · · · , Xn
}

is much less than the increase in

Var
{

m̂(x)
∣

∣X1, · · · , Xn
}

. Then the difference between E2
{

m̃(x; r, δ)−m(x)
∣

∣X1, · · · , Xn
}

and E2
{

m̂(x)−m(x)
∣

∣X1, · · · , Xn
}

is small compared to the variance reduction yielded by

m̃(x; r, δ). This implies that the asymptotic conditional mean squared error of m̃(x; r, δ)
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is again smaller than that of m̂(x) when x is a boundary point.

Consider behaviors of m̃r(x; δ) and m̄(x; δ) in boundary regions. Suppose that Λx,r

is entirely contained in the support of the design density f . Then the above arguments

can be used to demonstrate that m̃r(x; δ) and m̄(x; δ) also have the automatic boundary

correction property, and that they have smaller asymptotic mean squared errors than

m̂(x) in boundary regions.

Asymptotic behaviors of the conditional bias and variance of the local linear estima-

tor m̂(x) when x is near the boundary are illustrated and discussed in details by Fan and

Gijbels (1992), Ruppert and Wand (1994) and Fan and Gijbels (1996), among others.

5 Simulation study and real application

5.1 Simulation Study

Consider model (1.1) with d = 2, ν(x) = 1, m(x1, x2) = sin(2πx1) + sin(2πx2). Let

Xi1 and Xi2 be independent with each being uniformly distributed on [0, 1], and εi has

a standard Normal distribution. We drew samples from the above model with sample

size n = 400 and n = 1000. In computing m̂(x1, x2) and m̄(x1, x2; δ), we employed

the biweight kernel K(u) = 15
16(1 − u2)2I(|u| ≤ 1), h = 0.15 and 0.2, b1 = b2 = 1,

δi = min{1, xi/[(1 + 1
√

2)h], (1 − xi)/[(1 + 1/
√

2)h]} for i = 1, 2. In Figures 1-4, the

natural logarithm of ratio of the mean squared error of m̄(x1, x2; δ) to that of m̂(x1, x2)

is plotted against different x1 = 0, 0.05, · · · , 1 and x2 = 0, 0.05, · · · , 1, and also against

x2 = 0, 0.5, · · · , 1, but with fixed x1 = 0.2, 0.5, 0.8. These figures show that, in all cases

considered, m̄(x1, x2; δ) has a significantly smaller mean squared error than m̂(x1, x2)

when (x1, x2) is an interior point. Occasionally, the mean squared error of m̄(x1, x2; δ)

is slightly larger than that of m̂(x1, x2) for some boundary points. Boundary behaviours

is not a main issue in nonparametric multivariate regression since the data contain very

little information about the regression surface there.
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5.2 Real application

We applied the local linear estimator m̂(·) and our variance reduced estimate m̄(·; δ) to

the Boston housing price data set. This data set consists of the median value of owner-

occupied homes in 506 U.S. census tracts in the Boston area in 1970, together with several

variables which might explain the variation of housing value, see Harrison and Rubinfeld

(1978). Here we fit model (1.1) to the median values of homes with two covariates,

x1 = LSTAT (lower status of the population) and x2 = PTRATIO (pupil-teacher ratio

by town). We computed estimators m̂(x1, x2) and m̄(x1, x2; δ) by taking the same set of

tuning parameters δi, i = 1, 2, and the same kernel as in Section 5.1 and h = 1, and

b1 = 1.5, b2 = 0.5 were employed here. These estimators are plotted in Figure 5. Close

to the boundary PTRATIO = 0, mainly PTRATIO less than 1.8, the two estimators

behave quite differently since the regression surface changes drastically in that boundary

region. The spikes in m̄(x1, x2; δ) will disappear if smaller values of δi, i = 1, 2, are used.

For PTRATIO > 3 or LSTAT > 10, our estimator m̄(x1, x2; δ) effectively smoothes out

the spurious bumps produced by m̂(x1, x2).

6 Proofs

Proof of Theorem 1. Put ∆ = ((k1 − 1 − r1)δ1b1, · · · , (kd − 1 − rd)δdbd)T . Then

x∗(k1, · · · , kd)− x = h∆. Further

m(x∗(k1, · · · , kd))−m(x) = h∆T M1(x) +
1
2
h2∆T M2(x)∆ + o(h2), (6.1)

where M1(x) =
(

∂
∂x1

m(x), · · · , ∂
∂xd

m(x)
)T . Since, for any s ∈ [−1, 1],

∑

j∈{0,1,2}

Aj(s) = 1 ,
∑

j∈{0,1,2}

Aj(s)(j − 1− s)l = 0 , l = 1, 2 , (6.2)
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we have
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

= 1,

E
{

m̃(x; r, δ)−m(x)
∣

∣X1, · · · , Xn
}

=
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

E
{

m̂
(

x∗(k1, · · · , kd)
)

−m
(

x∗(k1, · · · , kd)
)∣

∣X1, · · · , Xn
}

+
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}{

m
(

x∗(k1, · · · , kd)
)

−m(x)
}

=
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}[1
2
µ2(K)h2 tr

{

BM2(x)
}

+ op
(

h2)
]

+
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}{

h∆T M1(x) +
1
2
h2∆T M2(x)∆ + o

(

h2)
}

=
1
2
µ2(K) h2 tr

{

BM2(x)
}

+ hE1 +
1
2

h2 E2 + op
(

h2) .

where

E1 =
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

∆T M1(x) ,

E2 =
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

∆T M2(x)∆ .

Then (2.5) follows if E1 = E2 = 0 which can be validated by showing that

E1 =
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}
d

∑

j=1

(kj − 1− rj)δjbj
∂

∂xj
m(x)

=
∑

(k1,··· ,kd−1)T∈{0,1,2}d−1

{

Πd−1
i=1 Aki(ri)

}{
∑

kd∈{0,1,2}

Akd(rd)
d

∑

j=1

(kj − 1− rj)δjbj
∂

∂xj
m(x)

}

=
∑

(k1,··· ,kd−1)T∈{0,1,2}d−1

{

Πd−1
i=1 Aki(ri)

}{
d−1
∑

j=1

(kj − 1− rj)δjbj
∂

∂xj
m(x)

}

,
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E2 =
∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

×
{ d

∑

j=1

d
∑

l=1

(kj − 1− rj)δjbj(kl − 1− rl)δlbl
∂2

∂xj∂xl
m(x)

}

=
∑

(k1,··· ,kd−1)T∈{0,1,2}d−1

{

Πd−1
i=1 Aki(ri)

}

{

∑

kd∈{0,1,2}

Akd(rd)(kd − 1− rd)2δ2
db

2
d

∂2

∂x2
d
m(x)

+
∑

kd∈{0,1,2}

Akd(rd)
d−1
∑

j=1

d−1
∑

l=1

(kj − 1− rj)δjbj(kl − 1− rl)δlbl
∂2

∂xj∂xl
m(x)

+ 2
∑

kd∈{0,1,2}

Akd(rd)
d−1
∑

l=1

(kd − 1− rd)δdbd(kl − 1− rl)δlbl
∂2

∂xd∂xl
m(x)

}

=
∑

(k1,··· ,kd−1)T∈{0,1,2}d−1

{

Πd−1
i=1 Aki(ri)

}

×
{ d−1

∑

j=1

d−1
∑

l=1

(kj − 1− rj)δjbj(kl − 1− rl)δlbl
∂2

∂xj∂xl
m(x)

}

,

and by induction.

To deal with the conditional variance, let C∗(a, b) =
∫

K(s + a)K(s + b) ds, Σ =

diag
{

ν(X1), · · · , ν(Xn)
}

, z = (α1,2ν1+k1 , · · · , αd,2νd+kd)
T and y = (α1,2ν1+l1 , · · · , αd,2νd+ld)

T ,

where ki, li ∈ {0, 1, 2} for i = 1, · · · , d. The covariance of m̂(z) and m̂(y) conditional on

X1, · · · , Xn is

E
[

{

m̂(z)− E
(

m̂(z)
∣

∣X1, · · · , Xn
)}{

m̂(y)− E
(

m̂(y)
∣

∣X1, · · · , Xn
)}

∣

∣

∣X1, · · · , Xn

]

= eT (

XT
z WzXz

)−1XT
z WzΣWyXy

(

XT
y WyXy

)−1e .

Note that

XT
z WzΣWyXy

=
n

∑

i=1

Πd
j=1

{

K
(Xij − zj

bjh
)

K
(Xij − yj

bjh
)

}

ν(Xi)
(

1 (Xi − y)T

(Xi − z) (Xi − z)(Xi − y)T

)

=
(

I II
III IV

)

,
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where

{ν(x)f(x)}−1I

= n Πd
j=1

{

∫

K
(s− αj,2νj+kj

bjh

)

K
(s− αj,2νj+lj

bjh

)

ds
}

{

1 + op(1)
}

= n Πd
j=1

{

∫

K
(s− xj

bjh
+

xj − αj,2νj+kj

bjh

)

K
(s− xj

bjh
+

xj − αj,2νj+lj

bjh

)

ds
}

{

1 + op(1)
}

= n Πd
j=1

{

bjh
∫

K
(

u + (1− kj + rj)δj
)

K
(

u + (1− lj + rj)δj
)

du
}

{

1 + op(1)
}

= nhd Πd
j=1

{

bjC∗((1− kj + rj)δj, (1− lj + rj)δj
)

}

{1 + op(1)},

every element in II and III is Op(nhd+1) and every element in IV is Op(nhd+2). Also,

similar to Ruppert and Wand (1994), we can show that

(XT
z WzXz)−1 =

1
nhdΠd

j=1bj

(

{

f(x)
}−1 + op(1) −M1(x)T

{

f(x)
}−2 + op(1)

−M1(x)
{

f(x)
}−2 + op(1)

{

µ2(K)f(x)H
}−1 + op(H−1)

)

,

(XT
y WyXy)−1 =

1
nhdΠd

j=1bj

(

{

f(x)
}−1 + op(1) −M1(x)T

{

f(x)
}−2 + op(1)

−M1(x)
{

f(x)
}−2 + op(1)

{

µ2(K)f(x)H
}−1 + op(H−1)

)

.

So

E
[

{

m̂(z)− E
(

m̂(z)
∣

∣X1, · · · , Xn
)}{

m̂(y)− E
(

m̂(y)
∣

∣X1, · · · , Xn
)}

∣

∣

∣X1, · · · , Xn

]

=
ν(x)

nhdf(x)Πd
j=1bj

Πd
j=1

{

C∗((1− kj + rj)δj, (1− lj + rj)δj
)

}

{

1 + op(1)
}

. (6.3)

Further

Var
{

m̃(x; r, δ)|X1, · · · , Xn
}

=
ν(x)

nhdf(x)Πd
j=1bj

∑

(k1,··· ,kd)T∈{0,1,2}d

∑

(l1,··· ,ld)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}{

Πd
i=1Ali(ri)

}

×
{

Πd
j=1C

∗((1− kj + rj)δj, (1− lj + rj)δj
)

}

{1 + op(1)}

=
ν(x)

nhdf(x)Πd
j=1bj

∑

(k1,··· ,kd−1)T∈{0,1,2}d−1

∑

(l1,··· ,ld−1)T∈{0,1,2}d−1

{

Πd−1
i=1 Aki(ri)

}{

Πd−1
i=1 Ali(ri)

}

×
{

Πd−1
j=1C

∗((1− kj + rj)δj, (1− lj + rj)δj)
}

V1
{

1 + op(1)
}

,
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where

V1 =
∑

kd∈{0,1,2}

Akd(rd)
∑

ld∈{0,1,2}

Ald(rd) C∗((1− kd + rd)δd, (1− ld + rd)δd
)

=
r2
d(rd − 1)2

22 C(0, δd) + (1− r2
d)

rd(rd − 1)
2

C
(1
2
, δd

)

+
rd(rd + 1)

2
rd(rd − 1)

2
C(1, δd)

+
rd(rd − 1)

2
(1− r2

d)C(
1
2
, δd) + (1− r2

d)
2C(0, δd) +

rd(rd + 1)
2

(1− r2
d)C(

1
2
, δd)

+
rd(rd − 1)

2
rd(rd + 1)

2
C(1, δd) + (1− r2

d)
rd(rd + 1)

2
C

(1
2
, δd

)

+
r2
d(rd + 1)2

22 C(0, δd)

=
3r4

d − 3r2
d + 2

2
C(0, δd) + 2r2

d(1− r2
d)C(

1
2
, δd) +

r2
d(r

2
d − 1)
2

C(1, δd)

= R(K)− r2
d(1− r2

d)C(δd) .

Thus, by induction, we have

Var
{

m̃(x; r, δ)
∣

∣X1, · · · , Xn
}

=
ν(x)

nhdf(x)Πd
j=1bj

Πd
j=1

{

R(K)− r2
j (1− r2

j )C(δj)
}{

1+ op(1)
}

.

Proof of Theorem 3. Note that x and x∗k1,··· ,kd
(x; r) in the definition of m̃r(x; δ) follows

the relation x∗k1,··· ,kd
(x; r) = x+

(

(k1−1−r1)δ1b1h, · · · , (kd−1−rd)δdbdh
)T = x+h∆. In the

definition of m̃(x; r, δ), x and x∗(k1, · · · , kd) following a parallel relation x∗(k1, · · · , kd) =

x + h∆. Therefore the conditional bias result (2.10) follows from (2.5) and we only need

to show (2.11). Write

m̄(x; δ) = 2−d
∑

(r1,··· ,rd)T∈{−1/
√

2,1/
√

2}d

∑

(k1,··· ,kd)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}

×m̂
(

(x1 + (k1 − 1− r1)δ1b1h, · · · , xd + (kd − 1− rd)δdbdh)T )

.
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Hence, using (6.3) we have

Var
{

m̄(x; δ)|X1, · · · , Xn
}

=
ν(x)

22dnhdf(x)Πd
i=1bi

∑

(r1,··· ,rd)T∈{−1/
√

2,1/
√

2}d

∑

(s1,··· ,sd)T∈{−1/
√

2,1/
√

2}d

∑

(k1,··· ,kd)T∈{0,1,2}d

∑

(l1,··· ,ld)T∈{0,1,2}d

{

Πd
i=1Aki(ri)

}{

Πd
i=1Ali(si)

}

×
{

Πd
i=1C

∗((1− ki + ri)δi, (1− li + si)δi
)

}

{

1 + op(1)
}

=
ν(x)

22dnhdf(x)Πd
i=1bi

∑

(r1,··· ,rd−1)T∈{−1/
√

2,1/
√

2}d−1

∑

(s1,··· ,sd−1)T∈{−1/
√

2,1/
√

2}d−1

∑

(k1,··· ,kd−1)T∈{0,1,2}d−1

∑

(l1,··· ,ld−1)T∈{0,1,2}d−1

{

Πd−1
i=1 Aki(ri)

}{

Πd−1
i=1 Ali(si)

}

×
{

Πd−1
i=1 C∗((1− ki + ri)δi, (1− li + si)δi

)

}

V2
{

1 + op(1)
}

.

where

V2 =
∑

kd∈{0,1,2}

∑

ld∈{0,1,2}

Akd(−1/
√

2)Ald(−1/
√

2)C∗((1− kd − 1/
√

2)δd, (1− ld − 1/
√

2)δd
)

+
∑

kd∈{0,1,2}

∑

ld∈{0,1,2}

Akd(−1/
√

2)Ald(1/
√

2)C∗((1− kd − 1/
√

2)δd, (1− ld + 1/
√

2
)

δd
)

+
∑

kd∈{0,1,2}

∑

ld∈{0,1,2}

Akd(1/
√

2)Ald(−1/
√

2)C∗((1− kd + 1/
√

2)δd, (1− ld − 1/
√

2)δd
)

+
∑

kd∈{0,1,2}

∑

ld∈{0,1,2}

Akd(1/
√

2)Ald(1/
√

2)C∗((1− kd + 1/
√

2)δd, (1− ld + 1/
√

2)δ
)

= 4
{

R(K)− C(δd)/4−D(δd)/2
}

.

By induction, we can show (2.11).
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Figure 1: Log-ratios with n = 400 and h = 0.2. The natural logarithm of ra-
tio of the mean squared error of m̄(x1, x2; δ) to that of m̂(x1, x2) is plotted against
x1 = 0, 0.05, · · · , 1 and x2 = 0, 0.05, · · · , 1, and also against x2 = 0, 0.05, · · · , 1, but
with fixed x1 = 0.2, 0.5, 0.8.
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Figure 2: Log-ratios with n = 400 and h = 0.15. The natural logarithm of ratio
of the mean squared error of m̄(x1, x2; δ) to that of m̂(x1, x2) is plotted against x1 =
0, 0.05, · · · , 1 and x2 = 0, 0.05, · · · , 1, and also against x2 = 0, 0.05, · · · , 1, but with fixed
x1 = 0.2, 0.5, 0.8.
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Figure 3: Log-ratios with n = 1000 and h = 0.2. The natural logarithm of ratio
of the mean squared error of m̄(x1, x2; δ) to that of m̂(x1, x2) is plotted against x1 =
0, 0.05, · · · , 1 and x2 = 0, 0.05, · · · , 1, and also against x2 = 0, 0.05, · · · , 1, but with fixed
x1 = 0.2, 0.5, 0.8.
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Figure 4: Log-ratios with n = 1000 and h = 0.15. The natural logarithm of ratio
of the mean squared error of m̄(x1, x2; δ) to that of m̂(x1, x2) is plotted against x1 =
0, 0.05, · · · , 1 and x2 = 0, 0.05, · · · , 1, and also against x2 = 0, 0.05, · · · , 1, but with fixed
x1 = 0.2, 0.5, 0.8.
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Figure 5: Analysis of Boston housing price data set. Panels (a) and (b) are respectively
the local linear estimate m̂(·) and the variance reduction estimate m̄(·; δ). Panels (c)–(f)
plot m̂(x1, x2) (solid line) and m̄(x1, x2; δ) (dotted line) against x2 when x1 = 7, 9, 11, 13,
respectively.
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