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Summary. Nonparametric tests of modality are a distribution-free way of assessing evidence
about inhomogeneity in a population, provided that the potential subpopulations are suf®ciently
well separated. They include the excess mass and dip tests, which are equivalent in univariate
settings and are alternatives to the bandwidth test. Only very conservative forms of the excess
mass and dip tests are available at present, however, and for that reason they are generally not
competitive with the bandwidth test. In the present paper we develop a practical approach to
calibrating the excess mass and dip tests to improve their level accuracy and power substantially.
Our method exploits the fact that the limiting distribution of the excess mass statistic under the
null hypothesis depends on unknowns only through a constant, which may be estimated. Our
calibrated test exploits this fact and is shown to have greater power and level accuracy than the
bandwidth test has. The latter tends to be quite conservative, even in an asymptotic sense.
Moreover, the calibrated test avoids dif®culties that the bandwidth test has with spurious modes in
the tails, which often must be discounted through subjective intervention of the experimenter.

Keywords: Bandwidth test; Bimodal distribution; Bootstrap; Bump; Density estimation; Mode; Mode
testing; Monte Carlo simulation; Unimodal distribution

1. Introduction

1.1. Assessing homogeneity
Testing for homogeneity of a population is traditionally conducted using parametric pro-
cedures, e.g. approximating the sampling distribution by a parametric mixture of unimodal
distributions (Everitt and Hand, 1981) and assessing the goodness of ®t (see for example Cox
(1966), Aitkin and Rubin (1985) and Roeder (1994)). A disadvantage of this approach is that
the assessment may be in¯uenced almost as much by the validity of the particular parametric
modelÐe.g. by the weight of the tails of the ®tted distributionÐas by the hypothesis of
homogeneity. Testing the goodness of ®t, even in the case of normal mixtures, can be par-
ticularly awkward (e.g. Hartigan (1985)) and can require sophisticated numerical methods
(e.g. McLachlan (1987) and Finch et al. (1989)).

Provided that the components in a population have unimodal distributions and are suf-
®ciently widely separated, they may be identi®ed nonparametrically by `bump hunting' (e.g.
Good and Gaskins (1980)) or by testing for a multiplicity of modes in a nonparametric
density estimator (e.g. the bandwidth test of Silverman (1981)). In principle these approaches
are in¯uenced relatively little by parametric issues such as the tail weight. However, methods
that rely on ®tting a nonparametric curve estimate can be a�ected by undesirable properties
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of the procedure that is used, e.g. by the propensity of data values towards the edge of a
sample to produce spurious bumps in the tail of a kernel density estimator that employs a
single, global, bandwidth. Those problems reduce the attractiveness of the bandwidth test
and lessen its power. Although they may sometimes be overcome by direct intervention of the
experimenter, that adds a subjective element to the test and requires statistical skills that the
experimenter may not have.

In this paper we suggest a way of calibrating the dip and excess mass tests, overcoming
their well-known conservatism and rendering them superior to the bandwidth test in terms of
level accuracy and power. The calibration retains the immunity of dip and excess mass tests
to problems caused by spurious clumps of data in the tails of a distribution.

1.2. Dip and excess mass tests
Dip and excess mass approaches to testing hypotheses about modality were introduced by
Hartigan and Hartigan (1985) and MuÈ ller and Sawitzki (1991a) respectively. They may be
shown to be equivalent in the one-dimensional case, in that the excess mass statistic equals
exactly twice the dip statistic. One of their attractive features is that they proceed without
explicitly estimating a density.

Nevertheless, along with other tests for modality they share di�culties of implementation.
Suggestions by Hartigan and Hartigan (1985) and MuÈ ller and Sawitzki (1991a) that the tests
be based on comparisons with properties of samples of uniform random variables are attractive
on the grounds of simplicity, but they lead to considerable conservatism. It may be shown
that the asymptotic levels of such tests are zero, for each non-zero value of nominal level. By
contrast, Silverman's (1981) bootstrap-based method for implementing the bandwidth test
has a non-zero asymptotic level for each non-zero nominal level (Mammen et al., 1992).
Therefore it is no surprise to learn that, in moderate to large samples, Silverman's approach
has greater power than the traditional dip and excess mass tests, if powers are compared at
the same nominal level.

The bandwidth test is itself quite conservative, however, even in the asymptotic limit. This
di�culty has been discussed by Mammen et al. (1992) and quanti®ed by York (1998). It leads
to reduced power. A calibrated form of the dip and excess mass tests, which we suggest in this
paper, is competitive with the bandwidth test on grounds of power as well as immunity to
spurious bump problems. It uses the bootstrap to emulate sampling under the null hypothesis
of unimodality (i.e. homogeneity).

Since the dip and excess mass tests are equivalent, we may con®ne attention to the latter.
Section 1.3 will detail the excess mass approach, Section 2 will describe our method, Section 3
will address its numerical properties and Section 4 will outline its main theoretical features.
Technical arguments behind the results in Section 4 are given by Cheng and Hall (1997), on
which this paper is based. Cheng and Hall (1997) also detail an alternative approach to
calibrating the excess mass test, based on a version of Silverman's (1981) bootstrap argument.
For the excess mass test, this approach produces asymptotically correct levels.

Work related to the dip and excess mass tests includes that of Hartigan (1987) on
estimating a convex density contour, of MuÈ ller and Sawitzki (1987, 1991b) on the excess mass
test and of Nolan (1991) on properties of the excess mass ellipsoid (a comparator set for the
excess mass statistic) in the d-dimensional case. In this paper we treat only the case d � 1,
where the selection of comparator sets avoids the ambiguities of higher dimensions. Polonik
(1995a, b) has continued MuÈ ller and Sawitzki's development of the concept of excess mass,
whereas Mammen and Tsybakov (1995) have used the concept as a tool for optimal estimation
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of sets with smooth boundaries. Properties of the bandwidth test have been reported by
Silverman (1983), Mammen et al. (1992) and Fisher et al. (1994). Work of Minnotte and
Scott (1992) on modal trees should also be mentioned in this context.

1.3. Details of the excess mass test
Let F denote the distribution function corresponding to the sampling density f, and let F̂ be
the empirical distribution function of an n-sample drawn from F. The measure of empirical
excess mass for m modes is de®ned to equal

Enm��� � sup
C1, : : : ,Cm

�Pm
j�1
f F̂�Cj� ÿ �kCjkg

�
�1:1�

(MuÈ ller and Sawitzki, 1991a, b), where � > 0, the supremum is taken over all sequences
fC1, . . ., Cm g of disjoint intervals (the comparator sets), F̂�C � is the F̂-measure of C and kCk
is the length of C. De®ne

Dnm��� � Enm��� ÿ En,mÿ1���5 0.

The excess mass statistic for testing the null hypothesis Hmÿ1 that f has mÿ 1 modes, against
the alternative Hm that it has m modes, is

�nm � sup
�>0

fDnm���g.

The hypothesis Hmÿ1 is rejected in favour of Hm if the value of �nm is too large. In the present
paper we develop empirical methods for quantifying the notion of `too large', with particular
emphasis on the case m � 1.

2. Calibration method

The method presented here is based on a theoretical property that will be stated formally in
Section 4: for large samples, and under the null hypothesis that f is unimodal, the distribution
of �n2 is independent of unknowns except for a factor,

c � f f�x0�3
�j f @�x0�jg1=5, �2:1�

where x0 denotes the unique mode of f. The method involves estimating c. It is immune to the
spurious bump problems of the bandwidth test and may be adapted to the general problem of
testing for m modes. It requires resampling from a `calibration distribution'Ða known
unimodal distribution F 0, for which the properties of �n2 are similar to those under F if the
null hypothesis is correct.

The value of d � cÿ5 � j f @�x0�j=f�x0�3 may lie anywhere in the interval �0, 1�, and we
cover that range by three classes of distribution:

(a) the beta distribution with density

g��x� �
1

B��, �� fx�1ÿ x�g�ÿ1 �2:2a�

for 0 < x < 1 and � > 1, where d � ��� ranges over �0, 2�� (with �1� � 0 and
�1� � 2�);

(b) any normal distribution, where d � 2�;
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(c) the rescaled Student t-distribution with density

g��x� �
1

B�� ÿ 1
2
, 1
2
�

1

�1� x2�� �2:2b�

for ÿ1 < x <1 and � > 1
2 , where d � ��� ranges over �2�,1� (with � 12� � 1 and

�1� � 2�).

Values of d for the beta and Student t reference distributions are respectively

��� �
jg�@� 12�j=g�� 12 �3

jg�@�0�
��=g��0�3

(
� 24�ÿ1�� ÿ 1� B��, ��2

2� B�� ÿ 1
2
, 1
2
�2.

(
�2:3�

These reference distributions were chosen because they are straightforward to simulate
from. However, any class of reference distributions which enjoyed a one-to-one relationship
with the set �0,1� of potential values of d would be suitable in principle. The symmetry and
ranges of the reference distributions are not important to ®rst-order characteristics of our
method, such as ®rst-order limiting properties, and so do not need to re¯ect those aspects of
the data. Nevertheless, if the data were markedly skew then that characteristic would be
re¯ected in the second-order properties of the test (which are not dealt with here) and might
best be captured by using a similarly skewed reference distribution. Since c and d are in-
variant under changes to the scale of the sampling distribution, then changes to the scale of
the densities at equation (2.2) do not a�ect equations (2.3).

Consider estimating f and f @, for example by using kernel methods. (In this setting, bf @
would typically not be taken as the second derivative of f̂, since di�erent smoothing param-
eters would be employed to calculate f̂ and bf @. See Section 3.) Let x̂0 � arg max ( f̂ ) denote
the `largest mode' of f̂, put

d̂ � j bf @�x̂0�j =f̂ �x̂0�3

and let �̂ � ÿ1�d̂ �. Conditionally on X � fX1, . . ., Xn g, draw a sample X* � fX*1, . . ., X*n g
from the distribution with density g�̂, and compute the version �*n2 of �n2 for the data X*. To
construct a test at level �, useMonte Carlo methods to compute the critical point ẑ� de®ned by

Pg�̂
��*n2 > ẑ�jX � � �,

and reject the null hypothesis that f is unimodal if �n2 > ẑ�. Under mild regularity condi-
tions, including consistency of d̂ for the value of d under the null hypothesis, the test has
asymptotically correct level. Details will be given in Section 4.

Our method may be applied to the more general problem of testing Hmÿ1 against Hm.
Speci®cally, compute estimators d̂j of the respective values of dj � j f @�xj�j=f �xj�3, for
14 j4 2mÿ 3, where xj represents the j th turning point. (For example, we might take
d̂j � j bf @ �x̂j�j=f̂�x̂j�3, where x̂2jÿ1 is the j th largest mode of f̂ and x̂2j is at the position of the
deepest local minimum between x̂2jÿ1 and x̂2j�1.) Resample from a calibration distribution
with exactly 2mÿ 3 turning points, for the j th of which the corresponding value of dj is d̂j.
(We may obtain such a distribution by taking mixtures of the distributions at equation (2.2).
In this respect the invariance of dj under scale changes is important.) Compute the bootstrap
version �*nm of �nm, with the latter de®ned as in Section 1.2. Then the conditional distribution
of �*nm, given the data, is a consistent estimator of the distribution of �nm under the null
hypothesis; see Section 4.
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3. Numerical performance

16 di�erent distributions were included in the simulation study, six of them unimodal (illus-
trated in Fig. 1), eight bimodal and two trimodal. Most were mixtures of normal or Student t-
distributions. The sample size n was 50, 100 or 200. Throughout, f̂ and bf @ were taken as
kernel estimators based on the normal kernel. Note that f̂ and bf @ require di�erent amounts of
smoothing. We used the respective asymptotically optimal global bandwidths, with unknown
quantities depending on the density replaced by those for a normal N�0, S 2 � distribution,
where S 2 was the sample variance. Whenever values of the kernel estimates over a range were
needed, they were computed on an equally spaced grid of 512 points. For brevity, not all the
simulation results are given here. Further information may be obtained from the authors on
request.

We compared our method with Silverman's (1981) bandwidth test, which is based on the
density estimator f̂crit � f̂�.jĥcrit � where ĥcrit is the smallest bandwidth such that f̂�.jh� has a
unique mode. The reader is referred to Silverman (1981) for details of the test. For each
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Fig. 1. Density functions of six unimodal distributions corresponding to those whose level accuracies are
explored in Table 1: (a) standard normal; (b) Student's t with 6 degrees of freedom; (c) a skewed normal mixture;
(d) a skewed Student t-mixture with 6 degrees of freedom; (e) beta(4, 8); (f) beta(12, 4)



choice of sampling distribution and sample size, 500 realizations of the sample X were
generated. Conditionally on each of those samples, 500 resamples of size n were drawn from
the population with density g�̂ (for our calibration approach to the excess mass test) or f̂crit
(for the bandwidth test), and the test statistic was evaluated using the resamples to approx-
imate the conditional distribution. The actual probabilities of rejecting the null hypothesis
were approximated by the proportion of times that the null hypothesis was rejected.
The bandwidth test is a�ected by data clusters in the tails of a distribution. For example, if

the sampling distribution is a ®nite mixture of Student t-distributions, and if the bandwidth
test is applied to the full data set, then ĥcrit will diverge to1 as the sample size increases, to
`smooth out' spurious modes caused by outlying data points. As a result, both the coverage
accuracy and the power su�er. The problems are less dramatic, but nevertheless serious, in
small to moderate samples. In order not to penalize the bandwidth test for this behaviour we
conducted a separate simulation study in which we con®ned attention to the bandwidth test
applied to data that lay within l standard deviations of at least one mode. (Of course, here we
were using knowledge of the true positions of the modes.) We examined l � 1:0, 1.5, 2.5, 3.5,
4.5 and found that choosing l as small as 1:0 often excluded information that was helpful,
even for good level accuracy under the null hypothesis, let alone good power under bimodal
alternatives. In contrast, choosing l5 2:5 often led to excessively large values of ĥcrit , and
consequent poor level accuracy and power. We found that l � 1:5 gave the best results
overall, and we shall report our results for the bandwidth test in that case. This special
consideration gives the bandwidth test a greater advantage than it would be likely to ®nd in
practice.

Another approach to correcting the bandwidth test is to count only those modes of height
greater than 1:5K�0�=nh, say. This method was included in the simulation study, and in the
sense of level accuracy for heavy-tailed distributions it was found to be somewhat superior to
the approach of excluding modes in the tails. For example, for the Student t-distribution with
6 degrees of freedom when the nominal level was 0.01, the true levels were 0.008 (for both
n � 50 and n � 200). When the nominal level was 0.05 the true levels were 0.032 (n � 50) and
0.040 (n � 200). However, for light-tailed distributions it performed very conservatively. For
example, for the normal distribution the true levels were 0.002 (n � 50) and 0.004 (n � 200)
when the nominal level was 0.01, and 0.012 (for both n � 50 and n � 200) when the nominal
level was 0.05. Overall, the level accuracy and power were inferior to those of our calibrated
version of the excess mass test and, for the light-tailed densities, inferior to those of the
bandwidth test restricted to central parts of the sampling distribution.

Table 1 reports estimates of the true levels, for a variety of nominal levels and for the six
unimodal test distributions depicted in Fig. 1, of our calibration approach to the excess mass
test and of the bandwidth test (in parentheses). The standard errors of these estimates are
approximately 0:04�1=2, where � denotes the nominal level. In all cases the bandwidth test is
conservative relative to our calibration of the excess mass test. Generally, our calibration
approach has good level accuracy and is slightly conservative. Its level accuracy is slightly,
but not to any severe extent, impaired by heavy tailedness (see our comparison of normal
with Student t-mixtures below) or skewness (compare the standard normal with the skewed
normal mixture, or the corresponding Student t and Student t-mixture). However, for both of
the two skewed beta distributions it enjoys good performance. The slight problem that it has
with heavy-tailed distributions is substantially less than that of the unrestricted bandwidth
test and would vanish if, as in the case of the bandwidth test, we were to restrict attention to
data within a few standard deviations of the mode.

Although we have demonstrated these advantages of our approach only for small to
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moderate sample sizes, they also appear in the limit as n!1. Indeed, we shall show in
Section 4 that our calibrated excess mass test has the asymptotically correct level. It is known
that the asymptotic conservatism of the bandwidth test persists in the limit. This has recently
been quanti®ed by York (1998), who has shown that for nominal levels 0:01, 0:05, 0:1 and 0:2
the asymptotic levels of the bandwidth test are 0:000, 0:010, 0:032 and 0:102. The asymptotics
alluded to here, for the bandwidth test, are for a distribution (such as the beta�2; 2� distri-
bution) which decreases steeply to 0 at the ends of its support, so that the outlier problems
discussed earlier do not arise.

Figs 2±4 display the powers against most of the bimodal distributions considered in the
simulations. Figs 2(a), 3(a) and 4(a) depict the sampling density (which is a mixture of normal
distributions), and Figs 2(b), 2(c), 3(b), 3(c), 4(b) and 4(c) plot the approximate probability of
rejecting the null hypothesis of unimodality, at the nominal level, for sample sizes n � 50 and
n � 200, and for both tests.

In general, calibration of the excess mass test produces a test of greater power than the
bandwidth test, particularly in challenging cases where the sampling distribution is almost
unimodal (in the sense that the two modes are close to each other and the second mode is
barely distinguishable from the major mode). This is due largely to conservatism of the
bandwidth approach. However, if one considers carefully the de®nition of excess mass, it is
possible to construct examples of bimodal densities where the true excess mass di�erence of
the density is very small. Clearly, this will cause the excess mass test trouble in detecting
bimodality. The distribution whose density is plotted in Fig. 4 was deliberately chosen to be
of this type. It has a clearly visible second mode, but low true excess mass. As a result the

Exact Mass and Dip Tests 585

Table 1. Level accuracy for six unimodal distributions{

n Estimated true levels for the following nominal levels:

0.01 0.05 0.10 0.20

Standard normal
50 0.014 (0.004) 0.036 (0.012) 0.076 (0.036) 0.176 (0.108)

200 0.010 (0.006) 0.048 (0.012) 0.086 (0.028) 0.198 (0.126)

Student t, 6 degrees of freedom
50 0.012 (0.002) 0.032 (0.010) 0.068 (0.026) 0.152 (0.080)

200 0.012 (0.002) 0.024 (0.008) 0.066 (0.022) 0.138 (0.086)

Skewed normal mixture
50 0.008 (0.006) 0.042 (0.020) 0.088 (0.068) 0.166 (0.164)

200 0.006 (0.002) 0.026 (0.010) 0.056 (0.040) 0.138 (0.110)

Skewed Student t-mixture
50 0.008 (0.006) 0.028 (0.026) 0.068 (0.052) 0.158 (0.170)

200 0.008 (0.002) 0.020 (0.006) 0.054 (0.036) 0.122 (0.110)

beta(4, 8)
50 0.018 (0.004) 0.056 (0.024) 0.092 (0.052) 0.190 (0.126)

200 0.010 (0.004) 0.042 (0.018) 0.090 (0.048) 0.186 (0.140)

beta(12, 4)
50 0.018 (0.006) 0.062 (0.034) 0.108 (0.086) 0.226 (0.212)

200 0.018 (0.006) 0.056 (0.028) 0.118 (0.060) 0.186 (0.148)

{Estimated true levels, for the calibrated excess mass test and for the bandwidth test (values in parentheses),
approximated by 500 simulations.



bandwidth test has, except for n � 50 or for n � 100 and small nominal levels, greater power
than calibration of the excess mass test.

Both tests were applied to two trimodal (normal mixture) distributions, one symmetric and
the other skewed. In each case the bandwidth test had less power than the calibrated excess
mass test, and the power was a little less for the symmetric density than for the skewed
density.
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Fig. 2. Power against light-tailed bimodal distributions: (a) sampling density; (b) power against nominal level for
our calibrated excess mass test (- - - -) and for the bandwidth test (..........), when the sample size is 50; (c)
corresponding powers of the two tests when the sample size is 200

Fig. 3. Power against light-tailed bimodal distributions: (a) sampling density; (b) power against nominal level for
our calibrated excess mass test (- - - -) and for the bandwidth test (..........), when the sample size is 50; (c)
corresponding powers of the two tests when the sample size is 200

Fig. 4. Power against light-tailed bimodal distributions: (a) sampling density; (b) power against nominal level for
our calibrated excess mass test (- - - -) and for the bandwidth test (..........), when the sample size is 50; (c)
corresponding powers of the two tests when the sample size is 200



Fig. 5 shows the powers of the calibrated excess mass test and of the bandwidth test against
heavy-tailed versions of the distributions addressed in Figs 2±4. Three mixtures of Student t-
densities were designed to resemble the three normal density mixtures (in the earlier ®gures)
in all respects except their tails, so that power di�erences arising from heavy tailedness would
not be confounded with other e�ects. Comparing Figs 2±4 with the corresponding rows of
Fig. 5 we see that heavy tailedness consistently reduces the power, for both types of test, and
that in general the power decreases more for the bandwidth test. This is despite the fact that
our construction of the bandwidth test was carefully designed to minimize e�ects of heavy
tailedness. Without this care, the e�ects of heavy tailedness on the power of the bandwidth
test can be very severe indeed.

The numerical results reported in Table 1 and Figs 2±5 convey in three ways the fact that
our calibration of the excess mass test is generally more favourable than the bandwidth test.
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Fig. 5. Power against heavy-tailed bimodal distributions: (a) sampling density; (b) powers of the calibrated
excess mass test (- - - -) and the bandwidth test (..........), against nominal level when the sample size n is 200
(each density is a mixture of two Student t-distributions with the same number of degrees of freedom, different
locations and (for the top and bottom rows) different scales; the Student t-densities used for the middle row have 4
degrees of freedom, whereas those for the top and bottom rows have 6 degrees of freedom)



First, it has very good level accuracy in a wide variety of situations, including skewed or
heavy-tailed unimodal distributions. Secondly, it has greater power in many bimodal cases,
most signi®cantly when the two modes are not well separated from each other. Thirdly, the
e�ect of heavy tailedness on its power is comparatively minor.

Silverman (1981) applied the bandwidth test to the bench-mark chondrite data set, of size
n � 22, describing the percentage of silica in 22 meteors. For comparison we applied our
calibration of the excess mass test to the same data, obtained from Simono� (1996). The
calibration method rejects the null hypothesis of unimodality at level 0:03, whereas the
bandwidth test rejects the null hypothesis only at the larger level 0:08. This re¯ects the fact
that the bandwidth test tends to be conservative and therefore to have lower power.

4. Theoretical properties

We begin by describing the limiting distribution of the excess mass statistic �n2. LetW denote
a standard Wiener process on the real line. Given real numbers t1 < t2 and u, de®ne

��t1, t2, u� �W�t2� ÿW�t1� ÿ �t32 ÿ t31 � � u �t2 ÿ t1�.
Put

Z � 61=5 sup
ÿ1<u<1

�
sup

ÿ1<t1< : : :<t4<1
f��t1, t2, u� ���t3, t4, u�

	ÿ sup
ÿ1<t1<t2<1

f��t1, t2, u� g
�
. �4:1�

Theorem 1. With probability 1, Z is ®nite and positive. Its distribution does not have any
atoms.

Next we give regularity conditions, similar to those of MuÈ ller and Sawitzki (1991a), under
which �n2 is asymptotically distributed as a multiple of Z:

the sampling density f has a continuous derivative, ultimately

monotone in each tail; the constraints f 0 �x0� � 0 and f�x0� 6� 0

are jointly satisfied at just one point x0, and f @ exists and is

H�older continuous within a neighbourhood of x0, with f @�x0� < 0. �4:2�
De®ne c as at equation (2.1).

Theorem 2. Under condition �4:2�, n3=5 �n2 converges in distribution to cZ as n!1.

Theorem 2 justi®es the assumption in Section 2 that in large samples the distribution of �n2

under the null hypothesis is virtually independent of unknowns, except for a factor. Our next
result shows that the calibration method suggested in Section 2 consistently estimates the
distribution of �n2.

Let d̂ be a positive function of the data X , let X* denote a resample drawn by sampling
randomly, with replacement, from either of the two calibration distributions determined by
equations (2.2) (for which � is replaced by �̂ � ÿ1�d̂ �, with  de®ned by equations (2.3)) and
let �*n2 be the corresponding version of �n2.

Theorem 3. If d̂ converges in probability to a constant d > 0, then

sup
ÿ1<x<1

jPG�̂
�n3=5�*n2 4 xjX�ÿ P�cZ4 x�j ! 0

in probability as n!1, where c � dÿ1=5.
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Theorems 1±3 imply that, in the case of testing the null hypothesis of unimodality, our
calibration method produces tests with asymptotically correct level. More generally, each of
theorems 1±3 has an analogue in the setting of testing Hmÿ1 against Hm. In particular, under
suitable regularity conditions (which include the assumption that Hmÿ1 holds), n

3=5 �nm con-
verges in distribution to a random variable Z�c1, . . ., c2mÿ3�, depending only on the versions
c1, . . ., c2mÿ3 of c at the 2mÿ 3 turning points. Assuming that we have consistent estimators
of these quantities, the limiting bootstrap distribution of n3=5�*nm is identical with the distri-
bution of Z�c1, . . ., c2mÿ3�, and so the test has asymptotically correct level.
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