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ABSTRACT. In a range of practical problems the boundary of the support of a
bivariate distribution is of interest, for example where it describes a limit to effi-
ciency or performance, or where it determines the physical extremities of a spatially
distributed population in forestry, marine science, medicine, meteorology or geol-
ogy. We suggest a tracking-based method for estimating a support boundary when
it is composed of a finite number of smooth curves, meeting together at corners.
The smooth parts of the boundary are assumed to have continuously turning tan-
gents and bounded curvature, and the corners are not allowed to be infinitely sharp;
that is, the angle between the two tangents should not equal π. In other respects,
however, the boundary may be quite general. In particular it need not be uniquely
defined in Cartesian coordinates, its corners my be either concave or convex, and
its smooth parts may be neither concave nor convex. Tracking methods are well
suited to such generalities, and they also have the advantage of requiring relatively
small amounts of computation. It is shown that they achieve optimal convergence
rates, in the sense of uniform approximation.
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1. Introduction. In standard problems of univariate nonparametric curve estima-

tion, for example density estimation or regression, one usually constructs the esti-

mator by starting at one end of the real line and moving steadily towards the other,

until the curve estimate has been traced out. Of course, in the discrete environment

of computation one moves in steps rather than in the continuum, but nevertheless

the estimate is calculated in a one-dimensional setting, not a two-dimensional one.

This results in computational savings.

In the present paper we propose a similar one-dimensional approach to estimat-

ing the boundary of the support of a bivariate distribution. The aim is to estimate

the boundary by steadily following a univariate track generated by the estimate

itself. The calculations involve reaching a bandwidth radius into the plane from the

current point estimate, gathering the data within that radius, and using this infor-

mation to compute the next point estimate. Thus, all the calculations are confined

to data that lie in a tube of width equal to twice the bandwidth, whose axis is the

curve estimate. There are consequent computational savings, relative to methods

that require the data to be analysed in a larger region of the plane. Moreover, the

method is coordinate-independent, and in particular may be applied to curves that

cannot be represented, in a Cartesian coordinate system (x, y), in the form y = g(x)

for a single-valued function g.

Even when the boundary is smoothly curved, and that assumption is exploited

when constructing the estimator, the tracking problem is complex because of the

difficulty of estimating support-boundary tangents. The case of a boundary with

corners is substantially more difficult, since a decision about where the corners are

located has to be made from information gained through tracking the boundary into

the corner, and from data within a bandwidth of the corner. The algorithm neces-

sarily involves decisions about using left or right smooths in different places along

the boundary estimate, and switching between them. Furthermore, a purely track-

ing method should not involve backtracking and recomputing the curve estimate

after it was found that a corner had been mistakenly omitted.

If we are tracking the boundary by circumnavigating it in a clockwise direction

then it is necessary to use a right-hand smooth on leaving a corner, and switch to

a left smooth by the time we approach the next corner. Between corners we should

use information in both left and right smooths; and the transition from one type of
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smooth to another should be achieved gently, without introducing jumps that could

by misconstrued as additional corners.

The method that we suggest achieves these goals, is practicable for implemen-

tation, and enjoys theoretically optimal convergence rates. It is based on kernel

methods (e.g. Wand and Jones, 1992), implemented in a very nonstandard way. In

particular, it uses extrapolation methods to reach into the corners, where data are

often sparse. No conditions are imposed on the convexity, or otherwise, of either

the smooth parts of the curve or the corners.

Our methods can be generalised to d ≥ 3 dimensions, where they produce es-

timators with the optimal convergence rate, (ν−1 log ν)2/(d+1). However, the case

d ≥ 3 is difficult to motivate, since the advantages of tracking methods are signif-

icantly reduced if one is estimating a surface (for example), rather than a curve.

One cannot simply track a surface from its beginning to its end. Instead, a zig zag

path must be constructed, moving backwards and forwards across the boundary,

constructing an approximation based on polygons. The procedure is more cumber-

some, and less attractive, than its analogue for d = 2.

A variety of methods is used for solving jump regression problems, in the ab-

sence of corners. See, for example, Müller and Song (1994), O’Sullivan and Qian

(1994), Qiu (1997, 1998, 2002, 2004) and Qiu and Yandell (1997). Tracking meth-

ods are suggested by Hall and Rau (2000) and Hall, Peng and Rau (2001). All these

approaches are in spatial or multivariate settings. Qiu (2005, Chaps. 4, 5) gives a

thorough review of this work, and also (Chap. 3) of contributions to the related

problem of one-dimensional change-point analysis.

There is an extensive literature on non-tracking methods for boundary-support

estimation when the curve contains no corners. A significant part of it is in the area

of econometrics, where the boundaries are often interpreted as “production fron-

tiers”. See for example work of Aigner, Lovell and Schmidt (1977), who discuss

parametric methods, and Kneip and Simar (1996), Seiford (1996), Kneip, Park and

Simar (1998) and Park, Sickles and Simar (1998), who address nonparametric ap-

proaches. Many nonparametric techniques are based on enveloping the data in some

sense, and include “data envelopment analysis” (Farrell, 1957) and the “free disposal

hull” (Deprins, Simar and Tulkens, 1984). Theoretical performance (including con-

vergence rates) and numerical properties of these and other methods, in the context
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of statistics rather than econometrics, have been investigated by Ripley and Ras-

son (1977), Hartigan (1987), Carlstein and Krishnamoorthy (1992), Korostelev and

Tsybakov (1993a), Rudemo and Stryhn (1994), Härdle, Park and Tsybakov (1995),

Korostelev, Simar and Tsybakov (1995a,b), Mammen and Tsybakov (1995), Hall,

Nussbaum and Stern (1997), Hall, Park and Stern (1998), Donoho (1999), Gijbels,

Mammen, Park and Simar (1999) and Báillo and Cuevas (2001). Optimality theory

developed in the context of image analysis, and initiated by Korostelev and Tsy-

bakov (1993b,c), is also relevant. Some change-point methods, for example those

proposed by Deshayes and Picard (1981) and Picard (1985), are related.

Qiu (2005, Chap. 6) gives an excellent survey of edge detection and estima-

tion from an image-processing viewpoint. There, methodologies vary from early

techniques based on differencing, to recent approaches founded on wavelets and

wedgelets (e.g. Donoho, 1999). Some of the mathematical work of this type, and

some of the work discussed in the previous paragraph, permits the boundary to have

tangent discontinuities. For example, if the boundary satisfies a Hölder condition,

but does not have a derivative, it may have corners. Part of the novelty of the work

in the present paper is that the methodology makes explicit use of smoothness of the

boundary between corners, which are taken to be separated and only finite in num-

ber. As a result, convergence rates are faster than they would be if only a Hölder

condition were assumed; there, infinitely many arbitrarily-close discontinuities can

be present.

2. Methodology

2.1. Overview. Assume we observe data X = {X1, X2, . . .} from a realisation of

a point process in the plane. Let ∂S denote the boundary of the support of the

intensity function for X . We shall refer to the points of X as lying “below” ∂S. The

boundary will be traced in a clockwise direction, and so “below” may equivalently

be thought of as lying to the right of the direction of travel, although we shall use

“left” and “right” for another purpose. The notion of a short line segment that has

no points above it is intuitively clear in many cases. More generally, section 3.2 will

give a formal definition and discuss the effects of stochastic errors in determining

whether the segment has no points above it.

Our boundary estimator is piecewise linear, and in particular consists of line

segments joining adjacent estimators Q̂j of points on ∂S, indexed in such a manner
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that we move around ∂S in a clockwise sense. We pass from Q̂j to Q̂j+1 by first

moving to a preliminary point Q̂′
j+1, calculated by fitting either a left smooth or a

right smooth to the boundary at Q̂j ; and then we refine Q̂′
j+1 to Q̂j+1 by fitting

two short line segments to data in the vicinity of Q̂′
j+1.

This procedure by itself produces a boundary estimator that tends to cut across

the corners, however, rather than reach into them. That is, in the vicinity of a corner

the sequence Q̂j , Q̂j+1, . . . generally slips from one side of the corner to the other, by

passing inside the boundary. As a result, this simple form of the boundary estimator

does not enjoy the desired level of accuracy. To overcome this problem we suggest

a threshold technique for deciding when the sequence {Q̂j} has cut a corner. We

discard a subsequence that cuts a corner, close up the remaining members of the

sequence, and estimate the corner by extrapolating to it from points Q̂j that lie on

either side of the discarded sequence. These operations are conducted completely

sequentially, and in particular do not involve drawing the boundary and then erasing

part of it. Our algorithm tells the curve estimator unambiguously when to mark

time, i.e. to stop confirming boundary points Q̂j , and when to start confirming

them again.

Next we give an overview of the methods for calculating Q̂j from Q̂′j . Starting

from a preliminary approximation Q′ (in particular, Q̂′
j) to a point on ∂S, we com-

pute a refinement Q (in particular, Q̂j) in two stages. First we construct “rough”

approximations V̂ L and V̂ R to points on ∂S; the superscripts L and R indicate that

they quantities are constructed to the left- or right-hand sides, respectively, of the

current position. Estimates of the tangent angles at these points are denoted by

ω̂L and ω̂R, respectively. Next we smooth V̂ L, V̂ R, ω̂L and ω̂R to ŴL, ŴR, θ̂L and

θ̂R, using kernel techniques. Depending on whether Q′ is calculated from on the

left- or right-hand side, we take either ŴL or ŴR to be the refined version Q of

Q′. To construct the next version of Q′, employing a method for switching from

the left to the right, or vice versa, we move a short way from the current version of

Q, travelling a fixed distance in the direction of either θ̂L or θ̂R.

As can be seen from this discussion, “handedness” is important. If, when we

move from Q = Q̂j , we travel in the direction of θ̂L
j = θ̂L, we say we are using a left

smooth; and if the direction is that of θ̂R
j = θ̂R, we are using a right smooth. We

should use a left smooth as we approach a corner (travelling around the boundary
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in a clockwise direction), but we must change to a right smooth after leaving the

corner. And, before reaching the next corner, we should switch again, back to a left

smooth. We use a threshold argument, similar to that for deciding when corners

are present, to make these parity changes.

Technical details are needed in order to fully specify the procedure. They

include the methods for calculating the rough approximations V̂ L, V̂ R, ω̂L and ω̂R,

and the methods for obtaining the smoothed forms ŴL, ŴR, θ̂L, θ̂R. These will

be give in sections 2.2 and 2.3, respectively. In section 2.4 we shall give the full

algorithm, referring back to sections 2.2 and 2.3 for concise definitions.

2.2. Rough estimators V̂ L, V̂ R, ω̂L, ω̂R. To locate a starting point Q′, we lay a line,

L say, across the spatial region, and, as we move along L, conduct a sequence of

tests for a discontinuity. In this manner we determine a point Q′ that approximates

a place where L cuts ∂S. A simple difference-based method suffices; we do not

require the starting point to be particularly accurate. If the tests indicate that ∂S
and L do not intersect, we draw another line and try again. In practice, L is often

determined from prior belief as to the location of ∂S. See Hall and Rau (2000,

section 2) for further discussion.

Let ML and MR denote line segments of length 2h lying to the left and right

of L, with their right- and left-hand ends, respectively, located at Q′. (Here h

denotes a bandwidth, and will be chosen to decrease to zero as the intensity of

the point process increases.) Each line segment is placed so that the acute angle

it makes to L exceeds a small, given value ∆ ∈ (0, π/2), no point of X lies above

it, and at least one point of X lies on it. Let uL and uR denote the midpoints of

ML and MR, respectively. Subject to these constraints, choose M̂ L = ML and

M̂R = MR so as to minimise kernel-weighted distances to data values:
∑

i
‖Xi − Y L

i ‖K(‖uL − Y L
i ‖/h)K(‖uL −Xi‖/2h) ,∑

i
‖Xi − Y R

i ‖K(‖uR − Y R
i ‖/h)K(‖uR −Xi‖/2h) ,

(2.1)

respectively, where Y L
i and Y R

i denote the projections of Xi onto the infinite lines

of which ML and MR form respective parts, and K is a smooth, nonincreasing,

nonnegative function on [0,∞) satisfying K(0) = 1, K(1) = 0 and K > 0 on [0, 1).

Details of finding the numerical solution to the minimisation problem (2.1) are given

in section 4.

Write V̂ L and V̂ R for the points at which M̂ L and M̂R, respectively, inter-
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sect L. The angles ω̂L and ω̂R made by M̂ L and M̂R to a given direction (for

example, to the positive x-axis of a Cartesian system) are our “rough” estimators

of the orientations of boundary tangent lines to the left and right, respectively,

of Q′. For some realisations, and some configurations of L, ω̂L and ω̂R will not be

well defined, but this seldom causes difficulties; see section 3.3 for discussion.

The form of (2.1) requires explanation. Omitting the second kernel weight

factor, expressed in terms of ‖uL − Xi‖ or ‖uR − Xi‖, produces a criterion that

can give high weight to distances ‖Xi−Y L
i ‖ or ‖Xi−Y R

i ‖ which involve points Xi

that are a long way from ML or MR, respectively. Moreover, replacing 2h by h in

the second kernel weight can result in tangent estimates that tend towards being

parallel to L. The bandwidth multiplier 2 is somewhat arbitrary, and in asymptotic

terms any multiplier greater than 1 is adequate. Based on our numerical experience,

taking it to be 2 gives good results, better than using values in (1,1.5).

2.3. Smoothed estimators ŴL, ŴR, θ̂L and θ̂R. Both V̂ L and V̂ R can convey useful

information about the location of ∂S in the current vicinity, and both ω̂L and ω̂R

can give useful information about the slope of the tangent to ∂S there. Only when

ω̂L and ω̂R are some distance apart, indicating the presence of a corner, would we

want to place particular emphasis on one of the smooths rather than the other.

The present section suggests a way of allocating emphasis, depending on the size of

|ω̂L − ω̂R|.
Let B1 > 0 and put

ρ̂ = 1
2 K

(|ω̂L − ω̂R|/B1h
)
, (2.2)

which is a nonincreasing function of the distance between the estimated angles.

(The constants B1, B2, . . ., as well as the bandwidth h, are tuning parameters of

our algorithm.) Our smoothed versions of V̂ L and V̂ R are

ŴL = (1− ρ̂) V̂ L + ρ̂ V̂ R and ŴR = ρ̂ V̂ L + (1− ρ̂) V̂ R , (2.3)

respectively. If ω̂L and ω̂R are close, which will generally be the case except in

neighbourhoods of corners, ρ̂ will be close to 1
2 and so ŴL and ŴR will both be

close to the simple average, 1
2 (V̂ L + V̂ R), of the left- and right-hand estimates. On

the other hand, if ω̂L and ω̂R are some distance apart then ρ̂ will be close to zero,

and ŴL and ŴR will be close to V̂ L and V̂ R, respectively. Likewise, the smoothed
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versions of ω̂L and ω̂R are

θ̂L = (1− ρ̂) ω̂L + ρ̂ ω̂R and θ̂R = ρ̂ ω̂L + (1− ρ̂) ω̂R .

Since K vanishes outside (0, 1) (see section 2.2) then ρ̂ = 0 if |ω̂R− ω̂L| > B1h,

and in this case (V̂ L, V̂ R, ω̂L, ω̂R) is identical to (ŴL, ŴR, θ̂L, θ̂R). This degeneracy

warns of an approaching corner, and will in fact form the basis of our procedure for

identifying corners.

2.4. Details of algorithm. The algorithm that we shall give below depends on several

tuning parameters: the bandwidth h introduced in section 2.1, constants B1 ≥ B2

appearing in the definitions of ρ̂ (see section 2.3) and in thresholds (see step (iv)

below), a constant ε > 0 determining the approximate distance between successive

estimates of points on the boundary (step (ii) below), and ∆ > 0 governing the

choice of L in section 2.2. In asymptotic terms, if the point process in S is homoge-

neous Poisson with intensity ν per unity area, it suffices to put h = B3 (ν−1 log ν)1/3

where B3 ≥ B, say, and to take B1 ≥ B2 ≥ B, ε ∈ (0, 1], and ∆ strictly less than the

acute angle that the initial line L1 makes to the tangent to ∂S (see step (i) below).

For this choice of tuning parameters, the probability that the boundary estimator

defined by linearly interpolating between adjacent confirmed points Q̂j , prescribed

by the algorithm given below, lies uniformly within a fixed constant multiple of h2

of the true boundary over any finite portion, is no less than 1 − O(ν−λ), where

λ = λ(B) increases without bound as B →∞. Theorem 3.1 will give details.

Next we give the algorithm, which is in a sequence of four steps. Key parts of

the respective steps are depicted in panels (a)–(d) Figure 1 below.

Step (i): Initiation. We start the algorithm on a line L1 which intersects the

boundary. Taking the line L in section 2.2 to be L1, use the procedure there to

calculate V̂ L, ω̂L and ω̂R, giving each of them the subscript 1; and take Q̂1 = V̂ L
1 .

(This is the only instance where Q̂j is a “rough” estimator of location, as defined

in section 2.2; for j ≥ 2 it is a “smooth” estimator, as defined in section 2.3.)

Let (θ̂L
1 , θ̂R

1 ) be the version of (θ̂L, θ̂R) computed from (ω̂L, ω̂R). For definiteness,

immediately after Q̂1 we use the left smooth.

Step (ii): Calculating Q̂′j+1 from Q̂j . The jth step is defined to be the step that

takes Q̂j−1 to Q̂j . Suppose we have calculated (θ̂L
i , θ̂R

i ) for i ≤ j. If, immediately
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Figure 1. Illustration of the algorithm. Panels (a)–(d) respectively illustrate steps
(i)–(iv). In panel (a), the unbroken line depicts L1, the triangle and filled triangle
locate V̂ L

1 and V̂ R
1 (Q̂1 = V̂ L

1 ), and ω̂L
1 , ω̂R

1 and θ̂L
1 are the angles made by the

dashed, dotted and dotted-dashed lines. Panel (b) depicts the points Q̂j (inverted
triangle) and Q̂′

j+1 (circle), and the angles θ̂L
j and θ̂R

j made by the dot-dashed
and short-dashed lines. (At this particular step θ̂j = θ̂L

j .) Panel (c) shows Lj+1

(unbroken line), Q̂′j+1 (circle), the rough estimates V̂ L
j+1 (triangle) and V̂ R

j+1 (filled
triangle), the smooth estimates ŴL

j+1 (diamond) and ŴR
j+1 (filled diamond), and

the angles ω̂L
j+1, ω̂R

j+1, θ̂L
j+1 and θ̂R

j+1 made by the dashed, dotted, dot-dashed and
short-dashed lines. Panel (d) shows the true boundary (dotted line) and Q̂1, Q̂2, · · ·
computed from a sample generated by model (4.1). To illustrate step (iv), the
squares and triangles respectively indicate cases (a) and (b), the inverted triangle
(or the last in a sequence of filled squares) indicates where a switch from left (or
right) smooth to right (or left) smooth occurs.

after the jth step, we are using the left (respectively, right) smooth, let Q̂′j+1 be the

point in the plane reached by moving distance εh along the line passing through Q̂j

at angle θ̂L
j (respectively θ̂R

j ), travelling in a clockwise direction relative to the part

of the boundary that has already been tracked.

Step (iii): Calculating Q̂j+1 from Q̂′j+1. Let θ̂j = θ̂L
j or θ̂R

j , according as the

left or right smooth, respectively, was used to transit from Q̂j to Q̂′
j+1. Compute
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(V̂ L
j+1, V̂

R
j+1, ω̂

L
j+1, ω̂

R
j+1) by applying the method of section 2.2 with Q′ = Q̂′

j+1 and

with L equal to the line passing through Q̂′j+1 and making angle θ̂j + π
2 . Then,

calculate (ŴL
j+1, Ŵ

R
j+1, θ̂

L
j+1, θ̂

R
j+1) using the method of section 2.3. Put Q̂j+1 =

ŴL
j+1 or ŴR

j+1 according as θ̂j = θ̂L
j or θ̂R

j .

Step (iv): Changing smooths and incorporating corners. Let 0 < B2 ≤ B1. If we

used a right smooth to calculate Q̂j+1, and if |ω̂R
j+1 − ω̂L

j+1| < B2h, then we switch

to a left smooth immediately after Q̂j+1, and otherwise we continue using a right

smooth. If we used a left smooth to calculate Q̂j+1, and if either (a) |ω̂R
i − ω̂L

i |
has not exceeded B1h since the last corner, or (b) |ω̂R

i − ω̂L
i | has exceeded B1h but

has not dropped back to a value not exceeding B1h since that point, then we use

a left smooth immediately after Q̂j+1 and we do not declare a corner to have been

rounded. On the other hand, if we used a left smooth to calculate Q̂j+1, and if (a)

and (b) both fail (implying that |ω̂L
i −ω̂R

i | has just, for i = j+1, dropped below B1h

for the first time in a sequence of consecutive values of i), then we declare a corner

to have been rounded and switch to a right smooth. We estimate the position of

the corner by extrapolation backward from Q̂j+1 at angle θ̂R
j+1, and forward from

the next-most-recent value of Q̂i (Q̂k, say) for which |ω̂R
i − ω̂L

i | ≤ B1h. The angle

of extrapolation there is θ̂L
k .

Note that changing smooths and identifying corners involves two thresholds.

The first, B1h, is for switching from a left to a right smooth, which will happen

not long after a corner is rounded. The second, B2h, is for switching from a right

to a left smooth, and this will occur midway between two corners. In each case

the switch occurs when a value of |ω̂R
i − ω̂L

i | falls below the relevant threshold. It

may not be clear that the tuning parameters and kernel can be chosen such that,

despite all the parity changes, the boundary estimator is smooth between corners.

However, section 2.5 will show that this can, in fact, be achieved.

2.5. Smoothness of the boundary estimate. The switch from left to right smooths,

which is determined by the threshold B2h, can be achieved very gently by taking



10

the kernel K at (2.2) to be flat and identically equal to 1 in a nonvanishing interval

immediately to the right of the origin. Indeed, in that case the switch can be effected

at a place where the left and right smooths are identical, simply by choosing B1

and B2 sufficiently large.

To appreciate why this is possible, note that the probability that |ω̂L − ω̂R| ≤
Ch, uniformly in smooth parts of the boundary, converges to 1 as C →∞. Indeed,

if λ > 0 is given, and h is chosen to produce the optimal convergence rate, then

the probability equals 1 − O(ν−λ) for fixed C = C(λ) sufficiently large, where ν

denotes the intensity of the point process. Therefore, if K is identically 1 on the

interval [0, ξ] (where 0 < ξ < 1), and if we choose ξB1 > B2 ≥ C, then (with

probability 1−O(ν−λ)) the weight ρ̂ defined at (2.2) equals 1
2 at any point at which

|ω̂L− ω̂R| is close to B2h, where a switch is made from the right to the left smooth.

In consequence, when the switch occurs both the left and right smooths are equal,

to 1
2 (V̂ L + V̂ R).

If this regime applies, and if the kernel K is continuous, then the curve estimate

is smooth in the following sense. If each Xi is perturbed by the addition of a small

2-vector δi then, as the δi’s converge uniformly to 0, the curve estimator converges

to its counterpart with each δi = 0.

3. Theoretical properties

3.1. Regularity conditions. First we define what we mean by corners in, and ends

of, a segment of a support boundary. Suppose a function f of two variables has

support S, with boundary ∂S, and that there exists a finite number of distinct

points, P0, . . . , Pk say (with k ≥ 1), in this order in a clockwise sense along the

boundary, such that: (a) ∂S has a continuously turning tangent and uniformly

bounded curvature between Pj and Pj+1 (for 0 ≤ j ≤ k−1); (b) the tangent angles

have well-defined limits as Pj is approached from the direction of Pj+1 and as Pj+1

is approached from the direction of Pj (for 0 ≤ j ≤ k−1); (c) if 0 ≤ j1 < j2 ≤ k−1

then the boundary segment between Pj1 and Pj1+1, and the boundary segment
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between Pj2 and Pj2+1, do not intersect except possibly at just one of their ends,

and in this case j2 = j1 + 1; and (d) if k ≥ 2 then the difference between the limits

of tangent angles on either side of Pj , for 1 ≤ j ≤ k− 1, is assumed not to equal π.

Assuming these conditions to hold for some k ≥ 2, we define P0 and Pk to be the

ends of the boundary segment, and P1, . . . , Pk−1 to be the corners.

We assume of f that

f is a nonnegative, compactly supported function of two var-

iables, supported and with a bounded derivative on S, bounded

away from zero on ∂S, and such that a segment of ∂S contains

just k − 1 corners P1, . . . , Pk−1 between its ends P0 and Pk.

(Cf )

Since P1, . . . , Pk−1 are, in (Cf ), assumed to be “corners” between P0 and Pk, then

(Cf ) also implies the properties asserted in the definition of corners, i.e. in (a)–(d)

in the previous paragraph. In this regard the following consequences of (Cf ) should

be stressed. First, the tangent angle varies continuously except at a finite number

of points P1, . . . , Pk. Secondly, these points are distinct, and so corners cannot

coincide. Thirdly, although, in an infinite class of boundaries satisfying (Cf ), cor-

ners can be arbitrarily close together and arbitrarily large in number, for any single

boundary in the class the corners are distinct and finite in number. Theorem 3.1

applies to this setting, where there is a fixed boundary with a fixed number of

distinct corners. Theorem 3.2, which asserts a bound that applies uniformly over

different boundaries, is formulated in the context of the smooth boundary-fragment

model, where corners do not arise.

Assume the point process X = {X1, X2, . . .} in the plane is Poisson with in-

tensity νf . We allow ν to diverge to infinity and take h = h(ν) to be a positive

quantity satisfying

h → 0 as ν →∞, and h ≥ B3 (ν−1 log ν)1/3, (Ch)

where B3 > 0. We suppose too that

K has a bounded derivative on the positive real line, is nonincreas-

ing there, and satisfies K(0) = 1, K(1) = 0 and K > 0 on [0, 1).
(CK)
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Theorems 3.1 and 3.2 continue to hold if we assume in addition that f is

a probability density, and ask that instead of X being a Poisson process, it is

a set of exactly ν independent random variables each distributed with density f .

However, when considering the performance of tracking methods it is arguably more

appropriate to consider Poisson distributed points, since the tracking algorithm is

motivated by the fact that we do not need to treat all the data in X . Indeed, tracking

methods use only points very close to ∂S, and even if the data were independent

and identically distributed we would likely never know the number of points.

3.2. Defining “above”. The estimator definitions in section 2 are unambiguous

if we specify what we mean by saying that a line segment M of length 2h lies

“above” the point cloud represented by X . To this end, let B > 0 be a large

constant and construct open rectangles, with dimensions 2h × Bh2, on either side

of M, in each case with M as one of their longer sides. If no more than one of the

rectangles contains points of X then we say that M lies above X , and if exactly one

of the rectangles contains points of X then we say that the direction of the opposite

rectangle, relative to M, is “above” X . With this interpretation we say that “no

point of X lies above M”. This definition of “above” is of course local to M, and

subject to statistical error.

If a 2h×Bh2 rectangle lies entirely within S then the probability that it contains

at least one point of X equals 1−O(ν−λ), where λ can be made arbitrarily large by

choosing B3 sufficiently large. The number of steps needed to track the boundary

will be only polynomially large in ν, and so ambiguities that arise with probabil-

ity O(ν−λ), for sufficiently large λ, in specifying what we mean by “above”, are

adequately small. Arguments such as this indicate that our definition is adequate,

despite its inherent statistical error, and that fact will be confirmed by Theorem 3.1.

3.3. Penetrating into corners. In this section we discuss difficulties that are inherent

to estimating the boundary at corners, and show that extrapolation methods such

as that suggested in section 2 are essential for solving this problem.
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For simplicity, let us take h = B3 (ν−1 log ν)1/3 in condition (Ch); this is the size

of bandwidth that gives optimal convergence rates. A simple calculation based on

the Poisson distribution shows that the probability that no points of X lie within

radius h3/2 of the corner at Pj converges to 1 as ν → ∞. Therefore, there are

effectively no data within radius O(h2) of a corner. This implies that any estimator

of the corner which is accurate to within O(h2), as we shall claim ours to be, has

to be based on extrapolation from an order of magnitude further away. The fact

that linear extrapolation is adequate, even over distances as large as O(h), follows

from the property that the tangent angle at a distance O(h) from the corner can

be estimated with accuracy O(h); see points (IV) and (V) in the following section.

In practice there are occasionally problems, in O(h)-neighbourhoods of corners,

with formal definitions of ML and MR. They arise when no points of X lie to the

left or right, respectively, of the transect L on which ML and MR are based, and

are readily overcome by making minor adjustments. They cause no problems in

our theoretical work, however, since, given any λ > 0 the difficulties arise only with

probability O(ν−λ), for sufficiently large values of the tuning constants Bj . The

main reason is that L is taken to be approximately perpendicular to the boundary

at the current point; it is perpendicular to the previous tangent estimate.

3.4. Main results. We shall trace the boundary segment in a clockwise direction.

To initiate the algorithm, draw a line L1 that cuts the boundary strictly between

P0 and P1, at a point Q1 where L1 is not tangential to ∂S. Construct the first

point estimate, Q̂1, of the boundary estimate by arguing as in section 2.4. Immedi-

ately after this point the left smooth is used. With high probability, the difference

between tangent angles will not exceed a certain constant multiple of h until the

boundary has been tracked to within 2h of the next corner, during which time the

“handedness” of the smooth will have switched from right to left. The algorithm

specified in section 2.4 is now followed until a vertical line L2 is first reached or

crossed; L2 is assumed to cut the boundary strictly between Pk−1 and Pk and not

be tangential to ∂S there. At that stage we terminate the algorithm.
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Recall that ∆ is used in the definition of tangent angles in section 2.2; B1 and

B2 ≤ B1 are used in the definitions of the tangent-angle weight ρ̂ and the tangent-

angle threshold B2h, respectively; and B3 is employed in condition (Ch). Given

C > 0, let E(C) denote the event that the following six properties all hold:

(I) the algorithm correctly determines that there are just k − 1 corners and k

smooth sections of the boundary,

(II) each corner estimate is no further than Ch2 from its true location,

(III) if a tube is constructed as the union of the continuum of discs of radius Ch2

with their centres along the piecewise-linear boundary estimate, then the true

boundary lies within the tube and leaves it only at the tube’s beginning and

end,

(IV) the left- and right-hand tangent-angle estimates θ̂L and θ̂R, at confirmed points

in the sequence Q̂j introduced in section 2.6, are both in error by no more

than Ch,

(V) all points Q̂j that lie further than Ch from each corner are confirmed, and

(VI) the number of steps taken before the algorithm terminates is not greater

than Ch−1.

Theorem 3.1. Assume conditions (Cf ), (Ch) and (CK), and that constants ε > 0

(for the step length, εh) and λ > 0 are given. Then, provided B1, B2, B3 and C

are chosen sufficiently large, and ∆ is sufficiently small, P{E(C)} = 1−O(ν−λ).

Instead of being fixed, the value of ε (in the definition of step length) may

decrease at a rate no faster than a polynomial in ν−1, although then property (VI)

in the definition of the event E(C) should be altered by stating that the number

of steps is no more than C(εh)−1. In this case the proof in section 5 needs to be

substantially revised, and can be based on Bernstein-type inequalities for high-order

differences of centred forms of the weighted counts at (2.1).

The technique described by Theorem 3.1 is adaptive, in that it detects corners.
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However, choice of the constants B1, B2 and B3 requires knowledge of the maximum

curvature between corners. An empirically adaptive algorithm can be developed to

remove this difficulty. It requires the boundary to have two continuous derivatives

between consecutive corners, and involves estimating curvature there. In this way

one can construct an empirical upper bound, γ̂ say, to maximum curvature, γ,

having the property that P (γ < γ̂ < γ + 1) = 1−O(ν−λ) for all λ > 0. Replacing

γ by γ̂ in formulae for tuning constants we obtain an empirically adaptive version

of Theorem 3.1.

Taking h = B3 (ν−1 log ν)1/3, and choosing B1, B2 and B3 large, we deduce

from Theorem 3.1 that the uniform convergence rate is (ν−1 log ν)2/3. This is the

minimax optimal rate for estimating boundaries with continuously turning tangents

and bounded curvature, even in the absence of corners. To define the optimal rate,

suppose B > 0 is given and let Pν,g denote a Poisson process with constant intensity

ν per unit area, supported in the region {(x(1), x(2)) : x(2) ≤ g(x(1)), 0 ≤ x(1) ≤ 1},
where g is a member of the class G(B) of functions on the interval I = [0, 1]

that have two derivatives there and satisfy sup |g(j)| ≤ B for j = 0, 1, 2. This is the

“boundary fragments” model used extensively by Korostelev and Tsybakov (1993c).

The following result expresses (ν−1 log ν)2/3 as a lower bound to the convergence

rate of estimators of boundaries in G(B).

Theorem 3.2. If Ĝ denotes the class of measurable estimators ĝ of g based on the

data Pν,g, then

lim
ξ→0

lim inf
ν→∞

inf
ĝ∈Ĝ

sup
g∈G(B)

Pν,g

{
sup
x∈I

|ĝ(x)− g(x)| > ξ (ν−1 log ν)2/3
}

= 1 , (3.1)

where the probability measure Pν,g is that corresponding to the process Pν,g.

The particular estimator ĝ, defined by our tracking algorithm with h = B3×
(ν−1 log ν)1/3, initiated by the right smooth at the line L1 defined by the equation

x(1) = 0, and terminated at the line L2 given by x(1) = 1, satisfies

lim
ξ→∞

lim sup
ν→∞

sup
g∈G(B)

Pν,g

{
sup
x∈I

|ĝ(x)− g(x)| > ξ (ν−1 log ν)2/3
}

= 0 (3.2)
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for B1 ≥ B2 ≥ B, B3 ≥ B, B sufficiently large and ∆ sufficiently small. (To avoid

edge effects, the obvious modifications should be made to the “handedness” of

smooths used near either boundary.) Therefore our estimator achieves the uniform

convergence rate implicit in (3.1) in the absence of corners. The rate in the presence

of corners must therefore also be optimal.

Theorem 3.1 will be derived in section 5, and result (3.2) may be proved simi-

larly. With the minor alteration that our point process is Poisson, rather than the

result of distributing a given number of independent random variables, Theorem 3.2

follows from results in section 5.3 of Korostelev and Tsybakov (1993c); see in par-

ticular their Theorem 5.3.3. Clearly, our Theorem 3.2 implies an analogous result

in the presence of corners.

4. Numerical illustration.

First, numerical solution to the minimisation problem (2.1) needs explanation.

Finding M̂L and finding M̂R are analogous so we only discuss the latter. Note

that the angle made by MR has to be in the range Θ = (θ̂ − π
2 + ∆, θ̂ + π

2 −∆),

where θ̂ + π
2 is the angle made by L. Viewed as a function of the angle of MR, the

kernel-weighted distance defined in (2.1) can fluctuate significantly. Therefore it is

suggested to perform a grid search in Θ, subject to the constraints that no point of

X lies above MR and at least one point of X lies on it, to find the solution M̂R.

Throughout this section we consider the following model. Suppose V is expo-

nentially distributed with mean 1/3, and X is uniformly distributed on the inter-

val [0, 2]. Put

Y = 0.8
{√

X I(0<X<1) +
√

2−X I(1≤X<2)

}
exp(−V ) . (4.1)

We sample 100 independent points (X,Y ) from this model. The support boundary

is described by the equation y = 0.8 {√x I(0<x<1)+
√

2− x I(1≤x<2)}. It has a sharp

corner at the point (1, 0.8); see Figure 3.

Figure 2 illustrates jth step of the algorithm. The crosses represent data points,
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Figure 2. Illustration at a particular step. The crosses represent part of a sample
of size 100 from model (4.1). The inverted triangle, circle and square respectively
label Q̂j , Q̂′j+1 and Q̂j+1. The unbroken line is L and the dashed lines are M̂ L and
M̂R. The dotted rectangles, each with dimensions 2h × Bh2, are used to confirm
that M̂ L and M̂R lie above X . The dot-dashed line leaves Q̂j+1 at the angle θ̂j+1.

and the centres of the inverted triangle and circle indicate Q̂j and Q̂′j+1, respectively.

The unbroken line represents L; it passes through Q̂′
j+1 and makes angle θ̂j + 1

2π.

The dashed lines (i.e. the longer axes of the two rectangles) are M̂ L and M̂R. The

intersection of L and M̂ L (or of L and M̂R) forms the rough estimate, V̂ L (or V̂ R).

In the case of this step, the left smooth was used immediately after the jth step,

implying that the left smooth ŴL (indicated by the centre of the square situated

very close to V̂ L) is the confirmed smooth boundary-point estimate Q̂j+1. Since the

left smooth was used to calculate Q̂j+1 and |ω̂R
i − ω̂L

i | has not exceeded B1h since

last corner, we continue using a left smooth in the next step, i.e. θ̂j+1 = θ̂L
j+1. The

ray that leaves Q̂j+1 at angle θ̂j+1, and points in the direction of travel around the

boundary, is indicated by the dot-dashed line. The next tentative point estimate,

Q̂′
j+2, will lie on it and be distance εh from Q̂j+1.

Figure 3 shows the support-tracking algorithm at work for a given sample.

The true boundary and data points are shown in panel (a). Panels (b) and (c) plot

successive tentative boundary estimates Q̂′
j , and smooth estimates Q̂j , respectively.
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Figure 3. Numerical results for a given sample. The data, generated from model
(4.1), are depicted in panels (a) and (d). The dotted line represents the true support
edge of the model. The sequences of estimates Q̂′

j and Q̂j are given in panels (b)
and (c), respectively. The final support edge estimate is given by the unbroken line
in panel (d).

Panel (d) plots the final boundary estimate, with the confirmed corner obtained by

linear extrapolation. Figure 3 reveals an appealing feature of our tracking method:

it moves smoothly, even at “gaps” in the point cloud, effectively guarding against

fluctuations. This behavior is a result of the restriction on the difference between

adjacent tangent angle approximations, which is controlled by the parameter ∆, see

section 2.2.

A slight modification of the algorithm further strengthens the above mentioned

smoothness property: the angle between the line segment connecting Q̂j and V̂ L
j+1

(or V̂ R
j+1) and the line segment containing Q̂j and Q̂′j+1 cannot exceed a given

amount, say π − 2∆; ensuring that the “approximate tangent line,” formed by the

successive boundary estimates Q̂j and Q̂j+1, cannot be too far apart from the tan-

gent smooth θ̂j . The effect of this modification is shown in Figure 4, which presents
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the results for 10 samples. The left (or right) panel shows the results with (or with-

out) implementing the modification. Clearly, the modification produces smoother

estimates. Nevertheless, the modification has little impact on Lp performance of the

estimator; even without the modification the estimates are still quite close to the

true support boundary. Here, ∆ = 0.35π, B2 = 1.5 and B1 = 2.5. The bandwidth

constant B3 is allowed to vary in {0.8, 1, 1.1}. The reason is that larger values of

B3 prevents the tracking algorithm from being occasionally trapped in the point

cloud, and we picked the smallest value that it did not occur. In addition, B = 0.6

when B3 = 1 or 1.1, and equals 0.8 when B3 = 0.8.
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Figure 4. Effect of the modification. The data were generated from model (4.1)
and the sample size was 100. The estimates in panel (a) were constructed using the
modification and the estimates in panel (b) did not involve the modification.

If it happens that we are using left smooths but the right-hand estimates are

not available, due to our restriction on the searched angle range, we nevertheless

allow the algorithm to continue. We continue using the left-hand estimates, and

operate as if |ω̂R−ω̂L| > B1h. Occasionally it happens that the left- and right-hand

estimates are both missing, particularly near a corner. In that case one can either

try another set of parameters (∆, B, B1, B2, B3), or change to a smaller value of ∆

at the point (so that the eligible tangent angle range is made larger).

The method involves five tuning parameters (∆, B, B1, B2, B3). Unless there
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is strong indication that the smooth parts of the boundary have high curvatures,

we suggest to take relatively large values of ∆, e.g. ∆ ∈ [0.3π, 0.4π]. Since B is

employed to decide “above” and may not exceed B2 or B3, it is preferable to take

small values of B and it can be simply set as min{B2, B3} or a slightly smaller

value. Choice of B2, used to determine changing from right to left smooths, is

not critical and can be fixed at around 0.5B1. The tuning parameter B1 is used

to construct the smoothed estimators, see section 2.3, and controls construction of

corner estimates. In general, letting B1 to be anything in (2, 4) or taking B1 such

that B1h ≈ 0.8(π − 2∆) would do well. Among the five tuning parameters, B3

decides most of the smoothness of the final estimate and often determines whether

the algorithm can successfully track the entire support boundary. Once the other

parameters fixed as above, one can take B3 to be the smallest one, among possible

values, such that the second qualification meets.

5. Proof of Theorem 3.1

5.1. Preliminaries, and summary of proof. The direction referred to as “below” the

support boundary is defined to be the direction to the right of ∂S as the boundary

is traced clockwise. Condition (Cf ) implies that there exists a constant c > 0 such

that for sufficiently small δ > 0, f(x) > c whenever x lies below ∂S and is within δ

of some point on ∂S between P0 and Pk. For simplicity we shall suppose that ∂S
has bounded curvature for a nonzero distance on the opposite side of P0 from P1,

and on the opposite side of Pk from Pk−1. (This condition is used only early in

section 5.2, where it simplifies the definition of the density pQ.)

Our proof will treat only the case h = B3 (ν−1 log ν)1/3; the case where h → 0

more slowly than (ν−1 log ν)1/3 is simpler. We shall separately address (a) es-

timation of tangent angles uniformly in smooth parts of the curve (section 5.2),

(b) estimation of points on the boundary uniformly in places where the boundary

is smooth (section 5.4), (c) switching from right to left smooths between corners

(section 5.4), and (d) identifying and traversing corners (section 5.5). In each of
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these four problems we shall show that if λ > 0 is given then specific levels of ac-

curacy can be achieved, uniformly in those parts of the curve to which the problem

applies, with probability 1 − O(ν−λ). It will also follow that solving each of the

problems, along the length of boundary from Q1 to any point between Pk−1 and Pk,

involves no more than O(h−1) steps; see sections 5.4 and 5.5. Therefore, putting

the results together and simply adding the probabilities of events where desired

levels of accuracy are not present, we obtain the desired accuracy with probability

1−O(ν(1/3)−λ). Since λ is arbitrarily large then Theorem 3.1 is proved.

5.2. Tangent angle estimators. A corner in ∂S will be said to be convex if, on

tracking through it (this time following the true boundary), the tangent to ∂S
turns through more than π radians. It is concave if the turning angle is less than π.

For specificity we shall treat the right-hand tangent estimate; the left-hand case

is similar. Write ∂Sj for that part of the boundary between Pj and Pj+1, where

0 ≤ j ≤ k − 1, and let ∂Sj(h) denote the set of points in ∂Sj that are at least 2h

from Pj+1. (By considering right-hand tangents at points in ∂Sj(h), rather than

simply points in ∂Sj , we avoid problems caused by edge effects.)

Let p = c0f denote the unique probability density on S that is proportional

to f , and let cQ be the value taken by p at Q ∈ S. Without loss of generality,

c0 = 1; ensuring this property involves only a scale change. Condition (Cf ) allows

us to choose a constant δ > 0 such that the following is true: for each point Q on

∪j ∂Sj there exists a probability density pQ whose support equals S, is such that

p = pQ = cQ at Q, and is constant in the region {x : x ∈ S and ‖x − y‖ ≤ δ for

some y ∈ ∂S}.

We consider first a deterministic setting. Let L = L(Q,ψ) denote the line that

intersects ∂Sj(h) at a point Q and whose normal makes angle ψ ∈ (−π/2, π/2) to

the tangent to ∂Sj at Q. Given C1 > 0, let MR be a line segment of length 2h

lying to the right of L, with its left end on L and placed so that its right-hand

end lies within C1h
2 of ∂S, no part of it lies further than C1h

2 below ∂S, and the
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acute angle φ that it makes to L satisfies |φ| > ∆ for some ∆ ∈ (0, π/2). Call these

conditions (CR
M), and let uR denote the centre of MR. Define

µ(MR) = E
{‖X − Y R‖K(‖uR − Y R‖/h)K(‖uR −X‖/2h)

}
,

µQ(MR) = E
{‖XQ − Y R

Q ‖K(‖uR − Y R
Q ‖/h)K(‖uR −XQ‖/2h)

}

= cQ

∫

S
‖x− yR‖K(‖uR − yR‖/h)K(‖uR − x‖/2h) dx , (5.1)

where the random variables X and XQ are distributed on S with densities p and pQ,

respectively, and Y R, Y R
Q and yR denote the projections of X, XQ and x, respec-

tively, onto the infinite line of which MR forms a part.

Let A0 be the set of pairs (Q,ψ) such that Q ∈ ∪j ∂Sj(h) and ψ ∈ [− 1
2π +

∆, 1
2π −∆], and let A1 denote the set of triples (Q,ψ,MR) such that (Q,ψ) ∈ A0

andMR satisfies (CR
M). Given a setAj for j = 1, 2, . . ., write supj for the supremum

over quantities in Aj , and note that

sup1
{
µ(MR) + µQ(MR)

}
= O

(
h3

)
(5.2)

as h → 0. For example, to prove that sup1 µ(MR) = O(h3) we note that

µ(MR) =
∫

S
‖x− yR‖K(‖uR − yR‖/h)K(‖uR − x‖/h) f(x) dx

≤ 3 h (sup K)
∫

S
K(‖uR − x‖/2h) f(x) dx (5.3)

≤ 12 h3 (sup K) (sup f)
∫

K(‖z‖) dz = O(h3) .

(The first inequality follows from the fact that K(‖uR−yR‖/h) K(‖uR−x‖/h) 6= 0

implies ‖uR − yR‖ ≤ h and ‖uR − x‖ ≤ 2h, whence ‖x− yR‖ ≤ 3h.)

By construction of pQ, and property (Cf ) (particularly the fact that f has a

bounded derivative on S),

sup1
∣∣µ(MR)− µQ(MR)

∣∣ = O
(
h4

)
. (5.4)

(This result follows from a short Taylor expansion of (5.3) around (5.1).) Let MR
0

denote the unique line segment that satisfies (CR
M), lies above ∂S, is distant just
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C1h
2 from ∂S at its closest point, and is inclined at the same angle as the tangent

to S at Q. (Provided L intersects ∂S at an angle sufficiently close to π
2 , MR

0 is well

defined.) The condition on angle intersection is equivalent to |φ| > ∆, where ∆ is

sufficiently small. However, the condition is important only at the very beginning of

the procedure, where L = L1, since at all later steps φ is a realisation of a random

variable whose absolute value is less than any given positive ∆ with probability

O(ν−λ), for all λ > 0. There is clearly no more than a polynomial number of steps;

our proof will show that the number is in fact no more than O(h−1).

In view of (5.4),

sup1
∣∣{µ(MR)− µ(MR

0 )
}− {

µQ(MR)− µQ(MR
0 )

}∣∣ = O
(
h4

)
. (5.5)

Let α = 1
2 or 1, and C2 > 0. Write inf2α,C2

to denote the infimum over the set

A2(α, C2) of triples (Q,ψ,MR) such that (Q,ψ) ∈ A0, MR satisfies (CR
M), and the

absolute value of the difference between the angles of inclination of MR and MR
0

exceeds C2h
α. It may be deduced from the integral at (5.1) that

inf2α,C2

{
µQ(MR)− µQ(MR

0 )
} ≥ Chα+3 + o

(
hα+3

)
,

where C = C(C2) > 0 increases without bound as C2 increases. From this property

and (5.5) it follows that

inf2α,C2

{
µ(MR)− µ(MR

0 )
} ≥ C3h

α+3 + o
(
hα+3

)
, (5.6)

where C3 = C3(C2) > 0 for sufficiently large C2 > 0. This result is clear when

α = 1
2 , and in fact C3 = C there. To treat α = 1, let Ah4 denote an upper bound

to the right-hand side of (5.5). Then (5.6) holds if its right-hand sided is altered

to {C(C2)−A}h4 + o(h4). Taking C2 so large that C(C2) ≥ 2A we obtain (5.6) in

its stated form. For both α = 1
2 , 1 the value of C3 increases without bound as C2

increases.

Let A3 = A3(C2) denote the class of quadruples (Q,ψ,MR
(1),MR

(2)) such that

(Q,ψ,MR
(i)) ∈ A1 for i = 1, 2, and the absolute value of the difference between
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the inclinations of M(1) and M(2) is no greater than C2h
1/2. Let N represent the

number of points in X , and put

µ̂(MR) = N−1
N∑

i=1

‖Xi − Y R
i ‖K(‖uR − Y R

i ‖/h)K(‖uR −Xi‖/2h) .

(This is a normalised form of the second series at (2.1).) Then E{µ̂(MR)|N} =

µ(MR). (Here we have used the assumption that, in the relation p = c0f , c0 = 1.)

Bernstein’s inequality implies that for t > 0 and all (Q,ψ,MR) ∈ A1,

P
{|µ̂(MR)−µ(MR)| > N−1/2 th2

∣∣ N
} ≤ 2 exp

{−D1 t2
/(

1+N−1/2th3
)}

, (5.7)

where D1 > 0 depends only on f , K and ∆, the latter through the definition of A1.

(To derive (5.7), note that conditional on N , µ̂(MR) equals a sum of independent

random variables with mean µ(MR).)

Similarly, for t > 0 and all (Q,ψ,MR
(1),MR

(2)) ∈ A3,

P
[∣∣{µ̂(MR

(1))− µ̂(MR
(2))

}− {
µ(MR

(1))− µ(MR
(2))

}∣∣ > N−1/2 t h5/2
∣∣∣ N

]

≤ 2 exp
{−D2 t2

/(
1 + N−1/2th7/2

)}
, (5.8)

where D2 > 0 depends only on f , K, ∆ and C2.

Recall from assumption (Ch) that h ≥ B3(ν−1 log ν)1/3 for a large constant B3.

If C4 =
∫

f then the probability that |N−C4ν| > 1
2 C4ν equals O(ν−λ) for all λ > 0.

Therefore, taking t = 1
2C3 ( 1

2C4)1/2ν1/2 h3/2 we deduce from (5.6) (with α = 1
2 ) and

(5.7) that given λ > 0 we have for all sufficiently large B3, and a constant C5 > 0,

P
{
µ̂(MR) ≤ µ̂(MR

0 ) + C5h
7/2

}
= O

(
ν−λ

)
(5.9)

uniformly in (Q,ψ,MR) ∈ A2( 1
2 , C2). Exploiting the smoothness of µ̂ as a function

of MR, and choosing B3 larger, we may use a standard continuity argument (in-

volving approximation by a polynomially large number of elements of A2) to show

from this result that

P
{

µ̂(MR) ≤ µ̂(MR
0 ) for some (Q,ψ,MR) ∈ A2(1

2 , C2)
}

= O
(
ν−λ

)
. (5.10)
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In this and the next two paragraphs we treat a class of triples (Q,ψ,MR) which

does not intersect A2( 1
2 , C2). Let A4 denote the analogue of A3(C2) for triples; it is

the set of (Q,ψ,MR) such that (Q, ψ) ∈ A0, MR satisfies (CR
M), and the absolute

value of the difference between the angles of inclination of MR and MR
0 does not

exceed C2h
1/2. Letting t = ξν1/2h3/2 for ξ > 0 fixed but arbitrarily small, and

taking (Q,ψ,MR
(1)) ∈ A4 and MR

(2) = MR
0 in (5.8), we deduce from (5.8) that for

any given η, λ > 0 we may choose B3 (in condition (Ch)) so large that

sup4 P
[∣∣{µ̂(MR)− µ̂(MR

0 )
}− {

µ(MR)− µ(MR
0 )

}∣∣ > η h4
]

= O
(
ν−λ

)
. (5.11)

Replace (C2, C3) (in the context of (5.6)) by (C ′2, C
′
3), to distinguish the case α = 1

from α = 1
2 treated in the previous paragraph; apply (5.6) for α = 1; and note the

remark immediately following (5.6). Arguing in this way we may deduce that if

C6 > 0 is given then C ′3 ≥ C6 for sufficiently large C ′2, and thence for such values

of C ′2 in the definition of A2(1, C ′2),

inf21,C′2

{
µ(MR)− µ(MR

0 )
} ≥ C6h

4 + o
(
h4

)
. (5.12)

Let A5(C2, C
′
2) denote the set of triples (Q,ψ,MR) such that (Q,ψ) ∈ A0,

MR satisfies (CR
M), and the absolute value of the difference between the angles of

inclination of MR and MR
0 lies between C2h

1/2 and C ′2h. Combining (5.11) and

(5.12) we deduce that for a constant C7 > 0,

sup5 P
{
µ̂(MR) ≤ µ̂(MR

0 ) + C7 h4
}

= O
(
ν−λ

)
. (5.13)

Applying to (5.13) the continuity argument that produced (5.10) from (5.9) we

obtain on the present occasion,

P
{

µ̂(MR) ≤ µ̂(MR
0 ) for some (Q,ψ,MR) ∈ A5(C2, C

′
2)

}
= O

(
ν−λ

)
. (5.14)

Note that A5(C2, C
′
2) does not intersect A2( 1

2 , C2). The latter set appeared in the

analogue (5.10) of (5.14).
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Let A6(C ′2) denote the set of triples (Q,ψ,MR) such that (Q, ψ) ∈ A0, MR

satisfies (CR
M), and the absolute value of the difference between the angles of incli-

nation of MR and MR
0 exceeds C ′2h. Combining the complementary results (5.10)

and (5.14) we see that given any C1, λ > 0 we may choose B3 (in condition (Ch))

and C ′2 so large that

P
{

µ̂(MR) ≤ µ̂(MR
0 ) for some (Q,ψ,MR) ∈ A6(C ′2)

}
= O

(
ν−λ

)
. (5.15)

Finally we convert this result to one for a line segment N̂R that is similar to

M̂R, defined in section 2.2. Recall that L = L(Q, ψ) denote a line that intersects

∂Sj(h) at a point Q and whose normal makes angle ψ ∈ (−π/2, π/2) to the tangent

to ∂Sj at Q. Let NR be of length 2h, lie to the right of L with its left end on L, and

be placed so that no point of X lies above it, at least one point of X lies on it, and

the acute angle φ that it makes to L satisfies |φ| > ∆. Call these conditions (CR
N ).

Let A7 represent the class of segments NR that satisfy µ̂(NR) ≤ µ̂(MR
0 ). If λ > 0

is given then we may choose C1 (in the definition of (CR
M)) so large that

P
{

all segments NR in A7 satisfying (CR
N ) also satisfy (CR

M)
}

= 1−O
(
ν−λ

)
. (5.16)

See section 5.3 for a proof. Given C8 > 0, denote by A8(C8) the set of triples

(Q,ψ,NR) such that (Q,ψ) ∈ A0, NR satisfies (CR
N ), and the absolute value of the

difference between the angles of inclination of NR and MR
0 exceeds C8h. It follows

from (5.15) and (5.16) that for sufficiently large B3, C1 and C8,

P
{

µ̂(NR) ≤ µ̂(MR
0 ) for some (Q,ψ,NR) ∈ A8(C8)

}
= O

(
ν−λ

)
.

Therefore, if N̂R denotes the minimiser of µ̂(NR) over line segments NR that

satisfy (CR
N ), and if anglediff(N̂R,MR

0 ) represents the difference between the angles

of inclination of N̂R and MR
0 , then

P

{
sup

(Q,ψ) : (Q,ψ)∈A0

∣∣anglediff
(N̂R,MR

0

)∣∣ > C8h

}
= O

(
ν−λ

)
. (5.17)
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5.3. Derivation of (5.16). Let segs(N ) denote the set of line segments M that

satisfy (CR
N ) and intersect ∂S. For each M ∈ segs(N ), denote by angle(M) the

angle that M makes to ∂S, and let D(M) denote the maximum distance that

M protrudes below ∂S. Let segs(N | C9) denote the set of all M ∈ segs(N ) for

which angle(M) ≤ C9h. In the next two paragraphs we shall outline a proof that

if C9, λ > 0 are given, and C1 = C1(C9, λ) > 0 is sufficiently large, then

P

{
sup

M :M∈segs(N|C9)

D(M) > C1 h2

}
= 1−O

(
ν−λ

)
. (5.18)

Let ξ, η ∈ (0, 1) be arbitrarily small, and place rectangles with dimensions

ξh × (1 − η)C1h
2 below ∂S in a regular fashion, with their long sides parallel to

∂S and their short sides in the perpendicular direction, and such that adjacent

rectangles touch one another and ∂S at edges or corners. The total number of

rectangles involved equals O(h−1), and the probability that any particular rectangle

contains at least one point of X equals 1 − exp{−ξ(1 − η)cνC1h
3}, where c is as

in section 5.1. Therefore if C1 is sufficiently large, depending on ξ, η and λ, then

the probability of the event F that each rectangle contains at least one point of X
equals 1−O(ν−λ).

Suppose ξ is sufficiently small, depending on C9 and on the value of ∆ in the

assumption that the absolute value of the acute angle φ that a line in (CR
N ) makes to

L must exceed ∆. Then for all sufficiently small h, whenever F holds, any segment

satisfying (CR
N ) and intersecting ∂S at a steeper angle than C9h cannot protrude

more than C1h
2 below ∂S. (The condition that h be small, and also the factor 1−η

in the definition of the longer side length, are needed to overcome slight anomalies

caused by the sides of the rectangles being straight and the boundary ∂S being

possibly curved.) Result (5.18) follows from this result and that in the previous

paragraph.

However, (5.18) does not hold for steep lines, which may protrude relatively

deeply. We deal with that case in two parts. The first is treated by the following
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result, which has a similar proof to (5.18): for all λ > 0,

P

{
sup

M :M∈segs(N )

D(M) > 2h

}
= 1−O

(
ν−λ

)
. (5.19)

Next we consider line segments that protrude between C1h
2 and 2h. Let (CR

M)′

be the version of (CR
M) in which “C1h

2” is replaced by “2h” in the restriction that

“the right-hand end [of (CR
M)] lies within C1h

2 of ∂S [and] no part of it lies further

than C1h
2 below ∂S”. Denote by A9(C9) the class of triples (Q,ψ,MR) such that

(Q,ψ) ∈ A0, MR satisfies (CR
M)′, and the absolute value of the difference between

the angles of inclination of MR and MR
0 exceeds C9h. The argument leading to

(5.15) continues to hold and now gives the following analogue of that result: For

any C1, λ > 0 we may choose B3 and C9 so large that

P
{

µ̂(MR) ≤ µ̂(MR
0 ) for some (Q,ψ,MR) ∈ A9(C9)

}
= O

(
ν−λ

)
. (5.20)

(As in the derivation of (5.15), the technique involves splitting A9(C9) into two

non-overlapping sets of triples (Q,ψ,MR), establishing the version of (5.20) in the

case where A9(C9) is replaced by either of these sets, and adding the result.)

The desired result (5.16) follows from (5.18)–(5.20).

5.4. Left and right smooths. Define N̂R as in section 5.2, let ẐR denote the point

at which N̂R intersects L(Q,ψ), and let z be the vector represented by Q. Result

(5.16) implies that if λ > 0 is given, and C1 is chosen sufficiently large, then the

probability that N̂R protrudes no further than C1h
2 below ∪j ∂Sj equals 1−O(ν−λ).

It follows from this property and (5.18) that for sufficiently large B3, C1 and C9,

P
{ ‖ẐR − z‖ > C9 h2 for some (Q, ψ) ∈ A0

}
= O

(
ν−λ

)
. (5.21)

Next we consider the uniform accuracy of tangent-angle estimators. Result

(5.17) has of course an analogue for left-hand tangent-angle estimators. Both left

and right estimators are identical to those described in section 2.1, except for the

constraint that “the acute angle φ that NR makes to L satisfies |φ| > ∆”; see the
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definition of condition (CR
N ) below (5.15). If ∆ is sufficiently small (as assumed in

Theorem 3.1) then this constraint will be fulfilled at the initial step, where Q̂1 is

calculated using the transect L1. Given that this is the case then in all other steps,

uniformly along smooth parts of the curve (that is, for (Q,ψ) ∈ A0 in the case

of right-hand tangent-angle estimators, and analogously for left-hand estimators),

(5.17) and its left-hand analogue imply that the condition stated just above in

quotation marks is satisfied with probability 1 − O(ν−λ), for any given λ > 0

provided the constants are chosen sufficiently large. Since Theorem 3.1 refers only

to events whose probability of not occurring is of order O(ν−λ), then we have proved

that, uniformly along smooth parts of the curve, there exists a constant C10 > 0

such that, with probability 1−O(ν−λ), both

sup
(Q,ψ)∈A0

|ω̂R − ωR| ≤ C10h , (5.22)

and its analogue for left-hand tangent-angle estimators, hold.

Results (5.21) and (5.22) establish properties (III) and (IV) in event E(C), ex-

cept in O(h2) neighbourhoods of corners. (That case will be treated in section 5.5.)

It also implies that if λ > 0 is given then for some C11 = C11(λ) > 0, with proba-

bility 1−O(ν−λ) the number of steps taken to traverse each smooth segment of the

boundary (i.e. from Pj to Pj+1, or the fragment of that curve which we estimate

when j = 0 or k−1), is bounded by C11h
−1. It will follow from results in section 5.5

that with the same probability, no more than a bounded number of steps is spent

negotiating each corner. Together these results imply property (VI) in event E(C).

Result (5.22), and its left-hand counterpart, imply that for some C12 > 0

and with probability 1 − O(ν−λ), |ω̂L − ω̂R| ≤ C12h for each step along smooth

parts of the curve. We take B1 and B2, in the definitions of the weight ρ̂ and the

tangent-angle threshold B2h, to be constants exceeding C10. Choosing B1 larger

ensures smoother right-to-left-hand switches of smoothing algorithms, as discussed

in section 2.5.

5.5. Corners. Recall that L = L(Q,ψ) denotes a line that intersects ∂S at a point
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Q and whose normal makes angle ψ ∈ (−π/2, π/2) to the tangent to ∂S at Q. In

this section we allow Q to be a corner; at such locations there are of course two

values of ψ.

Versions of the results in section 5.2 may be developed in arbitrarily close

neighbourhoods of corners, with the proviso that the line segment MR
0 introduced

there is redefined as the minimiser of µ(MR) over line segments MR that intersect

∪j ∂Sj and have area C13h
3 of S between the segment and the boundary, where

“between” means in the direction perpendicular to the boundary, and C13 is a large

positive constant. With the new definition of MR
0 we may prove instead of (5.15)

that if C14 > 0 is sufficiently large then

P
{

µ̂(MR) ≤ µ̂(MR
0 ) for some (Q,ψ,MR) ∈ A10(C14)

}
= O

(
ν−λ

)
, (5.23)

where A10(C14) denotes the set of triples (Q,ψ,MR) such that (Q,ψ) ∈ A11 and

the absolute value of the difference between the angles of inclination ofMR andMR
0

exceeds C14h, and A11 is the set of pairs (Q,ψ) such that Q ∈ ∪j ∂Sj and is distant

at least 2h from both P0 and Pk, and ψ ∈ [− 1
2π+∆, 1

2π−∆]. (The latter restriction

can be ill defined within distance δh, say, of a corner (0 < δ < 2), but there it can be

greatly relaxed since there is a much wider range of orientations of MR for which,

with probability 1 − O(ν−λ), points of S lie below the segment.) Derivation of

(5.23) uses the same technique employed to establish (5.15) and (5.22). It involves

splitting the set of triples (Q,ψ,MR) — here A10(C4) — into two nonoverlapping

subsets, bounding the probability for each, and adding the results.

To convert (5.23) to a result for a line segment N̂R that is similar to M̂R, let

condition (CR
N ) on line segments NR be as in section 5.2, and let N̂R be as defined

there. The following analogue of (5.17) may be proved via (5.23): if λ > 0 is given

then for sufficiently large B3, C1 and C15,

P

{
sup

(Q,ψ) : (Q,ψ)∈A11

∣∣anglediff
(N̂R,MR

0

)∣∣ > C15h

}
= O

(
ν−λ

)
. (5.24)

Define N̂L analogously to N̂R, let ξ̂L and ξ̂R be the respective angles of inclination

of N̂L and N̂R, and let ξL and ξR be the corresponding angles for ML
0 and MR

0 .
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Put χ = |ξL− ξR| and χ̂ = |ξ̂L− ξ̂R|. We may deduce from (5.24), and its analogue

in the left-hand case, that for some C16 > 0,

P
{
|χ̂− χ| > C16 h for some (Q,ψ) ∈ A11

}
= O

(
ν−λ

)
. (5.25)

If A and B are events, let P (A ‖B) = P (A ∩ B). Given a point Q ∈ ∂S, let

d(Q), dL(Q) and dR(Q) denote the distance from Q to the nearest corner of ∂S, to

the nearest corner on the left, and to the nearest corner on the right, respectively.

Let ω denote the true tangent angle at Q; it is well defined except when Q is a corner.

Put χL = |ξL − ω| and χR = |ξR − ω|. Algebraic and geometric arguments may be

used to show that for all sufficiently l arge ν: (a) there exists C17 > 0 such that

χL ≤ C17h [respectively, χR ≤ C17h] if Q is more than 2h from the nearest corner on

the left [right]; and (b) if C18 > 0 is sufficiently large then there exist C19, C20 > 0

such that (α) χL ≤ C19h and χR ≤ C19h if χ ≤ C18h, and (β) the distance from

Q to the nearest corner is less than C20h if χ > C18h. Combining these properties

with (5.24), (5.25) and the left-hand analogue of (5.24), we deduce that for some

C21 > 0, and given any sufficiently large C22 > 0, there exist C23, C24 > 0 such that

P

{
sup

(Q,ψ)

|ξ̂L − ω| > C21 h and dL(Q) > 2h

}
= O

(
ν−λ

)
,

P

{
sup

(Q,ψ)

|ξ̂R − ω| > C21 h and dR(Q) > 2h

}
= O

(
ν−λ

)
,

P

{
sup

(Q,ψ)∈A11

(|ξ̂L − ω|+ |ξ̂R − ω|) > C23h and χ̂ ≤ C22 h

}
= O

(
ν−λ

)
,

P

{
sup

(Q,ψ)∈A11
d(Q) > C23h and χ̂ > C22 h

}
= O

(
ν−λ

)
,

(5.26)

Given a point Q and a set R, let D(Q,R ) equal the infimum of distances from

Q to points of R. In this notation, the following result is a consequence of the

manner of construction of point estimates Q̂j : for some C25 > 0,

P

{
sup

j
D(Q̂j , ∂S) ≤ C25 h

}
= 1−O

(
ν−λ

)
. (5.27)

We can effectively equate (N̂L, N̂R) with (M̂L,M̂R), since (for any λ > 0) the

probability that they are not equal on all occasions where they are computed can be
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made equal to O(ν−λ) by choosing the constants large. Likewise, we can effectively

equate χ̂ and |ω̂L−ω̂R|. Therefore, results (5.26) and (5.27) imply that the following

properties hold with probability 1 − O(ν−λ), uniformly in any polynomially large

number of steps. (A) If a point estimate Q̂j is confirmed then both ω̂L and ω̂R differ

from the true tangent angle by no more than C26h. (B) If a point estimate Q̂j is

not confirmed then that point is within C27h of a corner. (C) If C28 > 0 then the

number of steps taken from when the point estimate is distant C28h to the left of a

given corner C, to when it is distant C28h to the right of C, is no more than C29.

Next we show that for each corner C, the associated sequence of unconfirmed

point estimates is a consecutive sequence, with probability 1 − O(ν−λ). Call this

property (D). (If (D) failed then we could mistakenly determine, with non-negligible

probability, that more than one corner existed in that vicinity of C, and in partic-

ular that property (I) in the definition of event E(C) could be violated.) It suffices

to show that for each C and all sufficiently small C30 > 0, the probability that a

sequence of point estimates . . . , Q̂i, Q̂i+1, . . . all of which lie within distance C30h

of C, includes a subsequence for which the confirmation status has the order “uncon-

firmed, confirmed, ..., confirmed, unconfirmed”, equals O(ν−λ). Bearing in mind

the following consequence of the results in the previous paragraph:

P

[
#

{
Q̂j : D(Q̂j , C) ≤ C28 h

} ≤ C29

]
= 1−O

(
ν−λ

)
. (5.28)

we see that all cases may be treated in the same way as that where the sequence is

of length three with the following confirmation statuses: “unconfirmed, confirmed,

unconfirmed”.

If the point estimates corresponding to the latter sequence are Q̂j , Q̂j+1, Q̂j+2

then the estimated turning-angle differences for Q̂j and Q̂j+2 have absolute values

exceeding B1h, whereas their counterpart for Q̂j+1 does not exceed B1h. For any

0 < ε1 < ε < ε2 it can be shown that with probability 1 − O(ν−λ), the distance

of Q̂j+1 from each of Q̂j and Q̂j+2 lies between ε1h and ε2h. Also it may be

proved that if ε1 and ε2 are sufficiently close to ε, and if C30 is sufficiently small,
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then for some C31 > 0, C31h is exceeded by the absolute value of the difference

between two versions of |ξL − ξR|, computed at points Q and Q′ (say) that are

distant between ε1h and ε2h apart, and which are each distant no more than C30h

from C. (The value of C31 can be made arbitrarily large by choosing C30 small.)

By selecting B3 sufficiently large the Bernstein-inequality arguments in section 5.2

may be used to prove that with probability 1−O(ν−λ), both |ξ̂L−ξL| ≤ 1
3C31h and

|ξ̂R − ξR| ≤ 1
3C31h, uniformly in pairs (Q,ψ) with Q no more than C30h from C.

Consequently,
∣∣∣
∣∣ξ̂L − ξ̂R

∣∣− ∣∣ξL − ξR
∣∣
∣∣∣ ≤ 2

3 C31 h

uniformly in the same range, with probability 1−O(ν−λ). Hence, with probability

1−O(ν−λ) the differences between the versions of |ξ̂L − ξ̂R| for Q̂j and Q̂j+1, and

for Q̂j+1 and Q̂j+2, exceeds 1
3C31h. (Note result (5.28).)

This establishes the desired result about confirmation statuses of triples, and

so proves (D). In conjunction with (A)–(C) noted three paragraphs above, it also

completes the proof of property (I) in the definition of event E(C).

The O(h2) accuracy of point estimates computed using right smooths when

Q is not closer than 2h to a corner on the right, was established at (5.21). It of

course has an analogue for left smooths. Result (A) implies that with probability

1 − O(ν−λ), tangent-angle estimates (we are focusing on those near a corner) are

accurate to O(h) for confirmed points, and so must be computed using a left smooth

(to the left of a corner) or a right smooth (to the right). Result (D) implies that

with probability 1−O(ν−λ), the switch from a left smooth to a right smooth occurs

only once for each corner. Therefore, with probability 1−O(ν−λ), confirmed points

either lie to the left of a corner, are computed using a left smooth, and are within

O(h2) of the true boundary, or lie to the right, are computed via a right smooth,

and are accurate to O(h2).

Therefore, with probability 1 − O(ν−λ), the tangent-angle estimates used for

extrapolation to corners are accurate to O(h), and the point estimates from which



34

the extrapolations are made are accurate to O(h2). Result (5.26) implies that those

points are also within O(h) of the true corners. It follows that the corner estimates

obtained by extrapolation are accurate to within O(h2), and moreover that both the

line segments used in the extrapolation are uniformly within O(h2) of the boundary.

Call this result (E).

Property (II), in the definition of event E(C), follows from (E). Property (V)

is implied by (B), and the proofs of (III), (IV) and (VI), which were commenced in

section 5.4, are completed using (E), (A) and (C) respectively.
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