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Abstract

In this paper we propose to estimate the hazard function based on local smoothing tech-

niques for both i.i.d and censoring data. Such estimators are known to have no boundary effects

while the estimators based on kernel function have the boundary effect, as pointed out by Müller

and Wang (1990). We derive the asymptotic normalities of the local smooth estimators and

compare with the kernel smooth estimators. It turns out that our local smooth estimators

with optimal bandwidths produce smaller biases than that of the kernel smooth estimators.

However, such estimators have large variances than that of the kernel smooth estimators. To

overcome this problem, we apply the variance reduction technique in Cheng, Peng and Wu

(2005) to our estimators. The resulted estimators have the same asymptotic biases as the local

smooth estimators and smaller asymptotic variances than the kernel estimators.

Keywords. Hazard function, kernel smooth estimation, local polynomial estimation, variance

reduction.

1 Introduction

Hazard function based on i.i.d. or censored data is important. It provides useful information

in reliability theory and survival analysis, as well as in the fields as diverse as engineering,
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medical statistics and geophysics. A variety of inferential procedures have been proposed to

estimate the hazard function nonparametrically. Estimators of hazard function based on kernel

smooth estimation have been studied extensively in the literature. For related investigations

in this direction we refer to Watson and Leadbetter (1964), Murphy (1965), Rice and Rosen-

blatt (1976), Singpurwalla and Wong (1983) and Patil (1997), under the i.i.d case. Under the

censoring case, see the discussions in Tanner and Wong (1983), Tanner (1983), Schäfer (1985),

Liu and Ryzin (1985), Diehl and Stute (1988), Lo, Mack and Wang (1989), Müller and Wang

(1990), Patil (1993), Wang (1999). It was pointed out that the drawback of using the kernel

smooth estimators are known to have the boundary effect (see by Müller and Wang (1990)).

Recently, Jiang and Doksum (2003) propose a type of local polynomial estimation for

hazard rates and their derivatives via smoothing a Dirac derivative of the Nelson-Aalen es-

timator. The result is the same as the kernel estimator using the equivalent kernel of local

polynomial regression, see e.g. Fan and Gijbels (1996), and hence is free from boundary effects.

In this paper we propose another type of smooth estimation for the hazard function based on

local polynomial techniques, which is more intuitive than Jiang and Doksum (2003) and may

be argued to have no boundary effect as well. We show that our local smooth estimators have

smaller asymptotic biases, but larger asymptotic variances, than the kernel smooth estimators

under the case with or without censoring. Proofs of these results are nontrivial. To reduce the

variances of our local smooth estimators, we apply the variance reduction technique introduced

by Cheng, Peng and Wu (2005). Hence, our variance reduced local smooth estimators are bet-

ter than both the kernel smooth estimators and that in Jiang and Doksum (2003) in terms of

either optimal asymptotic mean squared error or asymptotic bias and variance with the same

bandwidth. A numerical study demonstrates that these advantageous asymptotic properties

are also apparent in finite sample sizes.

We organize this paper as follows. In Section 2, we establish the weak convergence of

the local smooth estimators for both i.i.d and censoring cases. In Section 3, we provide some

comparisons between our local smooth estimators and the kernel smooth estimators. In Section

4, we propose variance reduced local smooth estimators and compare them with the kernel

smooth estimators. A simulation study is given in Section 5. All proofs are deferred till Section

6.
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2 Local smooth estimation

Throughout this paper we assume that

A1) k(x) is a symmetric density function with support [-1, 1];

A2) f ′′(x) exists and is continuous, where f is defined below;

A3) h = h(n) > 0, h → 0 and
√

nhh2 → b ∈ [0,∞) as n → ∞.

2.1. The case without censoring. Let X1, · · · , Xn be independent and identically dis-

tributed survival times with distribution function F (x) and density function f(x). Our aim is

to estimate the hazard function λ(x) = f(x)
1−F (x)

using local smooth techniques. We apply local

smoothing techniques, see for example Fan and Gijbels (1996), to estimate the derivative of

Λ(x) = − log(1 − F (x)), i.e., λ(x) as follows.

Let Fn(x) = 1
n

n
∑

i=1

I(Xi ≤ x) be the empirical distribution of the sample {X1, X2, ..., Xn}

and define Λn(x) = − log(1 − Fn(x)). Observe the following regression model:

Λn(Xi) = Λ(Xi) + error, i = 1, · · · , n,

and let (â, b̂, ĉ) be the value of (a, b, c) that minimizes the following kernel weighted squared

errors:
n

∑

j=1

{Λn(Xj) − a − b(Xj − x) − c(Xj − x)2}2k(
x − Xj

h
). (2.1)

Then our new local smooth estimator for λ(x) is defined as λ̂n(x) = b̂ and has the following

explicit expression

λ̂n(x) =

n
∑

j=1

Λn(Xj)k(
x − Xj

h
)[∆n,1(x) + (Xj − x)∆n,2(x) + (Xj − x)2∆n,3(x)]

∆n(x)
,
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where sn,l(x) =
n

∑

j=1

(x − Xj)
lk(

x − Xj

h
), l = 0, 1, 2, 3, 4, and























































∆n(x) = s3
n,1(x)sn,4(x) + sn,1(x)s3

n,2(x) + sn,0(x)sn,1(x)s2
n,3(x)

−2s2
n,1(x)sn,2(x)sn,3(x) − sn,0(x)sn,1(x)sn,2(x)sn,4(x)

∆n,1(x) = sn,1(x)sn,2(x)sn,3(x) − s2
n,1(x)sn,4(x)

∆n,2(x) = sn,1(x)s2
n,2(x) − sn,0(x)sn,1(x)sn,4(x)

∆n,3(x) = s2
n,1(x)sn,2(x) − sn,0(x)sn,1(x)sn,3(x).

(2.2)

Define

c1 =

∫ 1

−1

s2k(s) ds, c2 =

∫ 1

−1

s4k(s) ds, c3 = 2

∫ 1

−1

{

∫ t

−1

k(s)k(t)s2t ds
}

dt. (2.3)

The following theorem provides us with the weak convergence of the local smooth estimator

λ̂n(x).

Theorem 1. Under regularity conditions A1) – A3), we have for 1 − F (x) > 0

√
nh{λ̂n(x) − λ(x)} d→ N

(bλ′′(x)c2

6c1
,

f(x)c3

[1 − F (x)]2c2
1

)

as n → ∞, where b is defined in condition A3 and c1, c2 and c3 are defined in (2.3).

2.2. The case with censoring. Let X1, · · · , Xn be independent and identically distributed

random variables with distribution function F (x) and density function f(x), and Y1, · · · , Yn

be independent and identically distributed random variables with distribution function G(y)

and density function g(y). Suppose X ′
is and Y ′

j s are independent and our observations are

Zi = min(Xi, Yi) with censoring indicators δi = I(Xi ≤ Yi) for i = 1, · · · , n. Thus δi = 1

indicates the survival time Xi for the ith individual is observed while δi = 0 indicates Xi is not

observed but it is known to be greater than Yi. Our aim is to estimate the hazard function

λ(x) = f(x)
1−F (x)

, which is of importance in many lifetime studies.

In estimating the distribution function F , a popular nonparametric estimator F ∗
n based

on the right censored data {Zi, δi}, i = 1, ..., n, is the well-known Kaplan-Meier (Kaplan and

4



Meier, 1958) estimator given by

F ∗
n(x) =











1 −
n

∏

j=1

[
N(Zj)

1 + N(Zj)
]I(Zj≤x,δj=1) if x < max(Z1, · · · , Zn)

1 elsewhere,

where N(u) =
n

∑

j=1

I(Zj > u). The large sample properties of the product-limit estimator F ∗
n(x)

have drawn much attention in the literature; see Chen and Lo (1997) and references cited

therein.

Define Λ∗
n(x) = − log(1 − F ∗

n(x)) and Λ(x) = − log(1 − F (x)). Observe the following

regression model:

Λ∗
n(Zi) = Λ(Zi) + error , i = 1, · · · , n.

For those i′s such that δi = 1, i.e., Zi = Xi, we apply local smoothing techniques to estimate

the derivative of Λ(x), i.e., λ(x). That is, let (â, b̂, ĉ) be the value of (a, b, c) that minimizes the

following kernel weighted squared errors:

n
∑

j=1

δj{Λ∗
n(Zj) − a − b(Zj − x) − c(Zj − x)2}2k(

x − Zj

h
). (2.4)

Then our local smooth estimator for λ(x) is defined as λ̂∗
n(x) = b̂ and has the following explicit

expression

λ̂∗
n(x) =

n
∑

j=1

Λ∗
n(Zj)k(

x − Zj

h
)[∆n,1(x) + (Zj − x)∆n,2(x) + (Zj − x)2∆n,3(x)]

∆n(x)
, (2.5)

where sn,l(x) =

n
∑

j=1

δj(x−Zj)
lk(

x − Zj

h
), l = 0, 1, 2, 3, 4, and ∆n(x), ∆n,1(x), ∆n,2(x) and ∆n,3(x)

are defined as in (2.2). The following theorem provides us the week convergence of the local

smooth estimator λ̂∗
n(x).

Theorem 2. Under regularity conditions A1) - A3) and g(y) is continuous, we have for

1 − F (x) > 0

√
nh{λ̂∗

n(x) − λ(x)} d→ N
(bλ′′(x)c2

6c1

,
f(x)c3

[1 − F (x)]2[1 − G(x)]c2
1

)
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as n → ∞, where b is defined in condition A3 and c1, c2 and c3 are given by (2.3).

Remark 1. In the local polynomial fittings (2.1) and (2.4), Λn and Λ∗
n can be replaced by the

Nelson-Aalen estimator of the cumulative hazard. The asymptotic results remain unchanged.

3 Comparisons between kernel smooth estimators and

local smooth estimators

In this section, we study some asymptotic properties of the kernel smooth estimators and local

smooth estimators for both i.i.d and censored cases.

3.1. The case without censoring. Under the case of no censoring, the kernel smooth

estimator studied by Singpurwalla and Wong (1983) is defined as

λ̄n(x) =
1

h

n
∑

j=1

k(
X(j) − x

h
)/(n − j + 1),

where X(1) ≤ · · · ≤ X(n) denote the order statistics of X1, · · · , Xn. Under the regularity

conditions A1) - A3), Singpurwalla and Wong (1983) proved that for 1 − F (x) > 0

√
nh(λ̄n(x) − λ(x))

d→ N
(bλ′′(x)c1

2
,

f(x)c4

[1 − F (x)]2

)

as n → ∞, where c1 is given by (2.3), b satisfies condition A3 and

c4 =

∫ 1

−1

k2(x)dx.

Hence, by minimizing the asymptotic mean squared error, we obtain that the local optimal

bandwidth for λ̄n(x) is

h̄opt = n−1/5
{ f(x)c4

[1 − F (x)]2[λ′′(x)]2c2
1

}1/5

. (3.1)

Thus the optimal asymptotic mean squared error of λ̄n(x) is given by

amse(λ̄n(x), h̄opt) = n−4/5
{ f(x)

[1 − F (x)]2

}4/5

{λ′′(x)}2/5 5c
2/5
1 c

4/5
4

4
. (3.2)

On the other hand, it follows from Theorem 1 that, by minimizing the asymptotic mean

squared error (amse), the local optimal bandwidth for our local smooth estimator λ̂n(x) is

ĥopt = n−1/5
{ f(x)9c3

[1 − F (x)]2[λ′′(x)]2c2
2

}1/5

. (3.3)
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Thus the optimal asymptotic mean squared error for λ̂n(x) is given by

amse(λ̂n(x), ĥopt) = n−4/5
{ f(x)

[1 − F (x)]2

}4/5

{λ′′(x)}2/5 5c
4/5
3 c

2/5
2

4 · 32/5c2
1

. (3.4)

3.2. The case with censoring. For the case of censoring, a kernel smooth estimator for λ(x)

was proposed by Tanner and Wong (1983) as

λ̄∗
n(x) =

1

h

n
∑

j=1

(n − j − 1)−1δ(j)k(
x − Z(j)

h
),

where Z(1) ≤ · · · ≤ Z(n) denote the order statistics of Z1, · · · , Zn and δ(1), · · · , δ(n) denote the

corresponding censoring indicators. Under the same regularity conditions as in Theorem 2,

Müller and Wang (1990) showed that for 1 − F (x) > 0

√
nh(λ̄∗

n(x) − λ(x))
d→ N

(

bλ′′(x)c1

2
,

f(x)c4

[1 − F (x)]2[1 − G(x)]

)

as n → ∞. Hence, by minimizing the asymptotic mean squared error of λ̄∗
n(x), the local optimal

bandwidth for kernel smooth estimator λ̄∗
n(x) is given by

h̄∗
opt = n−1/5

{ f(x)c4

[1 − F (x)]2[1 − G(x)][λ′′(x)]2c2
1

}1/5

. (3.5)

Thus, the optimal asymptotic mean squared error for λ̄∗
n(x) is

amse(λ̄∗
n(x), h̄∗

opt) = n−4/5
{ f(x)

[1 − F (x)]2[1 − G(x)]

}4/5

{λ′′(x)}2/5 5c
2/5
1 c

4/5
4

4
. (3.6)

On the other hand, it follows from Theorem 2 that, by minimizing the asymptotic mean

squared error (amse), the local optimal bandwidth for local smooth estimator λ̂∗
n(x) is

ĥ∗
opt = n− 1

5

{ f(x)9c3

[1 − F (x)]2[1 − G(x)][λ′′(x)]2c2
2

}
1

5

. (3.7)

Therefore, the optimal asymptotic mean squared error for λ̂∗
n(x) is given by

amse(λ̂∗
n(x), ĥ∗

opt) = n− 4

5

{ f(x)

[1 − F (x)]2[1 − G(x)]

}
4

5 {λ′′(x)} 2

5

5c
4/5
3 c

2/5
2

4 · 32/5c2
1

. (3.8)

3.3. Comparisons. For the purpose of comparison, we compute the values of c1, · · · , c4 and

the contant factors in the asymptotically optimal bandwidth and amse expressions (3.1)–(3.8)

for four commonly used kernels, They are the Epanechnikov, Biweight, Triangular and Uniform

kernels. The results are shown in Table 1.
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Table 1: Values of c1, c2, c3, c4 for some commonly used kernels.

Kernel
c2
2

9c2
1

c2
1

c3
c2
1

c4
c
4/5

3
c
2/5

2

32/5c2
1

c
2/5

1
c
4/5

4

`

9c3
c2
2

´1/5 ` c4
c2
1

´1/5

Epanechnikov k(x) = 3

4
(1 − x2)I(|x| ≤ 1) 1

49

1

25

5

7

3

5
0.350799 0.3490865 2.036168 1.718772

Biweight k(x) = 15

16
(1 − x2)2I(|x| ≤ 1) 1

81

1

49
0.81585 5

7
0.3528509 0.350799 2.312166 2.036168

Triangular k(x) = (1 − |x|)I(|x| ≤ 1) 9

100

1

36

26

35

2

3
0.3521273 0.3530746 2.109626 1.888175

Uniform k(x) = 1

2
I(|x| ≤ 1) 1

25

1

9

3

5

1

2
0.3490865 0.3701072 1.718772 1.350960

First, let us look at the optimal amse for kernel smooth estimators and our local smooth

estimators. From (3.2), (3.4), (3.6) and (3.8), we notice that for both i.i.d case and censored

case, the difference in amse between these estimators are mainly the terms
c
4/5

3
c
2/5

2

32/5c2
1

and c
2/5
1 c

4/5
4 .

Table 1 shows that our local smooth estimators (λ̂n and λ̂∗
n) have smaller bias terms than that

of the kernel estimators (λ̄n and λ̄∗
n), but with large variances in general, for the four commonly

used kernel functions. It is also interesting to see that the optimal mean squared error is the

same for local smooth estimators with uniform kernel and for the kernel smooth estimators

with Epanechnikov kernel. In fact, this optimal mean squared error is the smallest among the

four kernels for both local and kernel smooth estimators.

Next, let us compare the optimal bandwidths for both local (λ̂n and λ̂∗
n) and kernel

smooth estimators (λ̄n and λ̄∗
n). Observe equations (3.1), (3.3), (3.5) and (3.7), we see that,

for both i.i.d. case and censoring case, the difference in optimal bandwidths for kernel and

local smooth estimators are based on terms
(

c4
c2
1

)1/5
and

(

9c3
c2
2

)1/5
. From Table 1, we see that

the optimal bandwidths for our local smooth estimators are larger than those for the kernel

smooth estimators. So, in practice, one may prefer local smooth estimators to kernel smooth

estimators since the larger optimal bandwidth will allow more data points in the local model.
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4 Variance reduced local smooth estimation

Note that our local smooth estimator has a smaller asymptotic bias, but a larger asymptotic

variance, than the kernel smooth estimator under the case with or without censoring. After

tedious calculations, we also notice that our local smooth estimator has the same optimal

asymptotic mean squared error as the local linear smooth estimator in Jiang and Doksum

(2003). However, we are able to reduce the asymptotic variance and retain the asymptotic bias

of our local smooth estimator by employing the variance reduction technique in Cheng, Peng

and Wu (2005); see below for details.

4.1. The case without censoring. We consider the following variance reduced local smooth

estimators

λ̃n(x) =
1 −

√
2

4
λ̂n(x − (

√

1/2 + 1)δh) +
1

2
λ̂n(x −

√

1/2δh) +
1 +

√
2

4
λ̂n(x − (

√

1/2 − 1)δh)

where δ > 0. This estimator is a linear combination of the three values λ̂n(x − (
√

1/2 + 1),

λ̂n(x−
√

1/2δh) and λ̂n(x−(
√

1/2−1)δh), and it is parallel to the form of the variance reduced

local linear regression estimator of Cheng, Peng and Wu (2005). The principle of Cheng, Peng

and Wu (2005) is to find the maximal relative variance reduction among all points in an

interpolation interval of length 2δh. In the current hazard estimation context, the covariance

structure of the local smooth estimator at different locations is much more complicated than in

the regression setting. For simplicity reasons we take λ̃n(x) the specified form. This may not

achieve the most variance reduction. Nevertheless, λ̃n(x) admits a very simple form and it is

shown that λ̃n(x) enjoys superior performance in both asymptotic and finite sample cases.

To analyze asymptotic properties of the new estimator, define

c5(a, b) =

∫ 1

−1

∫ t−a+b

−1

k(s)k(t)(s − b)st dsdt +

∫ 1

−1

∫ t+a−b

−1

k(s)k(t)(s − a)st dsdt (4.1)

and

c6(δ) = 5
8
c3 + 1−

√
2

4
c5((

√

1/2 + 1)δ,
√

1/2δ) − 1
8
c5((

√

1/2 + 1)δ, (
√

1/2 − 1)δ)

+1+
√

2
4

c5(
√

1/2δ, (
√

1/2 − 1)δ).
(4.2)

First we derive the asymptotic normality for our variance reduced local smooth estimator as

follows.
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Theorem 3. Under regularity conditions A1) - A3), we have for 1 − F (x) > 0 and δ > 0

√
nh{λ̃n(x) − λ(x)} d→ N

(bλ′′(x)c2

6c1
,

f(x)c6(δ)

[1 − F (x)]2c2
1

)

as n → ∞.

Second, we shall compare our variance reduced local smooth estimator λ̃n(x) with the

kernel smooth estimator λ̄n(x) defined in Section 3.1. Since the local smooth estimator λ̂n(x)

with the uniform kernel and λ̄n(x) with the Epanechnikov kernel have the same smallest optimal

amse among the four different kernels considered in Section 3.3, we only compare between

the variance reduced local smooth estimator with the uniform kernel and the kernel smooth

estimator with the Epanechnikov kernel. In this case, we have for 0 ≤ b − a ≤ 2

c5(a, b) = 1
4

∫ 1

−1−a+b
{
∫ t+a−b

−1
(s − a)st ds} dt + 1

4

∫ 1

−1−a+b
{
∫ 1

t+a−b
(t − b)st ds} dt

+1
4

∫ −1−a+b

−1
{
∫ 1

−1
(t − b)st ds} dt

= 1
4

∫ 1

−1−a+b
t{ (t+a−b)3+1

3
− a(t+a−b)2−a

2
} dt + 1

4

∫ 1

−1−a+b
t(t − b)1−(t+a−b)2

2
dt

= 1
4

∫ 1

−1−a+b
{− t4

6
+ t3 b−a

2
+ t2(− (b−a)2

2
+ 1

2
) + t( (b−a)3

b
− b−a

2
+ 1

3
)} dt

= 1
15

− (b−a)2

12
+ (b−a)3

24
− (b−a)5

480
,

and for b − a > 2, c5(a, b) = 0. Therefore,

c6(δ) =







1/15 − δ3/48 + 7δ5/960 if 0 ≤ δ ≤ 1
3/40 − δ2/24 + δ3/48 − δ5/960 if 1 < δ ≤ 2
1/24 if δ > 2,

i.e.,

c6(δ)/c
2
1 =







3/5 − 3δ3/16 + 21δ5/320 if 0 ≤ δ ≤ 1
27/40 − 3δ2/8 + 3δ3/16 − 3δ5/320 if 1 < δ ≤ 2
3/8 if δ > 2.

Notice that λ̃n(x) with δ = 0 reduces to the original estimator λ̂n(x). By checking that

d
dδ

c6(δ) ≤ 0, δ > 0, we see that c6(δ)/c
2
1 < 3

5
for any δ > 0, i.e., λ̃n(x) with the uniform kernel

has a smaller asymptotic variance than λ̄n(x) with the Epanechnikov kernel. Because both

estimators have the same asymptotic bias, we conclude that the variance reduced local smooth

estimator λ̃n(x) with the uniform kernel is better than the kernel smooth estimator λ̄(x) with

the Epanechnikov kernel in terms of optimal amse or amse with the same bandwidth.
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Cheng, Peng and Wu (2005) discussed in detail the choice of the parameter δ. Larger

values of δ are preferred so that more variance reductions are achieved if the hazard function

is smooth. Otherwise, if the curve has sharp feature, second order bias may appear and play

a role. In that case, smaller values of δ would still provide reasonable amount of variance

reductions.

4.2. The case with censoring.

The variance reduced local smooth estimators in this case is defined as

λ̃∗
n(x) =

1 −
√

2

4
λ̂∗

n(x − (
√

1/2 + 1)δh) +
1

2
λ̂∗

n(x −
√

1/2δh) +
1 +

√
2

4
λ̂∗

n(x − (
√

1/2 − 1)δh),

where δ > 0. The asymptotic normality of this variance reduced local smooth estimator is

given below. The comparison between λ̃n(x) and λ̄n(x) is similar to the i.i.d case in Section

4.1, hence is omitted here.

Theorem 4. Under regularity conditions A1) - A3) and that g(y) is continuous, we have for

1 − F (x) > 0 and any δ > 0

√
nh{λ̃∗

n(x) − λ(x)} d→ N
(bλ′′(x)c2

6c1

,
f(x)c6(δ)

[1 − F (x)]2[1 − G(x)]c2
1

)

as n → ∞, where c6 is defined as in (4.2)

5 Simulation study

A Monte Carlo study was conducted to demonstrate the advantage of our variance reduced

local smooth estimator λ̃n(x) over the kernel smooth estimator λ̄n(x), under the i.i.d setup.

The uniform kernel and Epanechnikov kernel were employed for λ̃n(x) and λ̄n(x), respectively.

Moreover, value of δ in the definition of λ̃n(x) was taken as one.

We generated 1000 pseudo-random samples of size n = 100 from Weibull distribution

F (x) = 1 − exp(−xα), x ≥ 0. We took α = 4 and compute λ̃n(x) and λ̄n(x) at point x such

that F (x) = 0.5 for h = h̄opt

2
+ j

20
h̄opt, j = 0, 1, · · · , 19, where h̄opt is defined in (3.1). In Figure

1, we plot the mean squared errors of λ̄n(x) and λ̃n(x) against different h. This figure clearly

11



shows that λ̃n(x) has a substantially smaller mean squared error than λ̄n(x). This confirms the

asymptotic results.

6 Proofs

Proof of Theorem 1. Let Uj = F (Xj), j = 1, · · · , n, Gn(u) = 1
n

n
∑

i=1

I(Ui ≤ u) and αn(u) =

√
n(Gn(u) − u). Then, using the result of Komlós, Major and Tusnády (1975), there exists a

sequence of Brownian bridges Bn(u), 0 ≤ u ≤ 1, n = 1, 2, · · · , such that

sup
0≤u≤1

|αn(u) − Bn(u)| = Op(n
−1/2 log n). (6.1)

Note that






















































n−1h−1sn,0(x) = f(x) + Op(h
2)

n−1h−3sn,1(x) = −f ′(x)c1 + Op(h)

n−1h−3sn,2(x) = f(x)c1 + Op(h
2)

n−1h−5sn,3(x) = −f ′(x)c2 + Op(h)

n−1h−5sn,4(x) = f(x)c2 + Op(h
2).

(6.2)

Using (6.2) we obtain that







































∆n,1(x) = op(n
3h11)

∆n,2(x) = n3h9f 2(x)f ′(x)c1(c2 − c2
1) + Op(n

3h10)

∆n,3(x) = n3h9f(x)[f ′(x)]2c1(c
2
1 − c2) + Op(n

3h10)

∆n(x) = n4h12f 3(x)f ′(x)c2
1(c2 − c2

1) + Op(n
4h13).

(6.3)
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Since

{λ̂n(x) − λ(x)}∆n(x)

=

n
∑

j=1

{Λn(Xj) − Λ(Xj)}k(
x − Xj

h
){∆n,1(x) + (Xj − x)∆n,2(x) + (Xj − x)2∆n,3(x)}

+
n

∑

j=1

{Λ(Xj) − Λ(x) − λ(x)(Xj − x) − 1

2
λ′(x)(Xj − x)2}k(

x − Xj

h
)

×{∆n,1(x) + (Xj − x)∆n,2(x) + (Xj − x)2∆n,3(x)}

= I + II,

it is easy to see that Theorem 1 holds if we show that

√
nhn−4h−12I

d→ N

(

0,
f 7(x)[f ′(x)]2c2

1(c2 − c2
1)

2c3

[1 − F (x)]2

)

(6.4)

and

n−4h−14II
p→ 1

6
λ′′(x)f 3(x)f ′(x)c2c1(c2 − c2

1) (6.5)
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as n → ∞. The proof of (6.5) is straightforward, hence it is omitted. To prove (6.4), we

decompose I as follows:

I = −
∑n

j=1 log
1−Fn(Xj)

1−F (Xj)
k(

x−Xj

h
){∆n,1(x) + (Xj − x)∆n,2(x) + (Xj − x)2∆n,3(x)}

=
n

∑

j=1

Fn(Xj) − F (Xj)

1 − F (Xj)
{1 + Op(n

−1/2 log n)}

×k(
x−Xj

h
){∆n,1(x) + (Xj − x)∆n,2(x) + (Xj − x)2∆n,3(x)}

= 1+Op(h)+Op(n−1/2 log n)

1−F (x)

n
∑

j=1

{Fn(Xj) − F (Xj)}k(
x − Xj

h
)

×{∆n,1(x) + (Xj − x)∆n,2(x) + (Xj − x)2∆n,3(x)}

=

[

1+Op(h)+Op(n−1/2 log n)
1−F (x)

∆n,1

n
∑

j=1

{Fn(Xj) − F (Xj)}k(
x − Xj

h
)

]

+

[

1+Op(h)+Op(n−1/2 log n)
1−F (x)

{∆n,2 − n3h9f 2(x)f ′(x)c1(c2 − c2
1)}

×
n

∑

j=1

{Fn(Xj) − F (Xj)}(Xj − x)k(
x − Xj

h
)

]

+

[

1+Op(h)+Op(n−1/2 log n)
1−F (x)

{∆n,3(x) − n3h9f(x)[f ′(x)]2c1(c
2
1 − c2)}

×
n

∑

j=1

{Fn(Xj) − F (Xj)}(Xj − x)2k(
x − Xj

h
)

]

+

[

1+Op(h)+Op(n−1/2 log n)

1−F (x)

n
∑

j=1

{Fn(Xj) − F (Xj)}k(
x − Xj

h
)

×{(Xj − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1) + (Xj − x)2n3h9f(x)[f ′(x)]2c1(c

2
1 − c2)}

]

= I1 + I2 + I3 + I4.
(6.6)

Using (6.1)–(6.3), the terms I1–I3 in (6.6) satisfy that

√
nhn−4h−12Ij = op(1), j = 1, 2, 3. (6.7)
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Next, the term I4 in (6.6) can be estimated as follows:

I4
1−F (x)

1+Op(h)+Op(n−1/2 log n)

= n
∫

{Fn(s) − F (s)}k(x−s
h

){(s − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1)

+(s − x)2n3h9f(x)[f ′(x)]2c1(c
2
1 − c2)} dFn(s)

= n
2

∫

k(x−s
h

){(s − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1)

+(s − x)2n3h9f(x)[f ′(x)]2c1(c
2
1 − c2)} d[Fn(s) − F (s)]2

+n
∫

{Fn(s) − F (s)}k(x−s
h

){(s − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1)

+(s − x)2n3h9f(x)[f ′(x)]2c1(c
2
1 − c2)}f(s) ds

=

[

−n
2

∫

[Fn(s) − F (s)]2 d{k(x−s
h

)

×[(s − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1) + (s − x)2n3h9f(x)(f ′(x))2c1(c

2
1 − c2)]}

]

+

[

√
n

∫

{√n[Fn(s) − F (s)] − Bn(F (s))}k(x−s
h

)

×{(s − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1) + (s − x)2n3h9f(x)[f ′(x)]2c1(c

2
1 − c2)}f(s) ds

]

+

[

√
n

∫

Bn(F (s))k(x−s
h

)

×{(s − x)n3h9f 2(x)f ′(x)c1(c2 − c2
1) + (s − x)2n3h9f(x)[f ′(x)]2c1(c

2
1 − c2)}f(s) ds

]

= III1 + III2 + III3.
(6.8)
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Since

EIII2
3 = 2nh2

∫ 1

−1

∫ t

−1
{F (x − th) − F (x − th)F (x − sh)}k(s)k(t)

×{−sn3h10f 2(x)f ′(x)c1(c2 − c2
1) + s2n3h11f(x)[f ′(x)]2c1(c

2
1 − c2)}

×{−tn3h10f 2(x)f ′(x)c1(c2 − c2
1) + t2n3h11f(x)[f ′(x)]2c1(c

2
1 − c2)}

×f(x − sh)f(x − th) dsdt

= nh2
∫ 1

−1

∫ 1

−1
F (x)[1 − F (x)]k(s)k(t)

×{−sn3h10f 2(x)f ′(x)c1(c2 − c2
1) + s2n3h11f(x)[f ′(x)]2c1(c

2
1 − c2)}

×{−tn3h10f 2(x)f ′(x)c1(c2 − c2
1) + t2n3h11f(x)[f ′(x)]2c1(c

2
1 − c2)}

×f(x − sh)f(x − th) dsdt

+2nh2
∫ 1

−1

∫ t

−1
{−thf(x) + thF (x)f(x) + shF (x)f(x) + O(h2)}k(s)k(t)

×{−sn3h10f 2(x)f ′(x)c1(c2 − c2
1) + s2n3h11f(x)[f ′(x)]2c1(c

2
1 − c2)}

×{−tn3h10f 2(x)f ′(x)c1(c2 − c2
1) + t2n3h11f(x)[f ′(x)]2c1(c

2
1 − c2)}

×f(x − sh)f(x − th) dsdt

= O(n7h24) + 2n7h23f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2

×
∫ 1

−1

∫ t

−1
{−t + tF (x) + sF (x)}k(s)k(t)st dsdt

= O(n7h24) + 2n7h23f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2[F (x) − 1]

×
∫ 1

−1

∫ t

−1
k(s)k(t)(s + t)st dsdt

+2n7h23f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2
∫ 1

−1

∫ t

−1
k(s)k(t)s2t dsdt

= O(n7h24) + n7h23f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2[F (x) − 1]

×
∫ 1

−1

∫ 1

−1
k(s)k(t)(s + t)st dsdt

+n7h23f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2c3

= O(n7h24) + n7h23f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2c3,

16



we have
√

nhn−4h−12III3
d→ N

(

0, f 7(x)[f ′(x)]2c2
1(c2 − c2

1)
2c3

)

. (6.9)

Using (6.1)–(6.3), we notice that terms III1 and III2 in (6.8) satisfy

√
nhn−4h−12IIIj = op(1), j = 1, 2. (6.10)

Thus, (6.4) follows from (6.7), (6.9) and (6.10). This completes the proof of Theorem 1.

Proof of Theorem 2. Define

H(u) = H1(u) + H2(u),

with H1(u) = P (Zj ≤ u, δj = 1) and H2(u) = P (Zj ≤ u, δj = 0), and let

Hn(u) = Hn,1(u) + Hn,2(u)

with Hn,1(u) = 1
n

n
∑

j=1

I(Zj ≤ u, δj = 1) and Hn,2(u) = 1
n

n
∑

j=1

I(Zj ≤ u, δj = 0). Let T be such

that 1−H(T ) > d with some d > 0 and M, λ denote generic positive constants. Then it follows

from Major and Rejto (1988) that the process {F ∗
n(u) − F (u),−∞ < u < ∞, 1 − H(u) > 0}

can be represented as

F ∗
n(u) − F (u) = (1 − F (u))[B1(n, u) + B2(n, u)] + R(n, u),

where

B1(n, u) =
Hn,1(u) − H1(u)

1 − H(u)
−

∫ u

−∞

Hn,1(y) − H1(y)

[1 − H(y)]2
dH(y) ,

B2(n, u) =

∫ u

−∞

Hn(y) − H(y)

[1 − H(y)]2
dH2(y)

and for any δ0 > 0

P (A1) ≤ Me−λh−δ0

where A1 = {supu≤T n|R(n, u)| > h−δ0}. Moreover, there exists a Gaussian Process W (u),−∞ <

u < ∞, with E(W (u)) = 0 and covariance

E(W (s)W (t)) = γ(s) =

∫ s

−∞
[1 − G(u)]−1[1 − F (u)]−2 dF (u) (6.11)
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for −∞ < s ≤ t < ∞, such that

P (A2) ≤ Me−λh−δ0 and P (A3) ≤ Me−λh−δ0 , (6.12)

where A2 = {sup−∞<u≤T

√
n|√n[B1(n, u) + B2(n, u)] − W (u)| > h−δ0} and A3 = {sup−∞<u<∞√

n|Hn(u) − H(u)| > h−δ0}. It is easy to check that






















































n−1h−1sn,0(x) = H ′
1(x) + Op(h

2)

n−1h−3sn,1(x) = −H ′′
1 (x)c1 + Op(h)

n−1h−3sn,2(x) = H ′
1(x)c1 + Op(h

2)

n−1h−5sn,3(x) = −H ′′
1 (x)c2 + Op(h)

n−1h−5sn,4(x) = H ′
1(x)c2 + Op(h

2).

(6.13)

By (6.13), we obtain that






































∆n,1(x) = op(n
3h11)

∆n,2(x) = n3h9[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + Op(n

3h10)

∆n,3(x) = n3h9H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2) + Op(n

3h10)

∆n(x) = n4h12[H ′
1(x)]3H ′′

1 (x)c2
1(c2 − c2

1) + Op(n
4h13).

(6.14)

Since

{λ̂∗
n(x) − λ(x)}∆n(x)

=

[

n
∑

j=1

{Λn(Zj) − Λ(Zj)}k(
x − Zj

h
){∆n,1(x) + (Zj − x)∆n,2(x) + (Zj − x)2∆n,3(x)}

]

+

[

n
∑

j=1

{Λ(Zj) − Λn(x) − λ(x)λ(Zj − x) − 1

2
λ′(x)(Zj − x)2}k(

x − Zj

h
)

×{∆n,1(x) + (Zj − x)∆n,2(x) + (Zj − x)2∆n,3(x)}
]

= I + II,
(6.15)

Theorem 2 holds if we can show that

√
nhn−4h−12I

d→ N

(

0,
f(x)[H ′

1(x)]6[H ′′
1 (x)]2c2

1(c2 − c2
1)

2c3

[1 − F (x)]2[1 − G(x)]

)

(6.16)
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and

n−4h−14II
p→ 1

6
λ′′(x)[H ′

1(x)]3H ′′
1 (x)c2c1(c2 − c2

1) (6.17)

as n → ∞, where H ′
1(x) = [1 − G(x)]f(x). It is easy to check that (6.17) holds. To prove

(6.16), we decompose the term I in (6.15) as follows:

I = −
n

∑

j=1

log
1 − F ∗

n(Zj)

1 − F (Zj)
k(

x − Zj

h
) × {∆n,1(x) + (Zj − x)∆n,2(x) + (Zj − x)2∆n,3(x)}

=
n

∑

j=1

F ∗
n(Zj) − F (Zj)

1 − F (Zj)
(1 + Op(n

−1/2 log n))k(
x − Zj

h
)

×(∆n,1(x) + (Zj − x)∆n,2(x) + (Zj − x)2∆n,3(x))

= 1+Op(h)+Op(n−1/2h−δ0)
1−F (x)

n
∑

j=1

{F ∗
n(Zj) − F (Zj)}k(

x − Zj

h
)

×{∆n,1(x) + (Zj − x)∆n,2(x) + (Zj − x)2∆n,3(x)}

=

[

1+Op(h)+Op(n−1/2h−δ0 )

1−F (x)
∆n,1

n
∑

j=1

{F ∗
n(Zj) − F (Zj)}k(

x − Zj

h
)δj

]

+

[

1+Op(h)+Op(n−1/2h−δ0)

1−F (x)
{∆n,2(x) − n3h9[H ′

1(x)]2H ′′
1 (x)c1(c2 − c2

1)}

×
n

∑

j=1

{F ∗
n(Zj) − F (Zj)}(Zj − x)k(

x − Zj

h
)δj

]

+

[

1+Op(h)+Op(n−1/2h−δ0)
1−F (x)

{∆n,3(x) − n3h9H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2)}

×
n

∑

j=1

{F ∗
n(Zj) − F (Zj)}(Zj − x)2k(

x − Zj

h
)δj

]

+

[

1+Op(h)+Op(n−1/2h−δ0)
1−F (x)

∑n
j=1{F ∗

n(Zj) − F (Zj)}k(
x−Zj

h
)δj

×{(Zj − x)n3h9[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + (Zj − x)2n3h9H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}

]

= I1 + I2 + I3 + I4.
(6.18)
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Using (6.12)-(6.14) the terms I1–I3 can be estimated as follows:
√

nhn−4h−12Ij = op(1), j = 1, 2, 3. (6.19)

Next, we estimate the term I4 in (6.18). Note that

dHn,1(u) = [1 − H(u)]d[B1(n, u) + B2(n, u)] + H ′
1(u) du − Hn(u) − h(u)

1 − H(u)
H ′

2(u) du.

We obtain that

I4
1−F (x)

1+Op(h)+Op(n−1/2h−δ0 )

=
n

∑

i=1

δik(
x − Zi

h
)R(n, Zi)

{

(Zi − x)n3h9[H ′
1(x)]9H ′′

1 (x)c1(c2 − c2
1)

+(Zi − x)2n3h9H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2)

}

+n
∫

[1 − F (s)][B1(n, s) + B2(n, s)]k(x−s
h

)
{

(s − x)n3h9[H ′
1(x)]2h′′

1(x)c1(c2 − c2
1)

+(s − x)2n3h9H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2)

}

dHn,1(s)

=

[ n
∑

i=1

δik(
x − Zi

h
)R(n, Zi){(Zi − x)n3h9[H ′

1(x)]2H ′′
1 (x)c1(c2 − c2

1)

+(Zi − x)2n3h9H ′
19x)[H ′′

1 (x)]2c1(c
2
1 − c2)}

]

+

[

n
2

∫

[1 − F (s)]k(x−s
h

){(s − x)n3h9[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + (s − x)2n3h9

×H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2)}[1 − H(s)] d[B1(n, s) + B2(n, s)]2

]

+

[√
n

∫

[1 − F (s)]{√n[B1(n, s) + B2(n, s)] − W (s)}k(x−s
h

)

×{(s − x)n3h9[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1)

+(s − x)2n3h9H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2)}H ′

1(s) ds

]

+

[√
n

∫

[1 − F (s)]W (s)k(x−s
h

){(s − x)n3h9[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1)

+(s − x)2n3h9H ′
1(x)[H ′′

1 (x)]2c1(c
2
1 − c2)}H ′

1(s) ds

]

−
[

n
∫

[1 − F (s)][B1(n, s) + B2(n, s)]k(x−s
h

){(s − x)n3h9[H ′
1(x)]2H ′′

1 (x)

×c1(c2 − c2
1) + (s − x)2n3h9H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}Hn(u)−H(u)

1−H(u)
H ′

2(u) du

]

= III1 + III2 + III3 + III4 − III5.

(6.20)

Using (6.12)-(6.14), the terms III1, III2, III3 and III5 satisfy
√

nhn−4h−12IIIj = op(1), j = 1, 2, 3, 5. (6.21)
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Since

EIII2
4

= 2nh2
∫ 1

−1

∫ t

−1
[1 − F (x − st)][1 − F (x − th)]γ(x − th)k(s)k(t)

×{−sn3h10[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + s2n3h11H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}H ′

1(x − sh)

×{−tn3h10[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + t2n3h11H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}H ′

1(x − th) dsdt

= nh2
∫ 1

−1

∫ 1

−1
[1 − F (x − sh)][1 − F (x − th)]γ(x)k(s)k(t)

×{−sn3h10[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + s2n3h11H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}H ′

1(x − sh)

×{−tn3h10[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + t2n3h11H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}H ′

1(x − th) dsdt

+2nh2
∫ 1

−1

∫ t

−1
[1 − F (x − th)][1 − F (x − sh)][−thγ ′(x) + O(h2)]k(s)k(t)

×{−sn3h10[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + s2n3h11H ′

1(x)[H ′′
1 (x)]2c1(c

2
1 − c2)}H ′

1(x − sh)

×{−tn3h10[H ′
1(x)]2H ′′

1 (x)c1(c2 − c2
1) + t2n3h11H ′

1(x)[H ′′
1 (x)]2c1(c2 − c2

1)}H ′
1(x − th) dsdt

= O(n7h24) + 2n7h23
∫ 1

−1

∫ t

−1
[1 − F (x)]2[−tγ′(x)]k(s)k(t)st[H ′

1(x)]6[H ′′
1 (x)]2c2

1(c2 − c2
1)

2 dsdt

= O(n7h24) − n7h23
∫ 1

−1

∫ 1

−1
[1 − F (x)]2γ′(x)[t + s]k(s)k(t)st[H ′

1(x)]6[H ′′
1 (x)]2c2

1(c2 − c2
1)

2 dsdt

+2n7h23
∫ 1

−1

∫ t

−1
[1 − f(x)]2sγ′(x)k9s)k(t)st[H ′

1(x)]6[H ′′
1 (x)]2c2

1(c2 − c2
1)

2 dsdt

= O(n7h24) + n7h23[1 − G(x)]−1f(x)[H ′
1(x)]6[H ′′

1 (x)]2c2
1(c2 − c2

1)
2c3,

we have

√
nhn−4h−12III3

d→ N

(

0, [1 − G(x)]−1f(x)[H ′
1(x)]6[H ′′

1 (x)]2c2
1(c2 − c2

1)
2c3

)

. (6.22)

Hence, (6.15) follows from (6.19), (6.21) and (6.22). This completes the proof of Theorem 2.
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Proof of Theorem 3. It follows from the proof of Theorem 1 that

√
nh{λ̃n(x) − λ(x)} = 1−

√
2

4

√
nh{λ̂n(x − (

√

1/2 + 1)δh) − λ(x − (
√

1/2 + 1)δh)}

+1
2

√
nh{λ̂n(x −

√

1/2δh) − λ(x −
√

1/2δh)}

+1+
√

2
4

√
nh{λ̂n(x − (

√

1/2 − 1)δh) − λ(x − (
√

1/2 − 1)δh)}

+1−
√

2
4

√
nh{λ(x − (

√

1/2 + 1)δh) − λ(x)}

+1
2

√
nh{λ(x −

√

1/2δh) − λ(x)}

+1+
√

2
4

√
nh{λ(x − (

√

1/2 − 1)δh) − λ(x)}

= {1−
√

2
4

+ 1
2

+ 1+
√

2
4

} bλ′′(x)c2
6c1

+
c1(c2−c2

1
)n4h11f3(x)f ′(x)

(1−F (x))∆n(x)

×{1−
√

2
4

√
h

∫ 1

−1
Bn(F (x − (

√

1/2 + 1)δh + sh))k(s)s ds

+1
2

√
h

∫ 1

−1
Bn(F (x −

√

1/2δh + sh))k(s)s ds

+1+
√

2
4

√
h

∫ 1

−1
Bn(F (x − (

√

1/2 − 1)δh + sh)k(s)s ds} + op(1).

Note that
Bn(F (x + sh)) − Bn(F (x))√

h

D→
√

f(x)W (s)

in D([0, T ]), where T > 0 and W (s) is a Wiener process, and

E
{

(

∫ 1

−1

W (s − a)k(s)s ds
)(

∫ 1

−1

W (s − b)k(s)s ds
)

}

= c5(a, b),

where c5(a, b) is defined as in (4.1). We prove Theorem 3 by the above equations.

Proof of Theorem 4. Similar to the proof of Theorem 3.
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Figure 1: Mean squared errors. The mean squared errors of λ̄n(x) (dotted line) and λ̃n(x)

(solid line) are plotted against h = h̄opt

2
+ j

20
h̄opt, j = 0, 1, · · · , 19, where h̄opt is defined in (3.1).

We take x such that F (x) = 0.5.
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