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Abstract

In the case of the random design nonparametric regression, to correct for the unbounded
�nite-sample variance of the local linear estimator (LLE), Seifert and Gasser (J. Amer. Statist.
Assoc. 91 (1996) 267–275) apply the idea of ridge regression to the LLE, and propose the
local linear ridge regression estimator (LLRRE). However, the �nite sample and the asymptotic
properties of the LLRRE are not discussed there. In this paper, upper bounds of the �nite-sample
variance and bias of the LLRRE are obtained. It is shown that if the ridge regression parameters
are not properly selected, then the resulting LLRRE has some drawbacks. For example, it may
have a nonzero constant asymptotic bias, may su�er from boundary e�ects, or may be unable
to share the nice asymptotic bias quality of the LLE. On the other hand, if the ridge regression
parameters are properly selected, then the resulting LLRRE does not su�er from the above
problems, and has the same asymptotic mean-square error as the LLE. For this purpose, the ridge
regression parameters are allowed to depend on the sample size, and converge to 0 as the sample
size increases. In practice, to select both the bandwidth and the ridge regression parameters,
the idea of cross-validation is applied. Simulation studies demonstrate that the LLRRE using
the cross-validated bandwidth and ridge regression parameters could have smaller sample mean
integrated square error than the LLE using the cross-validated bandwidth, in reasonable sample
sizes. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the �eld of kernel regression estimation, it is well known that the local linear
estimator (LLE) has many advantages. For example, it achieves full asymptotic min-
imax e�ciency among all linear estimators (Fan, 1993), has a nice asymptotic bias
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quality and a superior asymptotic variance quantity (Wu and Chu, 1992), and adapts
automatically to the boundary (Fan and Gijbels, 1992). For a detailed discussion of the
LLE and other kernel regression function estimators, see, for example, the monographs
by Eubank (1988), M�uller (1988), Ha�rdle (1990, 1991), Wand and Jones (1995), Fan
and Gijbels (1996), and Simono� (1996).
However, Seifert and Gasser (1996) show that there is a serious drawback to the

LLE. The drawback is that the LLE has unbounded �nite-sample conditional variance
when a kernel function with compact support is used. Compactly supported kernels are
often employed for computational convenience or for optimal performance (e.g. the
Epanechnikov kernel minimizes mean square error among all nonnegative kernels; see
Epanechnikov, 1969). In that case, the regression function estimate produced by the
LLE sometimes has rough appearance. This adverse e�ect to the LLE is not shared by
other popular kernel regression function estimators, for example, the Nadaraya–Watson
estimator (Nadaraya, 1964; Watson, 1964) and the Gasser–M�uller estimator (Gasser
and M�uller, 1979, 1984). The upper bounds of the �nite-sample conditional variances
of these two kernel regression function estimators are given in Section 2.
To correct for the above adverse e�ect to the LLE, Seifert and Gasser (1996) apply

the idea of ridge regression to the LLE, and propose the local linear ridge regression
estimator (LLRRE). But, theoretical properties of the LLRRE are not given there. The
purpose of this article is to study the �nite sample and the asymptotic behaviors of
the LLRRE. For other approaches improving the adverse e�ect to the LLE, see, for
example, Fan (1993) where a small positive quantity is added to the denominator of the
LLE, and Hall and Marron (1997) which suggest shrinking the LLE towards another
estimator with bounded mean-square error.
It is shown in Section 3 that if a kernel function with compact support is used, then

the LLRRE has bounded �nite-sample conditional (and unconditional) variance and
bias. For the asymptotic properties of the LLRRE, it is also shown in Section 3 that
if the ridge regression parameters are not properly selected, then the resulting LLRRE
has some drawbacks. For example, it may have a nonzero constant asymptotic bias,
may su�er from boundary e�ects, or may be unable to share the nice asymptotic bias
quality of the LLE. On the other hand, if the ridge regression parameters are properly
selected, then the resulting LLRRE does not su�er from the above problems, and has
the same asymptotic mean-square error (AMSE) as the LLE. For this purpose, the
ridge regression parameters are allowed to depend on the sample size, and converge
to 0 as the sample size increases. In practice, to select both the bandwidth and the
ridge regression parameters, we suggest using the idea of cross-validation. Simulation
studies contained in Section 4 demonstrate that the LLRRE using the cross-validated
bandwidth and ridge regression parameters could have smaller sample mean integrated
square error (MISE) than the LLE using the cross-validated bandwidth, in reasonable
sizes.
This article is organized as follows. A precise formulation of the LLRRE is

described in Section 2. The �nite sample and the asymptotic behaviors of the
LLRRE are contained in Section 3. Simulation studies to gain additional insight to the
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theoretical results achieved in Section 3 are presented in Section 4. Finally, sketches
of the proofs are given in the appendix.

2. Regression settings and estimators

In this paper, the random design nonparametric regression model is considered.
The regression model is given by

Yj = m(Xj) + �j; (1)

for j=1; : : : ; n. Here (Xj; Yj) are independent and identically distributed bivariate random
vectors, and �j are assumed to have mean 0 and variance �2; 0¡�2¡∞. The design
points Xj are assumed to be independent of the regression errors �j, and are assumed to
have the probability density function f(x) supported on the bounded interval [0; 1]. The
purpose of the regression is to use the data points (Xj; Yj) to estimate the regression
function m.
The rest of this section is devoted to giving the formulation of the LLE and that

of the LLRRE. For simplicity of presentation, assume that the regression function m
has two continuous derivatives. Given the kernel function K as a probability density
function supported on the interval [ − 1; 1] and the bandwidth h = hn tending to 0 as
n→ ∞, the LLE m̃(x) for m(x) is constructed by minimizing the local weighted linear
least squares

n−1h−1
n∑
j=1
(Yj − �0 − �1Zj)2K(Zj) (2)

for x ∈ [0; 1], where Zj = (x − Xj)=h.
Through a straightforward calculation, the minimization problem (2) is equivalent to

the problem of solving a system of linear equations

S� = T; (3)

where

S =
[
S0 S1
S1 S2

]
; � =

[
�0
�1

]
; T =

[
T0
T1

]
:

Here

Sk = n−1h−1
n∑
j=1
Zkj K(Zj);

Tk = n−1h−1
n∑
j=1
YjZkj K(Zj)

for k¿0. Let �̃0 and �̃1 denote the solution of �0 and �1 in (3), respectively. Through
a straightforward calculation, �̃0 can be expressed as

�̃0 = (T0S2 − T1S1)=(S0S2 − S21 ):
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By (2) and the �rst-order Taylor theorem, take m̃(x) = �̃0. If the denominator of m̃(x)
is 0, then take m̃(x) = 0.
By Cauchy–Schwartz inequality, the denominator S0S2 − S21 of m̃(x) is nonnegative.

In practice, it is possible that the denominator of m̃(x) is 0. This case occurs when there
is “no” or “one” design point falling in the compact window [x − h; x + h] around x.
The more sparse the distribution of the design points, the more often this case occurs.
When it happens, the value of m̃(x) is given as 0. However, such assignment might
cause that m̃(x) exhibits erratic behavior. The same drawback also happens to other
kernel regression function estimators, for example, the Nadaraya–Watson estimator and
the LLRRE. For the latter two estimators, such drawback occurs only when there is
“no” design point falling in the compact window around x.
Even when the denominator of m̃(x) is not 0, it might be nearly 0, and the result-

ing m̃(x) su�ers from the numerical instability problems. This case occurs when, for
example, the design points falling in the compact window [x− h; x+ h] around x are
all close to one another. In this special case, the closer these design points to one
another, the larger the �nite-sample conditional variance of the resulting m̃(x). Hence,
the �nite-sample conditional variance of the LLE may become arbitrarily large. How-
ever, this adverse behavior of m̃(x) is not present in the Nadaraya–Watson and the
Gasser–M�uller estimators, where for any kernel function the �nite sample conditional
variance is bounded by �2. For a detailed discussion of these facts, see Seifert and
Gasser (1996).
To correct for the unbounded �nite-sample conditional variance of the LLE, Seifert

and Gasser (1996) use the idea of ridge regression to solve (3) and the resulting
estimate of m(x) is called the LLRRE. For a detailed discussion of ridge regression,
see, for example, Montgomery and Peck (1982). Given the ridge regression parameters
�0¿0 and �1¿0, take the estimate of � by solving

(S + �)� = T; (4)

where

�=
[
�0 0
0 �1

]
:

Let �̂0 and �̂1 denote the solution of �0 and �1 in (4), respectively. Through a straight-
forward calculation, �̂0 can be expressed as

�̂0 = {T0(�1 + S2)− T1S1}={(�0 + S0)(�1 + S2)− S21}:
The LLRRE m̂(x) for m(x) is taken as m̂(x) = �̂0. If there is at least one design point
falling in the compact window [x − h; x + h] around x, then S0¿0 and, by Cauchy–
Schwartz inequality, S0S2 − S21¿0. In this case, using the fact that �0¿0 and �1¿ 0,
the denominator (�0 + S0)(�1 + S2)− S21 of m̂(x) is positive and m̂(x) is well de�ned.
If the denominator of m̂(x) is 0, take m̂(x) = 0. If �0 = �1 = 0, then m̂(x) = m̃(x).
To compute the LLRRE m̂(x), Seifert and Gasser (1996) suggest taking �0=0. Under

this circumstance, if there is only one design point falling in the compact window
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around x, then S0S2 − S21 = 0, T0S2 − T1S1 = 0, and the value of such m̂(x) is equal to
that of T0=S0. Note that T0=S0 is the Nadaraya–Watson estimator for m(x). Similarly, if
the design points falling in the compact window around x are all close to one another,
then both S0S2 − S21 and T0S2 − T1S1 are roughly equal to 0, and the value of such
m̂(x) approaches that of T0=S0. From these facts, it is expected that, like the Nadaraya–
Watson estimator, the LLRRE has bounded �nite-sample conditional variance.
The �nite sample and the asymptotic behaviors of m̂(x) will be studied in Section 3.

3. Results

In this section, we shall study the �nite sample and the asymptotic behaviors of
m̂(x). For this purpose, in addition to the assumptions given in Section 2, we add the
following ones:
(A1) The regression function m has two Lipschitz continuous derivatives on the

interval [0; 1].
(A2) The design density f is Lipschitz continuous and positive on the interval [0; 1].
(A3) The kernel function K is a Lipschitz continuous and symmetric probability

density function with support [− 1; 1].
(A4) The value of h is selected on the interval Hn = [�n−1+�; �−1n−�], where the

positive constants � and � are arbitrarily small.
(A5) The total number of observations in this regression setting is n, with n→∞.
The following Theorem 3.1 gives upper bounds of the �nite sample conditional

variance and bias of m̂(x), and Theorem 3.2 shows the asymptotic variance and bias
of m̂(x). Their proofs are given in the appendix. To state these theorems, we introduce
the following notations. For j¿1, let fj and mj denote the jth derivatives of f and
m, and m0j and m

0 the maximum absolute value of mj(x) and m(x) over x ∈ [0; 1],
respectively, in each case. Let K0 denote the maximum value of K over [− 1; 1]. Set
X ∗ = (X1; : : : ; Xn), �j =

∫ x=h
(x−1)=h z

jK(z) dz, for j¿0, and

c0 = {�0 + f(x)�0}{�1 + f(x)�2} − {f(x)�1}2;
c1 = f(x)f1(x)(�1�2 − �0�3)− �1f1(x)�1 − �0f1(x)�3;
c2 = (1=2){f(x)f2(x)(�0�4 − 2�1�3 + �22) + 2f21 (x)(�1�3 − �22)

+ �0f2(x)�4 + �1f2(x)�2};
c3 = (−1)�0m(x){�1 + f(x)�2};
c4 = �0m(x)f1(x)�3 − �1m1(x)f(x)�1;
c5 = (1=2)[m2(x)f(x)2(�22 − �1�3)− �0m(x)f2(x)�4

+ �1�2{m2(x)f(x) + 2m1(x)f1(x)}];
c6 = m(x){�1f(x)�0 + f(x)2�0�2 − f(x)2�21}:
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Theorem 3.1. Suppose that the assumptions given in Section 2 and (A1)–(A4) hold.
Given the sample size n; if �0¿0 and �1¿0; then the �nite-sample conditional vari-
ance and bias of m̂(x) are bounded above; respectively; by

Var{m̂(x)|X ∗}6�2(1 + 2�−11 S0)26�2(1 + 2�−11 h−1K0)2; (5)

|Bias{m̂(x)|X ∗}|6
[
hm01 + h

2m02(1=2 + �
−1
1 S0) for �0 = 0;

m0 + hm01 + h
2m02(1=2 + �

−1
1 S0) for �0¿ 0;

6
[
hm01 + h

2m02(1=2 + �
−1
1 h

−1K0) for �0 = 0;
m0 + hm01 + h

2m02(1=2 + �
−1
1 h

−1K0) for �0¿0
(6)

for each x ∈ [0; 1].

Theorem 3.2. Suppose that the assumptions given in Section 2 and (A1)–(A5) hold.
If �0¿0 and �1¿0; then the asymptotic variance and bias of m̂(x) can be expressed;
respectively; as

Var{m̂(x)}= n−1h−1(v1 + v2) + o(n−1h−1); (7)

Bias{m̂(x)}= b0 + b1h+ b2h2 + o(h2) + O(n−1h−1) (8)

for each x ∈ [0; 1]. Here

v1 = c−20 �
2f(x)

∫ x=h

(x−1)=h
K(z)2{�1 + f(x)�2 − zf(x)�1}2 dz;

v2 = c−20 f(x)
∫ x=h

(x−1)=h
K(z)2[{f(x)(�2 − 2z�1 + z2�0) + �1}{m(x)− c−10 c6}

− z2�0c−10 c6] dz;

b0 = c−10 c3;

b1 = c−20 (c0c4 − c1c3);

b2 = c−30 (c
2
0c5 − c0c1c4 + c21c3 − c0c2c3):

If �0 = �0; n = o(h2)¿0 and �1 = �1; n = o(h)¿ 0, then the asymptotic variance and
bias of m̂(x) can be expressed, respectively, as

Var{m̂(x)}= n−1h−1v3 + o(n−1h−1); (9)

Bias{m̂(x)}= h2b3 + o(h2) + O(n−1h−1) (10)

for each x ∈ [0; 1]. Here

v3 = f(x)−1(�0�2 − �21)−2�2
∫ x=h

(x−1)=h
K(z)2(�2 − z�1)2 dz;

b3 = (1=2)(�0�2 − �21)−1(�2�2 − �1�3)m2(x):
We now close this section by the following remarks.
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Remark 3.1 (Upper bounds for the �nite sample unconditional variance and bias of
m̂(x)). Since the upper bounds given on the right-hand side of (5) and (6) are all �nite
constants, m̂(x) has bounded �nite sample unconditional variance and bias as well.

Remark 3.2 (The asymptotic behavior of m̂(x) when �0 = o(h2)¿0 and �1 = o(h)¿0).
Note that the asymptotic variance and bias of such m̂(x) given, respectively, in (9) and
(10) are the same as those of m̃(x), for each x ∈ [0; 1]. For the latters, see Theorem
1 of Fan (1993) and Theorem 4 of Fan and Gijbels (1992). On the other hand, for
constructing m̂(x), Seifert and Gasser (1996) suggest taking �0 as 0 and �1 as a positive
constant. Note that S&G use the quadratic forms Sk =

∑n
j=1 (x − Xj)kK{(x − Xj)=h},

whereas we use Sk=n−1h−1
∑n

j=1 {(x−Xj)=h}kK{(x−Xj)=h}. Thus, using our notation
of Sk , the value of S&G’s �1 becomes �n−1h−3, for some �¿ 0. By (9) and (10), if
n−1h−3 is of smaller order than h, then m̂(x) suggested by S&G has the same AMSE as
m̃(x), for each x ∈ [0; 1]. By Theorem 3.2, the value of the optimal h for constructing
m̂(x), from the viewpoint of minimizing AMSE, is of order n−1=5. In that case, the
value of S&G’s �1 = �n−1h−3 is of order n−2=5, and is of smaller order than that of
the optimal h. For more discussion of the asymptotic performance of m̂(x) with �0 =0,
see Remarks 3.6 and 3.7.

Remark 3.3 (The formulation of Hall and Marron’s shrinkage estimator m̂S(x)).
Since the asymptotic properties of m̂(x) discussed in the following remarks are related
to those of m̂S(x), the formulation of m̂S(x) is now introduced. To overcome the
problem that the denominator of m̃(x) might be close to 0, one may shrink m̃(x) by
an amount � in the direction of another estimator, m̃0(x) say, whose properties are less
erratic than those of m̃(x). That is, we choose �0 and �1 to minimize n−1h−1

∑n
j=1 (Yj−

�0 − �1Zj)2K(Zj) + {m̃0(x) − �0}2�, and take the shrinkage estimator m̂S(x) = �0. It
may be shown that

m̂S(x) = m̂RLE(x) + �(S0S2 − S21 + �)−1m̃0(x);

where m̂RLE(x)=(T0S2−T1S1)=(S0S2−S21 +�) is the ridged linear estimator, and �=�S2.
Note that H&M use the quadratic forms Sk =

∑n
j=1 (x − Xj)kK{(x − Xj)=h}, whereas

we use Sk = n−1h−1
∑n

j=1 {(x − Xj)=h}kK{(x − Xj)=h}. Using our quadratic forms Sk
and Theorems 2:1 and 2:2 and Remark 2:3 of H&M, if �=o(h2) and (A1)–(A5) hold,
then both m̂S(x) and m̂RLE(x) have the same AMSE as m̃(x), for each x ∈ [0; 1]. More
results for the asymptotic performance of m̂S(x) can be found in Remarks 3.4–3.7.

Remark 3.4 (The asymptotic behavior of m̂(x) when �0 is a positive constant). If �0
is a positive constant and m(x) is not equal to 0, then b0 6= 0. Under this circumstance,
by (8), such m̂(x) has a nonzero constant asymptotic bias. Hence, it is not suggested
taking �0 as a positive constant when computing m̂(x). Seifert and Gasser (1996) sug-
gest taking �0 = 0 without providing any reason. Our result gives a nice explanation
for that.
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Remark 3.5 (The �nite sample and the asymptotic behaviors of m̂(x) when
�0 = �0; n ¿ 0 and �1 = 0). To correct for the nonzero constant asymptotic bias
of m̂(x) with �0 a positive constant in Remark 3.4, take �0 = �0; n¿0 and �1 = 0.
Such m̂(x) is H&M’s ridged linear estimator m̂RLE(x) produced by using � = �0 and
m̃0(x) ≡ 0, for each x ∈ [0; 1]. The same conclusion can be obtained for m̂(x) in
Remark 3.4. By Remark 3.3, if �0 = o(h2), then such m̂(x) has the same AMSE as
m̃(x), for each x ∈ [0; 1]. This result agrees with our (9) and (10). However, there is a
drawback to such m̂(x) in the �nite sample case. If there is only one design point, X1
say, falling in the compact window [x−h; x+h] around x, and x=X1, then S1 =S2 =0,
and for �1 = 0, the resulting m̂(x) has denominator zero, and is not well de�ned. The
same drawback also happens to m̂RLE(x).

Remark 3.6 (The asymptotic performance of m̂(x) when �0 is equal to 0 and �1 is a
positive constant). In this situation, if x ∈ [h; 1− h], then b0 = b1 = 0 and b2 becomes
b∗2 , where

b∗2 = (1=2)m2(x)�2 + f(x)
−1{�1 + f(x)�2}−1�1m1(x)f1(x)�2:

On the other hand, if x ∈ [0; h) ∪ (1 − h; 1] and m1(x) 6= 0, then b0 = 0 and b1 6= 0.
By these results, the asymptotic bias of such m̂(x) given in (8) depends on several
factors f, f1, m1, and m2, but that of m̃(x) depends only on m2. Also, the magnitudes
of the asymptotic biases of such m̂(x) are of order h2 and h for x ∈ [h; 1− h] and for
x ∈ [0; h)∪ (1− h; 1], respectively. Hence, such m̂(x) has poor asymptotic bias quality,
and su�ers from the problem of boundary e�ects.

Remark 3.7 (The asymptotic performance of m̂(x) when �0 = 0 and �1 = �1;n¿ 0).
To improve the asymptotic bias performance of m̂(x) with �0=0 and �1 a positive con-
stant in Remark 3.6, take the value of �1 as �1=�1; n¿0. Such m̂(x) is H&M’s shrinkage
estimator m̂S(x) obtained by using �=�1S0=S2 and m̃0(x)=T0=S0, the Nadaraya–Watson
estimator. The same conclusion can be drawn for m̂(x) in Remark 3.6.
By Remark 3.3, if �1 = o(h2), then such m̂(x) has the same AMSE as m̃(x), for
each x ∈ [0; 1]. However, this su�cient condition �1 =o(h2) obtained from H&M does
not agree with that �1 = o(h) given in this paper for (9) and (10). We now explain
why the value of �1 in each of these two su�cient conditions has to be given by that
way. To verify our claim, decompose

m̂(x)− m(x) = (T0S2 − T1S1 + �1T0)=D − m(x) = B1 + B2;
where

D = S0S2 − S21 + �1S0;

B1 = {(T0S2 − T1S1)− m(x)(S0S2 − S21 )}=D;

B2 = �1{T0 − m(x)S0}=D:
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Our claim is a consequence of E(B21)=AMSE{m̃(x)}+o(h4+n−1h−1); E(B22)=O(�21h2+
�21n

−1h−1) = o(h4 + n−1h−1), for each x ∈ [0; 1], and Cauchy–Schwartz inequality. On
the other hand, H&M make use of a di�erent decomposition

m̂(x)− m(x) = B3 + B4;
where

B3 = (T0S2 − T1S1)=D − m(x); B4 = �1T0=D:

H&M’s result is obtained by E(B23)=AMSE{m̃(x)}+o(h4+n−1h−1); E(B24)=O(�21)=
o(h4 + n−1h−1); for each x ∈ [0; 1], and Cauchy–Schwartz inequality. Comparing the
magnitudes of E(B22) and E(B

2
4), H&M require the stronger condition �1 = o(h2) to

ensure their result.

Remark 3.8 (Practical choice of the values of the bandwidth h and the ridge
regression parameters �0 and �1). By (9), (10), and the results given in Remark
3.7, we suggest taking the value of �0 as 0. For constructing m̂(x), the optimal values
h∗ and �∗1 of h and �1, respectively, are taken as the minimizer of the MISE of m̂(x).
Given the values of h and �1, the MISE of m̂(x) is de�ned by MISELLRRE(h; �1) =
E{ISELLRRE(h; �1)}. Here ISELLRRE(h; �1) is de�ned by

ISELLRRE(h; �1) =
∫ 1

0
{m̂(x)− m(x)}2f(x) dx:

The weighting by f puts more emphasis on accuracy in regions with more data.
Since the optimal values h∗ and �∗1 for constructing m̂(x) are not available in practice,

they are estimated respectively by the minimizer ĥ and �̂1 of the cross-validation score
CVLLRRE(h; �1) de�ned by

CVLLRRE(h; �1) =
n∑
i=1

{m̂i(Xi)− Yi}2:

Here m̂i(Xi) is the “leave-one-out” version of m̂(Xi), that is, the observation (Xi; Yi) is
left out in constructing m̂(Xi). Ha�rdle and Marron (1985) show that, for the Nadaraya–
Watson estimator, the cross-validated bandwidth is asymptotically optimal with respect
to the conditional MISE. For other automatic smoothing parameter selection methods,
see also Rice (1984), Ha�rdle et al. (1988), and Marron (1988).
The same argument for choosing the parameters for constructing m̂(x) can be applied

to m̃(x). Let ISELLE(h); MISELLE(h), and CVLLE(h) be similarly de�ned for m̃(x), and
h0 and h̃ denote the minimizers of MISELLE(h) and CVLLE(h), respectively. Simulation
studies given in Section 4 demonstrate that m̂(x) using the cross-validated bandwidth
ĥ and ridge regression parameters �0 =0 and �1 = �̂1 could have smaller sample MISE
than m̃(x) using the cross-validated bandwidth h̃, in reasonable sample sizes.
Note that it is very often to use the mean-average-squared error (MASE) to evaluate

the performance of the kernel estimators. Our purpose for using a di�erent criterion
MISE is to make the advantage of the LLRRE over the LLE more visible. We now
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explain it. If the MASE criterion is used, then the value of m̃(Xi) has to be calculated,
for each i = 1; : : : ; n. Note that when m̃(Xi) is calculated, there will be at least one
design point Xi falling in the compact window [Xi − h; Xi + h] around Xi. In this
case, m̃(Xi) will not su�er from the drawback that there is no design point falling in
the compact window around Xi. Hence, the erratic behavior of the LLE caused by
this drawback cannot be felt by the MASE measure. The same remark applies to the
LLRRE. Therefore, to compare the performance of the LLE and that of the LLRRE,
the criterion MASE is not advisable.

4. Simulations

To investigate the practical implications of the results for the LLRRE m̂(x) and
those for the LLE m̃(x) presented in Section 3, an empirical study was carried out.
The simulated regression settings are introduced in the following. Three sample sizes
n = 25; 50; and 100 were considered. The regression function m(x) was m(x) = x3

(1−x)3I[0;1](x). The regression errors �i were Normal(0; �2) variables, where �=0:003.
Two design densities were employed. One is the Uniform(0; 1) density. The other is
the Beta(1=3; 1) density which is the density of the cubic Uniform(0; 1) variable. The
data sparsity issue produced by the latter design density is more serious than that by the
former one. The responses Yi were generated from the regression model (1). For each
sample size and each design density, 1000 independent sets of observations (Xi; Yi)
were generated. The kernel function used in m̂(x) and m̃(x) was the Epanechnikov
kernel K(x) = (3=4)(1− x2)I[−1;1](x).
For each data set, the values of ISELLRRE(h; �1) and CVLLRRE(h; �1) were calculated

on an equally spaced logarithmic grid of 200 × 1000 values of h and �1. Here the
200 values of h were selected in [0:05; 0:5] and the 1000 values of �1 were taken in
[0:0001; 10]. See Marron and Wand (1992) for a discussion that an equally spaced
grid of parameters is typically not a very e�cient design for this type of grid search.
For the given values of h and �1, the value of ISELLRRE(h; �1) was approximated by
(1=u)

∑u
i=1{m̂(ti)−m(ti)}2f(ti), where ti=(2i−1)=(2u) and u=1000. Also, the values of

MISELLRRE(h; �1) and SISELLRRE(h; �1), where SISELLRRE(h; �1) denotes the standard
deviation of ISELLRRE(h; �1), were empirically approximated by the sample average
and standard deviation, respectively, of ISELLRRE(h; �1) over the 1000 pseudo-data sets.
After evaluation on the grid, the global minimizers h∗ and �∗1 of MISELLRRE(h; �1) and
ĥ and �̂1 of CVLLRRE(h; �1) were taken on the grid.
When h∗ and �∗1 were obtained, the values of MISELLRRE(h

∗; �∗1 ) and SISELLRRE
(h∗; �∗1 ) were calculated. The former measures the best performance of m̂(x). On the
other hand, the value of MISELLRRE(ĥ; �̂1) measures the performance of m̂(x) which
can be attained in practice. The same computation procedures were applied to calcu-
late MISELLE(h0), SISELLE(h0), and MISELLE(h̃). Here the values of MISELLE(h) and
CVLLE(h) were calculated on an equally spaced logarithmic grid of 200 values of h in
the interval [0:05; 0:5]. The simulation results are summarized in Tables 1 and 2.
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Table 1
Values of MISELLRRE(h∗; �∗1 ) and SISELLRRE(h

∗; �∗1 ) (given in the parentheses) for m̂(x), and those of
MISELLE(h0) and SISELLE(h0) for m̃(x). These values have been multiplied by 106

n m̂(x) m̃(x)

Uniform (0,1) density
25 2.41 (1.76) 6.44 (2.93)
50 1.26 (0.73) 1.55 (1.05)
100 0.69 (0.37) 0.79 (0.43)

Beta(1/3,1) density
25 2.81 (2.15) 20.5 (237.0)
50 1.27 (0.87) 2.89 (6.68)
100 0.65 (0.35) 1.19 (1.10)

Table 2
Values of the sample mean and standard deviation (given in the parentheses) of MISELLRRE(ĥ; �̂1) for m̂(x)
and those of MISELLE(h̃) for m̃(x), and the number of times N out of the 1000 pseudo-data sets that the
values of MISELLRRE(ĥ; �̂1) are larger than those of MISELLE(h̃). The values of the sample means and
standard deviations have been multiplied by 106

n m̂(x) m̃(x) N

Uniform (0,1) density
25 7.26 (14.2) 3985.1 (37463.3) 2
50 2.33 (5.05) 292.1 (1512.6) 98
100 0.90 (0.59) 1.60 (2.70) 126

Beta(1/3,1) density
25 7.12 (7.24) 583.6 (640.7) 0
50 3.20 (5.04) 324.7 (408.9) 4
100 1.10 (1.27) 25.9 (97.2) 4

Table 1 shows that, for each sample size and each design density, the best perfor-
mance MISELLRRE(h∗; �∗1 ) of m̂(x) is better than that MISELLE(h

0) of m̃(x). The mag-
nitude of the di�erence between MISELLRRE(h∗; �∗1 ) and MISELLE(h

0) increases, when
the design density moves from the Uniform(0; 1) design to the Beta(1=3; 1) design. This
is a result of the fact that the latter design has a more serious data sparsity issue than
the former one. The same situation also occurs when the sample size decreases. Table
2 contains the sample mean and standard deviation of MISELLRRE(ĥ; �̂1) and those of
MISELLE(h̃). It also gives the number of times N out of the 1000 pseudo-data sets
that the values of MISELLRRE(ĥ; �̂1) are larger than those of MISELLE(h̃). Considering
the values of the sample mean and N , the practical performance of m̂(x) is still better
than that of m̃(x).
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Appendix: Sketches of the proofs

The following notation and results will be used in this section. Let In denote a
n × n identity matrix. Set Wk = n−2h−2

∑n
j=1 Z

k
j K(Zj)

2, for k¿0, and D = (�0 + S0)
(�1 + S2)− S21 . Since the kernel function K is supported on the interval [− 1; 1],

|Sk |6n−1h−1
n∑
j=1

|Zkj |K(Zj)6S0 for each k¿0: (A.1)

Through a straightforward calculation, we have

W06S20 ; S06h−1K0; D¿�1S0; D¿�0(�1 + S2); (A.2)

and m̂(x) can be expressed by

m̂(x) =
n∑
j=1
qjYj; (A.3)

where

qj = n−1h−1{(�1 + S2)− ZjS1}K(Zj)D−1:

Proof of Theorem 3.1. We �rst give the proof of (5). Using (A.1)–(A.3), the proof
of (5) is complete by showing

Var{m̂(x) |X ∗} = �2n−2h−2
n∑
j=1
(�1 + S2 − ZjS1)2K(Zj)2D−2

6 �2W0(�1 + S2 + |S1|)2�−21 S−20 6�2(�1 + 2S0)2�−21
6 �2(1 + 2�−11 h

−1K0)2:

We now give the proof of (6). For this, using (A.3) and applying the second order
Taylor expansion to m(Xj), through a straightforward calculation, the conditional bias
of m̂(x) can be expressed by

Bias{m̂(x) |X ∗}=
n∑
j=1
qjm(Xj)− m(x) = A1 + A2 + A3;

where

A1 = (−1)�0(�1 + S2)m(x)D−1;

A2 = (−1)h�1S1m1(x)D−1;

A3 = (1=2)h2{(�1 + S2)S∗2 − S1S∗3 }D−1:

Here S∗k = n
−1h−1

∑k
j=1 Z

k
j K(Zj)m2(�j), for k¿0, where �j lies inbetween x and Xj.

Using (A.1), (A.2), and |S∗k |6m02n−1h−1
∑n

j=1 |Zkj |K(Zj), for k¿0, the proof of (6)
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is complete by showing

|A1|6
[
0 for �0 = 0;

m0�0(�1 + S2)�−10 (�1 + S2)
−1 for �1¿ 0;

]
=

[
0 for �0 = 0;

m0 for �1¿ 0;

]

|A2|6hm01�1S1�−11 S−10 6hm01;

|A3|6(1=2)h2m02{(�1 + S2)S0 + S0S2}�−11 S−10 6h2m02(1=2 + �
−1
1 h

−1K0):

Hence, the proof of Theorem 3.1 is complete.

Proof of Theorem 3.2. The proof of Theorem 3.2 is omitted since it is essentially the
same as those of the asymptotic variance and bias of the Nadaraya–Watson estimator
in (8:15) of Scott (1992) by using approximations to the standard errors of functions
of random variables given in Section 10:5 of Stuart and Ord (1987).
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