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Local linear curve estimators are typically constructed using a compactly supported kernel,

which minimizes edge e�ects and (in the case of the Epanechnikov kernel) optimizes asymptotic

performance in a mean square sense. The use of compactly supported kernels can produce

numerical problems, however. A common remedy is `ridging', which may be viewed as shrink-

age of the local linear estimator towards the origin. In this paper we propose a general form of

shrinkage, and suggest that, in practice, shrinkage be towards a proper curve estimator. For the

latter we propose a local linear estimator based on an in®nitely supported kernel. This

approach is resistant against selection of too large a shrinkage parameter, which can impair per-

formance when shrinkage is towards the origin. It also removes problems of numerical instabil-

ity resulting from using a compactly supported kernel, and enjoys very good mean squared

error properties.

Keywords: Bandwidth, bias, compactly supported kernel, kernel estimator, mean squared

error, ridge parameter, smoothing, variance

1. Introduction

Local polynomial methods have attractive numerical and

theoretical properties, which have received considerable

attention in recent years. They are particularly adaptive

(Hastie and Loader, 1993), and enjoy minimax optimality

(Fan, 1993). Jones (1993) investigated applying local

polynomial regression techniques to density estimation.

Therefore it comes as no surprise to ®nd that local poly-

nomial methods are widely represented in software for

curve estimation, such as LOESS; see for example

Cleveland (1979, 1993), Cleveland and Devlin (1988) and

Cleveland and Grosse (1991). Nevertheless, they do su�er

drawbacks, of which perhaps the most serious are

numerical problems in cases of sparse design density. In

its `naive' form, a local linear estimator based on a

compactly supported kernel may equal a non-zero number

divided by zero, and so may not be well de®ned. In less

extreme cases, small but non-zero values of the

denominator in the de®nition of the estimator can produce

erratic ¯uctuations, which impair performance.

There are a variety of ways of overcoming this di�culty,

all of which have side e�ects. One is based on using an

empirical bandwidth determined by the design density,

producing a larger bandwidth in places where design points

are sparse. Ideally, however, local bandwidth choice should

be determined by the curvature of the target function, as

well as by the design density and the local variance, and is

particularly prone to stochastic error when the design is

sparse. Interpolation methods were discussed in Hall and

Turlach (1995). Another remedy involves shrinking the

local linear estimator towards the origin, by incorporating

a ridge parameter.

The ridge acts to some extent as a smoothing parameter,

however, with the result that the increase in numerical stability

produced by the ridge parameter can be accompanied by an

increase in bias. As a result, overall performance may be

impaired. In this paper we suggest a general formulation

of the shrinkage approach, allowing a local linear estimator

to be shrunken in the direction of a general curve estimator

which may be chosen to be free from the instability

properties that we seek to remove. An advantage of this
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approach, relative to shrinkage towards the origin, is that it

produces an estimator that is robust against excessively

large choice of the shrinkage parameterÐin the case of

our rule, taking that quantity to be in®nite still produces

a proper curve estimator, rather than simply zero. This

largely overcomes the bias problem mentioned earlier.

Next we introduce our method. Suppose data

� � f�Xi;Yi�, 1 � i � ng are generated by the model

Yi � g�Xi� � ei, where the Xis are independent and

identically distributed random variables with density f,

and, conditional on � � fX1; . . . ;Xng, the eis have zero

mean and are uncorrelated, with var�eij�� � ��Xi�
2
. Here,

�
2
is a smooth, non-negative function. A local linear

estimator of g�x�, using a kernel K and bandwidth h, may

be de®ned as a � a�x�where a and b are chosen to minimize

X

n

i�1

fYi ÿ aÿ b�xÿ Xi�g
2Kf�xÿ Xi�=hg

A general approach to shrinking an amount � � ��x� away

from the solution of this problem, and towards another

estimator ~g, is as follows. Let K be a compactly supported

kernel and h a bandwidth. Choose a and b to minimize

X

n

i�1

fYi ÿ aÿ b�xÿ Xi�g
2Kf�xÿ Xi�=hg � �f~g�x� ÿ ag2

or equivalently to minimize

X

n�1

i�1

fYi ÿ aÿ b�xÿ Xi�g
2Ki

where Ki � Kf�xÿ Xi�=hg if 1 � i � n, Kn�1 � �,

Yn�1 � ~g�x� and Xn�1 � x. Let ĝ � a be the solution of

this new problem. Thus, ĝ is obtained by applying local

linear smoothing to the original data �, augmented by the

addition of a single new value �x; ~g�x�� which is given a

special weight �.

Explicitly

ĝ �
X

n�1

i�1

wiYi

 !

�

X

n�1

i�1

wi

 !

where wi � fs2 ÿ �xÿ Xi�s1gKi and

sk �
X

n�1

i�1

�xÿ Xi�
kKi �

X

n

i�1

�xÿ Xi�
kKf�xÿ Xi�=hg �1�

Thus, for 1 � i � n the weights wi are exactly as in the case

of the naive local linear estimator, �g say, de®ned by taking

� � 0; and

ĝ �
X

n

i�1

wiYi � �s2~g

 !

�

X

n

i�1

wi � �s2

 !

�2�

Formula (2) makes it clear that ĝ is obtained by (a)

shrinking the numerator in the de®nition of �g towards ~g,

in the classical sense of shrinkage; (b) shrinking the denomi-

nator towards the constant 1, using the same shrinkage

parameter as the numerator; and (c) re-forming the ratio.

We say that ĝ results from shrinking �g towards ~g. Note

that ĝ � �g when � � 0, while � � 1 gives ĝ � ~g.

Taking ~g � 0 in (2) we obtain the classical prescription

for ridging a local linear estimator, where a small positive

weight (here, �s2) is added to the denominator to prevent

it from straying too close to zero. For example, Fan

(1993) suggested letting � � nÿ1 or �ns2�
ÿ1
, and Hall and

Marron (1995) discussed the general choice of ridge para-

meter. See also Hall et al. (1995). Taking ~g � �Y �

nÿ1�i�nYi we have the result of shrinking a local linear

estimator towards the mean of the response variables.

More reasonably, in our view, ~g could be a proper curve esti-

mator, such as one based on the Nadaraya±Watson method

(e.g. HaÈ rdle, 1990, Section 3.1; or Wand and Jones, 1995,

p. 119), or on interpolation (Clark, 1977, 1980), or on convo-

lution (Gasser and MuÈ ller, 1979; MuÈ ller, 1988).

We suggest taking ~g to be another local linear estimator,

employing the same bandwidth as �g but using a kernel with

in®nite support. The in®nite support helps to alleviate

problems caused by data sparseness. A stabilization

method proposed by Seifert and Gasser (1995, 1996) may

be viewed as shrinkage towards a Nadaraya±Watson ker-

nel estimator with the same kernel as the original local lin-

ear estimator.

Section 2 will introduce our method from a slightly

di�erent viewpoint, and outline its theoretical properties.

Numerical performance will be addressed in Section 3. An

outline proof of the main result of Section 2 will be given

in the Appendix.

2. Methodology

Let K and L be bounded, non-negative functions, satisfying
�

u2M�u�du < 1 and

�

uM�u�du � 0

where M denotes either K or L. We ask that K be

compactly supported; and that L be monotone for

su�ciently large positive and large negative values of its

argument, and such that const.�1� jxj�ÿ�2
� L�x� �

const:�1� jxj�ÿ�1 for some 3 < �1 � �2 <1. We refer to

these conditions as (C1). An appropriate L would be a

Student's t density with three or more degrees of freedom.

The ®nal estimator is obtained by `mixing' the local linear

weights for K and L in the proportion 1 : �, respectively,

where � � ��n� > 0 is proportional to a shrinkage

parameter.

De®ne sk as in (1), and w
�K�
i �x� � fs2 ÿ �xÿ Xi�s1g

Kf�xÿ Xi�=hg. Let w
�L�
i denote the version of w

�K�
i which

results if K is replaced by L. Our estimator is given by

ĝ �
X

n

i�1

�w
�K�
i � �w

�L�
i �Yi

( )

�

X

n

i�1

�w
�K�
i � �w

�L�
i �

( )

�3�
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To appreciate that ĝ has the form suggested in Section 1, let

~g there be the local linear estimator based on L rather than

K , i.e.

~g �
X

n

i�1

w
�L�
i Yi

 !

�

X

n

i�1

w
�L�
i

 !

and put � � �sÿ12 �i�nw
�L�
i . Then the de®nition of ĝ at (2)

produces the estimator at (3).

The advantages of using a local linear estimator based on

a compactly supported kernel, rather than an in®nitely

supported one, include reduced edge e�ects and lower

mean squared error (if the Epanechnikov kernel is

employed). On the other hand, an in®nitely supported

kernel produces an estimator which enjoys a lower level

of numerical problems. The shrunken form, ĝ, allows access

to the best of both these worlds. To achieve this it is usually

necessary for L to be a kernel with tails heavier than those

of the Normal. Numerical evidence is provided in Section 3.

For smaller sample sizes, and in contexts where edge e�ects

are less important, the optimal version of ĝmay be closer to

~g than to the local linear estimator based onK , but for large

sample sizes and in cases where edge e�ects are signi®cant,

the optimal ĝ will be close to the naive local linear estimator

based on K . Section 3 will explore these properties.

Next we state a result which demonstrates that, under

mild conditions, the unconditional mean square perfor-

mance of ĝ is asymptotic to the renowned conditional

performance of �g. Assume that h� �nh�ÿ1 � O�nÿ�� for

some � > 0; that � ! 0 and �
ÿ1

� O�n� for some  > 0;

that f is supported on I � �0; 1�, and continuous and

non-vanishing there; that g has two continuous derivatives

on I ; and that � is continuous on I . We call these

conditions (C2). Let J denote any open subset of I , and

de®ne

�1 �

�

K2

� ��

�

K

� �

2

; �2 �
1

4

�

u2K�u�du

�

�

K

� �

2

Theorem 2.1. Assuming conditions (C1) and (C2)

E�ĝÿ g�2 ��nh�ÿ1�1�
2f ÿ1

� h4�2�g
00

�

2
� of�nh�ÿ1 � h4g �4�

uniformly in x 2 J .

The range of validity of (4) may be extended right to the

very ends of I if minor quali®cations are made. First, the

variance contribution to the right-hand side of (4),

v � �nh�ÿ1�1�
2f ÿ1, only admits that formula away from

the ends of I . Within distance O�h� of the ends it is in¯ated

by a constant factor, for example to 2v at zero and one. The

order of magnitude of variance remains, however, �nh�ÿ1.

Secondly, owing to the fact that L is not compactly

supported, the second term in (4), representing the squared

bias contribution, is not applicable at the ends of I unless �

is su�ciently small. The squared bias contribution remains

at h4�2�g
00

�

2
� o�h4� if � � o�h2�, and equals O�h4� if

� � O�h2�. Noting these changes, a number of variants of

Theorem 2.1 are available for describing performance of

the estimator uniformly on I , rather than just on the sub-

interval J . One of them is as follows: if conditions (C1)

and (C2) hold, and if � � O�h2�, then

E�ĝÿ g�2 � Of�nh�ÿ1 � h4g

uniformly in x 2 I .

The estimator ĝ employs two local linear estimators

based on di�erent kernels K and L. It is important to

rescale the kernels properly, for example using the

canonical kernels of Marron and Nolan (1989), so that

they yield the same amount of smoothing. This is

incorporated in all the numerical studies of Section 3.

3. Numerical properties

In this section we summarize a simulation study which

examines ®nite sample properties of ĝ. Throughout we

took K to be the biweight kernel, and L to be Student's t

density with 5 degrees of freedom. Figure 1 illustrates

typical regression estimates obtained by naive local linear

®tting based on Normal and biweight kernels (i.e. with

� � 0), and our shrinkage method with � � 50
0:5

or 50
20
.

(Taking � � 50
20
produces basically the native local linear

estimator based on L.) The regression mean was linear

with a Gaussian peak

g�x� � 2ÿ 5x� 5 expfÿ400�xÿ 0:5�
2
g �5�

The design density was Uniform on I � �0; 1�, errors were

Normally distributed with variance �
2
� 0:5, and sample

size was n � 50. The plus signs in this and other ®gures

indicate data points.

Both of the naive local linear estimates depicted in Fig. 1

are particularly rough, and stray well away from the true

curve in places where design points are sparse. On the other

hand, the modi®ed local linear estimates su�er less from

numerical ¯uctuation. Compared to the local linear

estimate with shrinkage parameter � � 50
20
, using

� � 50
0:5

gives a more erratic curve in places where it should

be linear, but produces a better estimate of the peak.

Using the same regression mean, design density and error

distribution as before, but employing a wider range of

values of n and �, we conducted extensive simulations to

investigate properties of the mean integrated squared error

(MISE) of ĝ as an estimator of g, de®ned at (5). We took

n � 25, 50, 100, 250, 500 or 1000, and � � nÿ4, nÿ2, nÿ0:5,

nÿ0:2, n0:2, n0:5 or n10. To avoid edge e�ects we estimated g

on the interval �ÿ1; 2� rather than �0; 1�, and generated n

uniformly distributed design points on each subinterval

�ÿ1; 0�, �0; 1] and �1; 2�. (The in¯uence of edge e�ects when

the design points are restricted to �0; 1� will be addressed

13On the shrinkage of local linear curve estimators



shortly.) Here and in other MISE comparisons below, each

MISE was estimated as the average of 4000 realizations of

integrated squared error, the values of which were calculated

by the trapezoidal rule from corresponding squared errors

evaluated on a grid of 400 equally spaced points. There

were 51 logarithmically equispaced bandwidths, ranging

from half of the asymptotically optimal bandwidth when

n � 1000 and �
2
� 0:05, to four times the asymptotically

optimal bandwidth when n � 25 and �
2
� 0:5. Figure 2

shows the simulated MISE curves for n � 25, 50 and 100.

When n � 250, 500 or 1000, the seven values of � yielded

simulated MISE curves very close to each other and are not

shown in the ®gure. For particularly small values of �, not

illustrated in the ®gure, estimated MISE took very large

values, as predicted theoretically. (The MISE is in®nite

when � � 0.)

For smaller sample sizes (n � 25, 50 and 100), design

sparseness occurs relatively often. Thus, we see from Fig. 2

that larger values of �, equal to positive powers of sample

size, produce minimum MISEs. The optimal �'s are 25
10
,

50
10
and 100

0:2
in the cases of those respective sample sizes,

and n0:5 is never worse than second best. For larger sample

sizes (250, 500 and 1000), design sparseness is less of a

problem, and optimal shrinkage parameters are smaller

and equal to negative powers of sample size. Indeed, for

those sample sizes the optimal �s are 250
ÿ4
, 500

ÿ4
and

1000
ÿ4
, and neither nÿ2 nor nÿ4 is ever worse than second

best. When n � 250 the values of minimum MISE

when � � nc for ÿ4 � c � ÿ2 are virtually indistinguish-

able from one another, and vary little in the range

ÿ4 � c � 0:5. Generally, taking � �
���

n
p

produces good

performance, at the optimal bandwidth, for all n � 25.

We compared the performance of our estimator ĝ and the

local linear ridge estimators suggested by Seifert and Gasser

(1995, 1996). The ridge parameters for Seifert and Gasser's

methods (i) and (ii), in their notation, were ®xed at

c1 � 0:001 and c2 � 1, respectively. Their methods require

bandwidth adjustment when there are very few data within

the smoothing region; we selected the bandwidth to ensure

that at least two points were always included. Using

the same parameter settings as before, and employing

� �
���

n
p

throughout, our approach produces lower

MISE than Seifert and Gasser's method for small to

moderate n, and virtually identical MISE for larger n.

The simulated MISE curves for n � 25, 50 and 100 are

illustrated in Fig. 3.

Fig. 1. Typical estimates of the regression mean at (5) (closely-spaced dotted line) constructed by naive local linear regression based on the

biweight (dotted line) or Normal (dotted-and-dashed line) kernels and the suggested modi®cations using shrinkage parameter � � 50
0:5

(solid line) or 50
20
(short-dashed line). For all estimates, the asymptotically optimal bandwidths were used. Data are indicated by the plus signs
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Next we examine edge e�ects. To make estimation

particularly di�cult for all methods, we simulated in the

case where the regression mean is given by

g2�x� �2ÿ 5x� 5 exp�ÿ400x2� � 5 expfÿ400�xÿ 0:5�
2
g

� 5 expfÿ400�xÿ 1�
2
g

�6�

representing a linear function with three Gaussian peaks.

Sample size was n � 50, design was Uniform and con®ned

to �0; 1�, and errors were Normally distributed with variance

�
2
� 0:5. Figure 4 depicts representative estimates with

di�erent levels of shrinkage. Using a large value of �

(e.g. 50
20
) gives rise to relatively serious edge e�ects,

particularly in the region �0; 0:05� [ �0:85; 1�, but produces

no numerical aberration arising from sparse design. Without

any shrinkage, i.e. with � � 0, the local linear estimate has

only minor boundary problems but exhibits a relatively

high level of numerical aberration. Taking � � 50
0:5

gives a

good compromise between these extremes.

To study the in¯uence of edge e�ects on MISE we

generated data using the parameter settings of Fig. 2, except

that no design point was chosen outside �0; 1�. In particular,

the regression mean at (5) was employed. The MISE curves

are similar to those in Fig. 2 and are not shown here. In the

cases of sample sizes 25, 50, 100, 250, 500 and 1000, the

optimal values of � are respectively 25
10
, 50

10
, 100

0:5
,

250
0:2
, 500

ÿ4
and 1000

ÿ4
. Again, as in the case of Fig. 2,

� �
���

n
p

never produces worse than second-best perfor-

mance when n � 25, 50 or 100; neither nÿ2 nor nÿ4 produces

worse than second-best performance when n � 500 or 1000;

and � �
���

n
p

gives good performance, at the optimal band-

width, for all n � 25.

Fig. 2. Simulated MISE as a function of bandwidth (on logarithmic

scales) for the estimator ĝ, for sample sizes n � 25 (upper panel), 50

(middle panel) or 100 (lower panel) and seven di�erent values of the

shrinkage parameter (nÿ4: upper solid line; nÿ2: lower solid line;

nÿ0:5: closely-spaced dotted line; nÿ0:2: dashed line; n0:2: dotted-
and-dashed line; n0:5: dotted line; n0: short-dashed line). The regres-
sion mean was that de®ned at (5), design points were Uniformly

distributed, and errors were Normally distributed with variance

0.5. The design was extended to �ÿ1; 2� to avoid edge e�ects. Here

and in other ®gures, vertical lines indicate asymptotically optimal

bandwidths for the biweight kernel

Fig. 3. Simulated MISE as a function of bandwidth (on logarithmic

scales) for the estimator ĝ and sample sizes n � 25 (upper panel), 50

(middle panel) or 100 (lower panel). The solid line represents the

MISE curve for ĝ using � �
���

n
p

. Seifert and Gasser's methods (i),

using ridge parameter 0.001, and (ii), with ridge parameter 1, are

represented by dotted and dashed lines, respectively. Other para-

meter settings, including extension of design to �ÿ1; 2�, are as in

Fig. 2
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Appendix: Outline proof of Theorem 2.1.

For the sake of brevity we treat only the case where � is

constant. Let � denote the set of design points X1; . . . ;Xn,

and observe that

E�ĝÿ g�2 � V � B �A:1�

where V � Efvar�ĝj��g and B � EfE�ĝj�� ÿ gg2. We shall

deal separately with these terms. Let C1, C2; . . . denote

generic positive constants.

First we derive an asymptotic formula for V . Let s
�K�

k and

s
�L�

k denote the versions of sk for the kernels K and L,

respectively. De®ne t
�M�

k �

�

ukM�u�du, t �
�

K2
, T

�M�

xki �

f�xÿ Xi�=hg
kMf�xÿ Xi�=hg and T

�M�

xk � �

n
i�1T

�M�

xki �

hÿks
�M�

k �x�, forM � K or L. Given � > 0, let Exk��� denote

the event that

j�nhk�1�ÿ1s
�M�

k �x� ÿ t
�M�

k f �x�j > � for M � K or L

and write ~

Exk for the complement of Exk. Under conditions

(C1) and (C2), E�T
�M�

xk1 � � ht
�M�

k f �x� � o�h� and EjT
�M�

xk1 j
p
�

Fig. 4. Typical estimates of the `three peaks' regression mean de®ned

at (6) (closely-spaced dotted line), constructed by naive local linear

regression based on the biweight (dotted line) or Normal (dotted-

and-dashed line) kernels and the suggested modi®cations with

parameters � � 5020 (short-dashed line) or � � 500:5 (solid line). The

asymptotically optimal bandwidths were used
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O�h�, uniformly in x 2 J , for M � K or L, 0 � k � 2 and

each p � 1. From the last result we have, by Rosenthal's

inequality (e.g. Hall and Heyde, 1980, p. 23), that EjT
�M�

xk ÿ

ET
�M�

xk j

2p
� Of�nh�pg for all p � 1. Hence, by Markov's

inequality, there exists a sequence �n # 0 such that

PfExk��
2
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where U
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�n� are the order statistics of a

sequence of independent random variables uniformly

distributed on I . Properties of spacings of order statistics

may be used to prove that
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Result (A.6) follows on combining (A.7)±(A.9).

We conclude the proof of Theorem 2.1 by deriving the

analogue of (A.5) for B. Observe that
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where g2�x; y� � 2fg�y� ÿ g�x� ÿ �yÿ x�g0�x�g=�yÿ x�2 �

g00�x�. From this result, using a modi®ed form of the
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uniformly in x 2 J , as n!1. The theorem follows from

this formula and (A.5).
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