Can stress on the job kill you? Yes

 

 

Example: Simple Regression

The Boston data set records medv (median house value) for 506 census tracts in Boston. We will seek to predict medv using 12 predictors such as rmvar (average number of rooms per house), age (average age of houses), and lstat (percent of households with low socioeconomic status).

library(MASS)
library(ISLR2)
## 
## Attaching package: 'ISLR2'
## The following object is masked from 'package:MASS':
## 
##     Boston
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio lstat medv
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3  4.98 24.0
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8  9.14 21.6
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8  4.03 34.7
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7  2.94 33.4
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7  5.33 36.2
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7  5.21 28.7
attach(Boston)

lm.fit <- lm(medv ~ lstat)

lm.fit
## 
## Call:
## lm(formula = medv ~ lstat)
## 
## Coefficients:
## (Intercept)        lstat  
##       34.55        -0.95
summary(lm.fit)
## 
## Call:
## lm(formula = medv ~ lstat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.168  -3.990  -1.318   2.034  24.500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 34.55384    0.56263   61.41   <2e-16 ***
## lstat       -0.95005    0.03873  -24.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared:  0.5441, Adjusted R-squared:  0.5432 
## F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16
names(lm.fit)
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "xlevels"       "call"          "terms"         "model"
coef(lm.fit)
## (Intercept)       lstat 
##  34.5538409  -0.9500494
confint(lm.fit)
##                 2.5 %     97.5 %
## (Intercept) 33.448457 35.6592247
## lstat       -1.026148 -0.8739505
predict(lm.fit, data.frame(lstat = (c(5, 10, 15))),
    interval = "confidence")
##        fit      lwr      upr
## 1 29.80359 29.00741 30.59978
## 2 25.05335 24.47413 25.63256
## 3 20.30310 19.73159 20.87461
plot(lstat, medv)

abline(lm.fit, lwd=3, col="red")

Hence \[ \mbox{medv} \approx 34.5538 -0.9500\times \mbox{lstat}\]

par(mfrow = c(2, 2))
plot(lm.fit)

par(mfrow = c(1, 1))
plot(predict(lm.fit), residuals(lm.fit))

# On the basis of the residual plots, there is some evidence of non-linearity. Leverage statistics can be computed for any number of predictors using the hatvalues() function.

plot(hatvalues(lm.fit))

which.max(hatvalues(lm.fit))
## 375 
## 375

 

Example: Multiple Linear Regression

lm.fit <- lm(medv ~ lstat + age, data = Boston)
summary(lm.fit)
## 
## Call:
## lm(formula = medv ~ lstat + age, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.981  -3.978  -1.283   1.968  23.158 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 33.22276    0.73085  45.458  < 2e-16 ***
## lstat       -1.03207    0.04819 -21.416  < 2e-16 ***
## age          0.03454    0.01223   2.826  0.00491 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.173 on 503 degrees of freedom
## Multiple R-squared:  0.5513, Adjusted R-squared:  0.5495 
## F-statistic:   309 on 2 and 503 DF,  p-value: < 2.2e-16
# The Boston data set contains 12 variables, and so it would be cumbersome to have to type all of these in order to perform a regression using all of the predictors. Instead, we can use the following short-hand:

lm.fit <- lm(medv ~ ., data = Boston)

summary(lm.fit)
## 
## Call:
## lm(formula = medv ~ ., data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.1304  -2.7673  -0.5814   1.9414  26.2526 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.617270   4.936039   8.431 3.79e-16 ***
## crim         -0.121389   0.033000  -3.678 0.000261 ***
## zn            0.046963   0.013879   3.384 0.000772 ***
## indus         0.013468   0.062145   0.217 0.828520    
## chas          2.839993   0.870007   3.264 0.001173 ** 
## nox         -18.758022   3.851355  -4.870 1.50e-06 ***
## rm            3.658119   0.420246   8.705  < 2e-16 ***
## age           0.003611   0.013329   0.271 0.786595    
## dis          -1.490754   0.201623  -7.394 6.17e-13 ***
## rad           0.289405   0.066908   4.325 1.84e-05 ***
## tax          -0.012682   0.003801  -3.337 0.000912 ***
## ptratio      -0.937533   0.132206  -7.091 4.63e-12 ***
## lstat        -0.552019   0.050659 -10.897  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.798 on 493 degrees of freedom
## Multiple R-squared:  0.7343, Adjusted R-squared:  0.7278 
## F-statistic: 113.5 on 12 and 493 DF,  p-value: < 2.2e-16
names(summary(lm.fit))
##  [1] "call"          "terms"         "residuals"     "coefficients" 
##  [5] "aliased"       "sigma"         "df"            "r.squared"    
##  [9] "adj.r.squared" "fstatistic"    "cov.unscaled"
summary(lm.fit)$r.sq
## [1] 0.734307
summary(lm.fit)$sigma
## [1] 4.798034
# What if we would like to perform a regression using all of the variables but one? For example, in the above regression output, age has a high p-value. So we may wish to run a regression excluding this predictor. The following syntax results in a regression using all predictors except age.

lm.fit1 <- lm(medv ~ . - age, data = Boston)
summary(lm.fit1)
## 
## Call:
## lm(formula = medv ~ . - age, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.1851  -2.7330  -0.6116   1.8555  26.3838 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.525128   4.919684   8.441 3.52e-16 ***
## crim         -0.121426   0.032969  -3.683 0.000256 ***
## zn            0.046512   0.013766   3.379 0.000785 ***
## indus         0.013451   0.062086   0.217 0.828577    
## chas          2.852773   0.867912   3.287 0.001085 ** 
## nox         -18.485070   3.713714  -4.978 8.91e-07 ***
## rm            3.681070   0.411230   8.951  < 2e-16 ***
## dis          -1.506777   0.192570  -7.825 3.12e-14 ***
## rad           0.287940   0.066627   4.322 1.87e-05 ***
## tax          -0.012653   0.003796  -3.333 0.000923 ***
## ptratio      -0.934649   0.131653  -7.099 4.39e-12 ***
## lstat        -0.547409   0.047669 -11.483  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.794 on 494 degrees of freedom
## Multiple R-squared:  0.7343, Adjusted R-squared:  0.7284 
## F-statistic: 124.1 on 11 and 494 DF,  p-value: < 2.2e-16

 

Example: Interaction Terms

It is easy to include interaction terms in a linear model using the lm() function. The syntax lstat:black tells R to include an interaction term between lstat and black. The syntax lstat * age simultaneously includes lstat, age, and the interaction term lstat×age as predictors; it is a shorthand for lstat + age + lstat:age. %We can also pass in transformed versions of the predictors.

summary(lm(medv ~ lstat * age, data = Boston))
## 
## Call:
## lm(formula = medv ~ lstat * age, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.806  -4.045  -1.333   2.085  27.552 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
## lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
## age         -0.0007209  0.0198792  -0.036   0.9711    
## lstat:age    0.0041560  0.0018518   2.244   0.0252 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.149 on 502 degrees of freedom
## Multiple R-squared:  0.5557, Adjusted R-squared:  0.5531 
## F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

Hence we could have

\[ \mbox{medv} \approx 36.0885 -1.3921 \mbox{lstat}-0.0007 \mbox{age}+0.0042 \mbox{lstat}\times \mbox{age}\]

 

Example: Non-linear Transformation of the Preditors

The lm() function can also accommodate non-linear transformations of the predictors. For instance, given a predictor \(X\), we can create a predictor \(X^2\) using \(I(X^2)\). The function I() is needed since the ^ has a special meaning in a formula object; wrapping as we do allows the standard usage in R, which is to raise X to the power 2. We now perform a regression of medv onto lstat and lstat^2.

lm.fit2 <- lm(medv ~ lstat + I(lstat^2))

summary(lm.fit2)
## 
## Call:
## lm(formula = medv ~ lstat + I(lstat^2))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.2834  -3.8313  -0.5295   2.3095  25.4148 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 42.862007   0.872084   49.15   <2e-16 ***
## lstat       -2.332821   0.123803  -18.84   <2e-16 ***
## I(lstat^2)   0.043547   0.003745   11.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.524 on 503 degrees of freedom
## Multiple R-squared:  0.6407, Adjusted R-squared:  0.6393 
## F-statistic: 448.5 on 2 and 503 DF,  p-value: < 2.2e-16

So \[ \mbox{medv} \approx 42.8620 -2.3328 \mbox{lstat}+0.0435\mbox{lstat}^2 \]

par(mfrow = c(2, 2))
plot(lm.fit2)

In order to create a cubic fit, we can include a predictor of the form I(X^3). However, this approach can start to get cumbersome for higher-order polynomials. A better approach involves using the poly() function to create the polynomial within lm(). For example, the following command produces a fifth-order polynomial fit:

lm.fit5 <- lm(medv ~ poly(lstat, 5))
summary(lm.fit5)
## 
## Call:
## lm(formula = medv ~ poly(lstat, 5))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.5433  -3.1039  -0.7052   2.0844  27.1153 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       22.5328     0.2318  97.197  < 2e-16 ***
## poly(lstat, 5)1 -152.4595     5.2148 -29.236  < 2e-16 ***
## poly(lstat, 5)2   64.2272     5.2148  12.316  < 2e-16 ***
## poly(lstat, 5)3  -27.0511     5.2148  -5.187 3.10e-07 ***
## poly(lstat, 5)4   25.4517     5.2148   4.881 1.42e-06 ***
## poly(lstat, 5)5  -19.2524     5.2148  -3.692 0.000247 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.215 on 500 degrees of freedom
## Multiple R-squared:  0.6817, Adjusted R-squared:  0.6785 
## F-statistic: 214.2 on 5 and 500 DF,  p-value: < 2.2e-16
# of course, we are in no way restricted to using polynomial transformations of the predictors. Here we try a log transformation.

summary(lm(medv ~ log(rm), data = Boston))
## 
## Call:
## lm(formula = medv ~ log(rm), data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.487  -2.875  -0.104   2.837  39.816 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -76.488      5.028  -15.21   <2e-16 ***
## log(rm)       54.055      2.739   19.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.915 on 504 degrees of freedom
## Multiple R-squared:  0.4358, Adjusted R-squared:  0.4347 
## F-statistic: 389.3 on 1 and 504 DF,  p-value: < 2.2e-16

 

Example: Qualitative Predictors

We will now examine the Carseats data, which is part of the ISLR2 library. We will attempt to predict Sales (child car seat sales) in 400 locations based on a number of predictors.

head(Carseats)
##   Sales CompPrice Income Advertising Population Price ShelveLoc Age Education
## 1  9.50       138     73          11        276   120       Bad  42        17
## 2 11.22       111     48          16        260    83      Good  65        10
## 3 10.06       113     35          10        269    80    Medium  59        12
## 4  7.40       117    100           4        466    97    Medium  55        14
## 5  4.15       141     64           3        340   128       Bad  38        13
## 6 10.81       124    113          13        501    72       Bad  78        16
##   Urban  US
## 1   Yes Yes
## 2   Yes Yes
## 3   Yes Yes
## 4   Yes Yes
## 5   Yes  No
## 6    No Yes

The Carseats data includes qualitative predictors such as shelveloc, an indicator of the quality of the shelving location—that is, the space within a store in which the car seat is displayed—at each location. The predictor shelveloc takes on three possible values: Bad, Medium, and Good. Given a qualitative variable such as shelveloc, R generates dummy variables automatically. Below we fit a multiple regression model that includes some interaction terms.

lm.fit <- lm(Sales ~ . + Income:Advertising + Price:Age, 
    data = Carseats)
summary(lm.fit)
## 
## Call:
## lm(formula = Sales ~ . + Income:Advertising + Price:Age, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9208 -0.7503  0.0177  0.6754  3.3413 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         6.5755654  1.0087470   6.519 2.22e-10 ***
## CompPrice           0.0929371  0.0041183  22.567  < 2e-16 ***
## Income              0.0108940  0.0026044   4.183 3.57e-05 ***
## Advertising         0.0702462  0.0226091   3.107 0.002030 ** 
## Population          0.0001592  0.0003679   0.433 0.665330    
## Price              -0.1008064  0.0074399 -13.549  < 2e-16 ***
## ShelveLocGood       4.8486762  0.1528378  31.724  < 2e-16 ***
## ShelveLocMedium     1.9532620  0.1257682  15.531  < 2e-16 ***
## Age                -0.0579466  0.0159506  -3.633 0.000318 ***
## Education          -0.0208525  0.0196131  -1.063 0.288361    
## UrbanYes            0.1401597  0.1124019   1.247 0.213171    
## USYes              -0.1575571  0.1489234  -1.058 0.290729    
## Income:Advertising  0.0007510  0.0002784   2.698 0.007290 ** 
## Price:Age           0.0001068  0.0001333   0.801 0.423812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.011 on 386 degrees of freedom
## Multiple R-squared:  0.8761, Adjusted R-squared:  0.8719 
## F-statistic:   210 on 13 and 386 DF,  p-value: < 2.2e-16
# The contrasts() function returns the coding that R uses for the dummy variables.

attach(Carseats)
contrasts(ShelveLoc)
##        Good Medium
## Bad       0      0
## Good      1      0
## Medium    0      1

R has created a ShelveLocGood dummy variable that takes on a value of 1 if the shelving location is good, and 0 otherwise. It has also created a ShelveLocMedium dummy variable that equals 1 if the shelving location is medium, and 0 otherwise. A bad shelving location corresponds to a zero for each of the two dummy variables. The fact that the coefficient for ShelveLocGood in the regression output is positive indicates that a good shelving location is associated with high sales (relative to a bad location). And ShelveLocMedium has a smaller positive coefficient, indicating that a medium shelving location is associated with higher sales than a bad shelving location but lower sales than a good shelving location.

 

For any regression coefficient, you will generally be interested in three things: sign, size, and significance.

 

 

When we include multiple variables in the regression equation, the analysis gives us an estimate of the linear association between each explanatory variable and the dependent variable while holding other dependent variables constant, or “controlling for” these other factors.

 

Example:

Weight ~ Height + Age + sex +Education + poverty + race + exercise+etc

We can use regression analysis to separate out the independent effect of each of the potential explanatory factors described above. For example, we can isolate the association between race and weight, holding constant other socioeconomic factors like educational background and poverty. Among people who are high school graduates and eligible for food stamps, what is the statistical association between weight and being black?

 

Example:

 

Example:

The connection between stress on the job and coronary heart disease.

 

Common Regression Mistakes

“Do not kill people with your research.” Because some very smart people have inadvertently violated that rule.

 

Regression analysis is the hydrogen bomb of the statistics arsenal. What could possibly go wrong?

 

Here is a “Top Seven” list of the most common abuses of an otherwise extraordinary tool.

 

1. Using regression to analyze a nonlinear relationship

 

2. Correlation does not equal causation

  3. Reverse causality

 

4. Omitted variable bias

 

5. Highly correlated explanatory variables (multicollinearity)

 

6. Extrapolating beyond the data

 

7. Data mining too many variables

 

Example: Data from The Fifth National Bank of Springfield for gender discrimination suit

BANK1 <-read.csv("BANK1.csv") # laoding the data set  into R

names(BANK1) # Check the variables collected by the data
##  [1] "X"        "Employee" "EducLev"  "JobGrade" "YrHired"  "YrBorn"  
##  [7] "Gender"   "YrsPrior" "PCJob"    "Salary"
# Cleaning data

BANK1 <- BANK1[,-1] # removing unnecesary variables.

BANK1$YrsExp <- 95 -BANK1$YrHired # transforming data to be more significant 

BANK1$Age <- 95 - BANK1$YrBorn # Calculate the age of employ ee

BANK1_new <-BANK1[(BANK1$Age<=60)&(BANK1$YrsExp<=30), ] # clearning the observations which do not appear typical. 

dim(BANK1_new)
## [1] 199  11
BANK1_new$JobGrade <-as.factor(BANK1_new$JobGrade) # Define the categorical data as data type factor 

BANK1_new$EducLev <-as.factor(BANK1_new$EducLev)

Results <-lm(Salary~.-Employee-YrBorn-YrHired, data=BANK1_new) # Regression to check the dependence of the salary with other variables 

summary(Results)
## 
## Call:
## lm(formula = Salary ~ . - Employee - YrBorn - YrHired, data = BANK1_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.9977 -2.1509 -0.2543  1.7764 11.1935 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 28.87729    1.57539  18.330  < 2e-16 ***
## EducLev2    -0.89115    0.89698  -0.994  0.32177    
## EducLev3    -0.29770    0.86872  -0.343  0.73222    
## EducLev4     0.33981    1.51557   0.224  0.82284    
## EducLev5     1.92200    1.06187   1.810  0.07193 .  
## JobGrade2    1.60927    0.74640   2.156  0.03238 *  
## JobGrade3    5.34225    0.79817   6.693 2.56e-10 ***
## JobGrade4    9.77401    0.95723  10.211  < 2e-16 ***
## JobGrade5   15.33462    1.20896  12.684  < 2e-16 ***
## JobGrade6   22.40778    1.80388  12.422  < 2e-16 ***
## GenderMale   0.67645    0.64632   1.047  0.29665    
## YrsPrior     0.14592    0.09045   1.613  0.10840    
## PCJobYes     4.18315    0.92580   4.518 1.11e-05 ***
## YrsExp       0.25604    0.07478   3.424  0.00076 ***
## Age          0.02409    0.03905   0.617  0.53806    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.538 on 184 degrees of freedom
## Multiple R-squared:  0.8232, Adjusted R-squared:  0.8098 
## F-statistic:  61.2 on 14 and 184 DF,  p-value: < 2.2e-16