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Distributions derived from the normal distribution

Definition

If Z1, . . . ,Zν are i.i.d. with Z1 ∼ N (0, 1), then the distribution of∑ν
i=1 Z

2
i is called the χ2

ν distribution (ν is called degrees of
freedom).

Definition

If Z ∼ N (0, 1) and Y ∼ χ2
ν independent of Z , then the

distribution of Z/
√
Y /ν is called the tν distribution (ν is called

the degrees of freedom).

Definition

If W1 ∼ χ2
k1

, W2 ∼ χ2
k2

, and W1 and W2 are independent, then the

distribution of W1/k1

W2/k2
is called the Fk1,k2 distribution (k1 and k2 are

the degrees of freedom).
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One normal sample

Y1, . . . ,Yn ∼ N (µ, σ2) or

Yi = µ+ εi , εi ∼ N (0, σ2), i = 1, . . . n, (1)

where Y1, . . . ,Yn are i.i.d.
Define

Ȳ =
1

n

n∑
i=1

Yi ,

S2 =
1

n − 1

n∑
i=1

(Yi − Ȳ )2, (2)

T =

√
n(Ȳ − µ)

S
.

Ȳ : sample mean
S2: sample variance
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Theorem

If Y1, . . . ,Yn are i.i.d. with Y1 ∼ N (µ, σ2), then Ȳ and S as

defined in (2) are independent, and Ȳ ∼ N (µ, σ
2

n ),
(n−1)S2

σ2 ∼ χ2
n−1, and T ∼ tn−1.
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Point estimation of parameters in normal distribution

Model: Y1, . . . ,Yn are i.i.d with N (µ, σ2) distribution.

Since Ȳ ∼ N (µ, σ2/n), Ȳ is unbiased for µ (E (Ȳ ) = µ) and it has
variance Var(Ȳ ) = σ2/n.

Also, since (n−1)
σ2 S2 ∼ χ2

n−1, S2 is unbiased for σ2 (E (S2) = σ2)
and it has variance Var(S2) = 2σ4/(n − 1).

Method of moments estimators: The method of moments
estimators for µ and σ2 are the solutions of µ and σ2 to the
following equations:

µ = Ȳ ,

µ2 + σ2 =
1

n

∑
i=1

Y 2
i .

They are Ȳ and n−1
n S2.
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Maximum likelihood estimators: Likelihood function given
Y1, . . . ,Yn:

`(µ, σ2) =
n∏

i=1

1√
2πσ2

e−
(Yi−µ)2

2σ2 = (2πσ2)−
n
2 e−

1
2σ2

∑n
i=1(Yi−µ)2

.

Log likelihood function:

L(µ, σ2) = log `(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(Yi − µ)2 .

Solving for µ and σ2 the following system of equations:

0 =
∂L

∂µ
=

1

σ2

n∑
i=1

(Yi − µ),

0 =
∂L

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − µ)2,

and checking the solutions yield maximum, we obtain the
maximum likelihood estimators for µ and σ2 as Ȳ and n−1

n S2

respectively.
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Coefficient of Variation

The parameter σ2 is important to us because the greater the
variability of the random term, the greater the errors in the
estimation.

The rule of thumb (i.e. solely a working principle based on
experience and perhaps wisdom but not on mathematical
arguments) is that models with CV no more than 10% usually lead
to accurate prediction, where

CV = coefficient of variation = σ/µ× 100%.
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Confidence interval for normal location

1− α: confidence level

Let tν;1−α/2 be the percentage point of the tν distribution that
leaves a probability α/2 in the upper tail. Since

1− α = P(tn−1;α/2 ≤ T ≤ tn−1;1−α/2)

= P
(
tn−1;α/2 ≤

√
n(Ȳ − µ)

S
≤ tn−1;1−α/2

)
and tn−1;α/2 = −tn−1;1−α/2, we have

P
(
Ȳ − tn−1;1−α/2

S√
n
≤ µ ≤ Ȳ + tn−1;1−α/2

S√
n

)
= 1− α.

Hence

Ȳ ± tn−1;1−α/2
S√
n

is a (1− α)× 100% confidence interval for µ.
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Confidence interval for normal variance

Let χ2
ν,1−α/2 be the percentage point of the χ2

ν distribution that

leaves a probability α/2 in the upper tail. Since

1− α = P(χ2
n−1;α/2 ≤

n − 1

σ2
S2 ≤ χ2

n−1;1−α/2)

= P
( (n − 1)S2

χ2
n−1;1−α/2

≤ σ2 ≤ (n − 1)S2

χ2
n−1;α/2

)
,

a (1− α)× 100% confidence interval for σ2 is[ (n − 1)S2

χ2
n−1;1−α/2

,
(n − 1)S2

χ2
n−1;α/2

]
.
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Testing Hypotheses on normal location

Example Work times of a worker: 13.9, 10.8, 13.9, 9.3, 11.7, 9.1,
12.0, 10.4, 13.3, 11.1.

Question: Can the worker perform the task in 10 minutes on
average?

Test the null hypothesis H0 : µ = µ0 = 10 against the alternative
hypothesis H1 : µ > µ0 = 10.

Test statistic is T =
√
n(Ȳ−µ0)

S , and we would reject H0 if the
observed value of T , denoted as t, is large.

Since distribution of T under H0 is tn−1, critical value at
significance level α is tn−1;1−α.

p-value is P(T > t|H0) = P(tn−1 > t), where t is the observed
value of T given the sample.
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The critical region tells us what values are considered too extreme
(i.e. too unlikely to be seen) for the test statistic, if the null
hypothesis is true.

Hence, if the observed value of the test statistic happens to be in
the critical region, then we believe the null hypothesis is not true.

The p-value is the probability, assuming the null hypothesis is true,
of observing what we have observed or something more extreme.

Thus, a small p-value means that what has happened would be in
fact unlikely to happen if the null hypothesis is true. However, it
really has happened and so we believe that the null hypothesis is
not true.
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Two normal samples

Y11, . . . ,Y1n1 ,Y21, . . . ,Y2n2 independent,
Y1j ∼ N (µ1, σ

2), j = 1, . . . , n1,
Y2j ∼ N (µ2, σ

2), j = 1, . . . , n2.

⇔ Yij = µi + εij , i = 1, 2, j = 1, . . . ni , εij i .i .d . ∼ N (0, σ2).

Note: equal variances assumption

Example Compare the working times with that of another worker.
Worker 1: 13.9, 10.8, 13.9, 9.3, 11.7, 9.1, 12.0, 10.4, 13.3, 11.1
Worker 2: 14.1, 10.7, 13.2, 10.4, 10.0, 10.1, 10.6, 12.5, 14.5, 10.9
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Independent two-sample t-test

Given two independent samples Y11, . . . ,Y1n1 i.i.d. ∼ N (µ1, σ
2)

and Y21, . . . ,Y2n2 i.i.d. ∼ N (µ2, σ
2).

H0 : µ1 − µ2 = µ0 (usually µ0 = 0), H1 : µ1 − µ2 6= µ0

Test statistic:

T =
Ȳ1 − Ȳ2 − µ0

Sp

√
1
n1

+ 1
n2

,

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
,

Ȳ1 and Ȳ2 are the sample means, and S2
1 and S2

2 are the sample
variances.
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Distribution of T under H0:

T ∼ tn1+n2−2 when H0 is true.

p-value is P(|T | > |t||H0) = P(|tn1+n2−2| > |t|), where t is the
observed value of T given the two samples.

p-value < α if t < −tn1+n2−2;1−α/2 or t > tn1+n2−2;1−α/2.

Level 1− α confidence interval for µ1 − µ2 is

(Ȳ1 − Ȳ2)± Sp

√
1

n1
+

1

n2
tn1+n2−2;1−α/2
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Paired two-sample t-test

Use additional information if you know that the two samples
consist of paired observations:
Zj = Y1j − Y2j , j = 1, . . . , n, i.i.d. with
Z = Y1 − Y2 ∼ N (µd , σ

2
d), µd = µ1 − µ2.

Example: Y1j and Y2j are test scores of the jth pairs of slower
learners.

Perform one-sample t-test for H0 : µd = 0 based on the data
Z1, . . . ,Zn.
Test statistic is

T =

√
n(Z̄ − 0)

Sd
,

where Z̄ = Ȳ1 − Ȳ2 and S2
d is the sample variance of Z1, . . . ,Zn,

and its distribution is tn−1 under the null hypothesis H0 : µd = 0.
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