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Regression

The history of regression analysis started from a eugenics study by
Francis Galton (1822-1911), a cousin of Charles Darwin. From Wikipedia
on regression toward the mean, we know that:

@ The concept of regression comes from genetics and was popularized
by Sir Francis Galton during the late 19th century with the
publication of Regression towards mediocrity in hereditary stature.

@ Galton observed that extreme characteristics (e.g., height) in
parents are not passed on completely to their offspring. Rather, the
characteristics in the offspring regress towards a mediocre point (a
point which has since been identified as the mean).

@ By measuring the heights of hundreds of people, he was able to
quantify regression to the mean, and estimate the size of the effect.
Galton wrote that, “the average regression of the offspring is a
constant fraction of their respective mid-parental deviations”.

@ For height, Galton estimated this correlation coefficient to be about
%: the height of an individual will measure around a mid-point that

is two thirds of the parents deviation from the population average.
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Figure: The height of child is plotted against a combined parental height
defined as (father's height + 1.08 x mother's height)/2.
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Data: (x1, Y1),..-, (Xn, Yn)
Model: Y = E(Y|x) + ¢, E(Y|x) = f(x), i.e.
Y =f(x)+e. (1)
Y': Dependent variable, or response variable
x: Independent variable, explanatory variable, or covariate
f(x): Regression function
€. Unexplainable, or random, error

Data (xi1, Y1),...,(xn, Yn) are independent observations on (x, Y),
which follows model (1), and we have

Y,-:f(x,-)+5,-,i:1,...,n.
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More generally, we have data (xi;, %2, ..., Xki, Yi), i =1,....n,
observed from the model

Y =f(x1,x2,...,xk) + €.

Simplest case:
Y = BO + BIX a2

called simple linear regression, in which there is only one x and the
regression function is linear in the parameters 5y and ;.
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Simple linear regression

Flat sellings in Lower Saxonia

8000
I

6000

Price DMigm

4000

2000
I

T T T T T T
20 40 60 80 100 120 140

size qm

Figure: Lower Saxonian flat prices data with least squares (solid) and
least absolute deviations (dashed) regression line.
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Least Absolute Deviations Estimation (LAD)

Model: Y; = 6o + Bixi+ei, i=1,...,n.

Choose the values of 8y and (1 to minimise A(So, 51) = Y- |ril,
where the residuals r; are given by r; = Y; — 8o — S1x; for any
given values of By and ;.

Hard to analyse mathematically.
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Least Squares Estimation (LSE)

Model: Y; = 6o + Bixi+¢ei, i=1,...,n.

Choose the values of 8y and (1 to minimise S(8o, 1) = Y. 1q 7,

2

where the residuals r; are given by r; = Y; — Bg — [B1x; for any
given values of By and (1. Taking partial derivatives of S(fo, 51)
w.r.t. o and 31 and setting to zero:

oS n X )
= _— . " = _2 \/I _ _ X’ :
9B0 | Bo=ho.p1=P1 ;z_;( Bo — B1xi)
aS n X )
= —_— R . = 72 X; K _ o ;).
01 1 Bo=Po.81=51 ; (Yi = Bo — prxi)

Then we obtain the normal equations:

n n n n n
S Yi=Bon+BDd xi, D xYi=Bo > xi+ph ) X
i—1 i—1 i—1 i—1 i—1
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Solving the normal equations yields

~ Coy A~ - A

51 — C 3 BO =Y - ﬁl)_(v (2)
where
1 _ 1 n n _ n
%= Z V== YiCy= D (xi=x)(Yi=Y), Co = D _(xi—%).
i=1 i=1 i=1 i=1

Least squares regression line:
y = Bo+ prx.
Estimator for Y;:
\A/;:BAo—i-BlX;,I.:l,...,n

Remark. The method of least squares was discovered
independently by Garl Friedrich Gauss (1777-1855) and Adrien
Marie Legendre (1752-1833). See Section 1.8 of Draper and Smith
(1998).
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n

Let Cyy = Z(Y, — \7)2. Then the least squares regression line

i=1
can be written as

A~ A — CxY X —X
y=0o+bx=Y+ vV Cyy
CXX\/CYY \/CXX

which can be rewritten as
y — V . Sxy X —X
= =
\VS2 /5382 VK
2

where S,y is the sample covariance of x; and Y}, and S2 and Sy
are the sample variances of x; and Y; respectively. Estimator for
response Y given x, or prediction equation:

\A/Zéo-l-ﬁlx-

The interpretation of the slope estimate 31 is as follows: There is a

B1-unit increase in the mean of Y for every l-unit increase in x.
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Note. Francis Galton’s finding on parent—child heights mentioned
earlier (taken from Wikipedia), in terms of the notation used
above, is

Y-V 2(x-X)

sd(Y) 3 sd(x) ’
where x = weighted average of mother’s and father’s heights,
Y = child’s height, and sd(x) and sd(Y) are the sample standard
deviations of x;'s and Y;'s, respectively.
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Properties of LSE

The residuals obtained from the least squares line are

e=Yi—Yi=Y,—fo—pixi,i=1,...,n

Properties:

(i) Xi1e =0,
(ii) 27:1 Xi€e = 0,
(iii) Yo, Yiei=0.

Properties (i) and (ii) follow from the normal equations:

n

022(5/;—30—31&'):2@7

i=1
O_ZXI Yl /80_ ].XI leel'

Property (iii) follows from properties (i) and (||):
Sor1(Bo+ Brxi)er = Bo Yoy € + B Yo7y xiei = 0.
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Space spanned by X

Figure: Geometrical representation of the least squares estimation. The

data vector Y = (\A/l, e \A/,,)’ is projected orthogonally onto the model
space spanned by X, whose columns are (1,...,1)" and (xi,...,x,)". The
fit is represented by projection Y = (Yi,...,Y,) with the difference

between the fit and the data represented by the residual vector

e = (el,...,e,,)’.
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Properties (i) and (ii) mean that the vector (eg,...,ep) is
orthogonal to the vectors (1,...,1) and (x1,...,Xp). This implies
that nothing in (e, ..., e,) can be affected by (1,...,1) and
(x1,...,xn). If the orthogonality does not hold, then there are still
some variation in (Yq,..., Y,) that can be explained by (1,...,1)
and (xi,...,X,) meaning that we had not yet squeezed out all
information on (Y1,...,Y},) provided by (1,...,1) and (x1, ..., Xp).

Property (iii) means the vectors (Y1,..., Y,) and (eq, ..., e,) are
orthogonal. This, along with the fact that (\A/l, e \A/,,) lies in the
space generated by (1,...,1) and (x1, ..., x,), says (\A/l, A \A/n) is
the orthogonal projection of (Yi,...,Y,) onto the space generated
by (1,...,1) and (x1,...,Xs), and so among all feasible vectors in
the space generated by (1,...,1) and (x1,...,x,), (Y1,..., ¥n) is
the closest (measured in the Euclidean distance) to the observed
vector (Y1,..., Yn).
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LSE in Matrix Form

The simple linear regression model can be rewritten as

Y=X3+¢
where
Y1 1 X1 €1
Yg 1 X2 g2
Y = X = ,ﬁ—<ﬂo>,ands:
p1
Y, 1 x, En
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Denote the transpose of a matrix A by A'. Write 8 = (30,31)’,
Y =(Y1,...Y,), e=(e1,...,e,) . Then we have

= (X'X)'X'Y,
X(X'X)7IX'Y = HY,
= Y-Y=(I-HY,

o <X
Il

where I is the n x n identity matrix, and the hat matrix

H = X(X'X)~1X’ is a projection matrix onto the linear space
spanned by the columns of the design matrix X (i.e. H is
symmetric, HX = X, HH = H, H(l — H) = 0, where 0 denotes
the n X n zero matrix).
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Note that &’X = Y/'(I — H)X = Y'(X — X) =0, where 0
denotes the 2 x 1 zero matrix.

Note also that ¥ = HY = XB lies in the linear subspace spanned
by the columns of X, and Y and e are orthogonal:

Y.e=Ye=0,

where « denotes dot product.
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Simple linear regression with normal errors

Model:
Yi=Bo+ Bixi+ei, , i=1,...,n,

where x; are fixed, ¢; are i.i.d. with A/(0,0?) distribution, and Sy,
$1 and o2 are unknown constant parameters.
Equivalently:

Yi ~ N(Bo + 61x,-,02), i=1,...,n, independent.

Y: Dependent variable, response variable

x: Independent variable, explanatory variable, covariate
€. Unexplainable, or random, error

Deterministic: Gy + B1x;

Random: ¢;

Observed: (x1, Y1), , (Xn, Yn)

Unobserved: ¢1,--- ,¢&,
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Maximum Likelihood Estimation

The likelihood function given (xi, Y1), ..., (xn, Yn) is

1 no_ i s B — B1x:)2
6(60751702): (ﬁ) e 202 Z’Zl(y’ Bo—P1 l) .

Log likelihood function is
L(B()a/@laa—z) = |Og€(60,51,0'2)

n
o n 2 1 2
= —nlog\/27r—§|oga —M;(Yi_ﬁo_ﬁlxl') .

For any fixed o2, maximising L(S30, 51, 02) is equivalent to
minimising the sum of squares S = >>7_,(Y; — B0 — B1x;)?. Hence,
the MLE of By and 31 is the same as the LSE.
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Maximum likelihood estimator for o2 is obtained by maximising
L(Bo, B1,02%) w.r.t. a2, by keeping By and B; fixed at By and 1. It

IS
3

)

n
where SSE = S0 €2 = 327 (Vi — Bo — B1xi)?, which is biased.

An unbiased estimator for o2 is

2 SSE
op=2’

in which the denominator is the value of the degrees of freedom;
we lose two degrees of freedom because we estimate two
parameters in order to get Y.
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Different parametrisations

One aspect of the linear model that can cause some difficulty at
first is the fact that there is often more than one way to write the
same model.

For example, an alternative form for simple linear regression is

Yi=v+mn(xi—X)+e, i=1,...,n,

where X = %Zx,- is the mean of the x;. By equating the
systematic parts of the two models, we have

Yo +7(xi — %) =Bo+ Pixi, i=1,...,n,

if and only if 41 = 81 and o — y1X = fp (i.e. 1 = 51 and

Yo = Bo + 1X). The slope parameters are the same in the two
models, but the intercepts differ. One, fp, is the intercept at
x = 0, the other, g, is the intercept at x = X. If you fit either
model by least squares you will get the same straight line, but

described by different parameters.
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Another parametrisation (by centering both Y; and x;) is
Y — \7:770+771(X;—>_<)+5,', i=1,...,n.
Then, by equating the systematic parts, we have
Y + 1m0+ m(xi — X) = Bo + Bixi,
and thus

m=pF and Y+ —mx=f,

m=p and mo=00+px—Y.

22/22



