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Regression

The history of regression analysis started from a eugenics study by
Francis Galton (1822-1911), a cousin of Charles Darwin. From Wikipedia
on regression toward the mean, we know that:

The concept of regression comes from genetics and was popularized
by Sir Francis Galton during the late 19th century with the
publication of Regression towards mediocrity in hereditary stature.

Galton observed that extreme characteristics (e.g., height) in
parents are not passed on completely to their offspring. Rather, the
characteristics in the offspring regress towards a mediocre point (a
point which has since been identified as the mean).

By measuring the heights of hundreds of people, he was able to
quantify regression to the mean, and estimate the size of the effect.
Galton wrote that, “the average regression of the offspring is a
constant fraction of their respective mid-parental deviations”.

For height, Galton estimated this correlation coefficient to be about
2
3 : the height of an individual will measure around a mid-point that
is two thirds of the parents deviation from the population average.
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Figure 1.5 The height of child is plotted against a combined parental height defined
as (father’s height + 1.08 × mother’s height)/2.

> (beta <- with(GaltonFamilies, cor(midparentHeight, childHeight) * sd
(childHeight) / sd(midparentHeight)))

[1] 0.63736
> (alpha <- with(GaltonFamilies, mean(childHeight) - beta * mean(

midparentHeight)))
[1] 22.636

Now one might naively expect that a child with parents who are, for example, one
standard deviation above average in height, to also be one standard deviation above
average in height, give or take. The supposition would set r = 1 in the equation and
leads to a line which we compute and plot below:

> (beta1 <- with(GaltonFamilies, sd(childHeight) / sd(midparentHeight)
))

[1] 1.9859
> (alpha1 <- with(GaltonFamilies, mean(childHeight) - beta1 * mean(

midparentHeight)))
[1] -70.689
> abline(alpha1, beta1, lty=2)

The resulting dashed line is added to Figure 1.5. The lines cross at the point of the
averages. We can see that a child of tall parents is predicted by the least squares
line to have a height which is above average but not quite as tall as the parents as
the dashed line would have you believe. Similarly children of below average height

Figure: The height of child is plotted against a combined parental height
defined as (father’s height + 1.08 × mother’s height)/2.
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Data: (x1,Y1), . . . , (xn,Yn)

Model: Y = E(Y |x) + ε, E(Y |x) = f (x), i.e.

Y = f (x) + ε. (1)

Y : Dependent variable, or response variable

x : Independent variable, explanatory variable, or covariate

f (x): Regression function

ε: Unexplainable, or random, error

Data (x1,Y1), . . . , (xn,Yn) are independent observations on (x ,Y ),
which follows model (1), and we have

Yi = f (xi ) + εi , i = 1, . . . , n.
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More generally, we have data (x1i , x2i , . . . , xki ,Yi ), i = 1, . . . , n,
observed from the model

Y = f (x1, x2, . . . , xk) + ε .

Simplest case:
Y = β0 + β1x + ε,

called simple linear regression, in which there is only one x and the
regression function is linear in the parameters β0 and β1.
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Simple linear regression
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Figure: Lower Saxonian flat prices data with least squares (solid) and
least absolute deviations (dashed) regression line.
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Least Absolute Deviations Estimation (LAD)

Model: Yi = β0 + β1xi + εi , i = 1, . . . , n.

Choose the values of β0 and β1 to minimise A(β0, β1) =
∑n

i=1 |ri |,
where the residuals ri are given by ri = Yi − β0 − β1xi for any
given values of β0 and β1.

Hard to analyse mathematically.
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Least Squares Estimation (LSE)

Model: Yi = β0 + β1xi + εi , i = 1, . . . , n.
Choose the values of β0 and β1 to minimise S(β0, β1) =

∑n
i=1 r

2
i ,

where the residuals ri are given by ri = Yi − β0 − β1xi for any
given values of β0 and β1. Taking partial derivatives of S(β0, β1)
w.r.t. β0 and β1 and setting to zero:

0 =
∂S
∂β0

∣∣∣
β0=β̂0,β1=β̂1

= −2
n∑

i=1

(Yi − β̂0 − β̂1xi ),

0 =
∂S
∂β1

∣∣∣
β0=β̂0,β1=β̂1

= −2
n∑

i=1

xi (Yi − β̂0 − β̂1xi ).

Then we obtain the normal equations:

n∑

i=1

Yi = β̂0n + β̂1

n∑

i=1

xi ,
n∑

i=1

xiYi = β̂0

n∑

i=1

xi + β̂1

n∑

i=1

x2i .
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Solving the normal equations yields

β̂1 =
CxY

Cxx
, β̂0 = Ȳ − β̂1x̄ , (2)

where

x̄ =
1

n

n∑

i=1

xi , Ȳ =
1

n

n∑

i=1

Yi ,CxY =
n∑

i=1

(xi−x̄)(Yi−Ȳ ),Cxx =
n∑

i=1

(xi−x̄)2.

Least squares regression line:

y = β̂0 + β̂1 x .

Estimator for Yi :

Ŷi = β̂0 + β̂1 xi , i = 1, . . . , n.

Remark. The method of least squares was discovered
independently by Garl Friedrich Gauss (1777-1855) and Adrien
Marie Legendre (1752-1833). See Section 1.8 of Draper and Smith
(1998).

9 / 22



Let CYY =
n∑

i=1

(Yi − Ȳ )2. Then the least squares regression line

can be written as

y = β̂0 + β̂1 x = Ȳ +
CxY√

Cxx
√
CYY

√
CYY

x − x̄√
Cxx

which can be rewritten as

y − Ȳ√
S2
Y

=
SXY√
S2
Y S

2
x

x − x̄√
S2
x

,

where SxY is the sample covariance of xi and Yi , and S2
x and S2

Y

are the sample variances of xi and Yi respectively. Estimator for
response Y given x , or prediction equation:

Ŷ = β̂0 + β̂1 x .

The interpretation of the slope estimate β̂1 is as follows: There is a
β̂1-unit increase in the mean of Y for every 1-unit increase in x.
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Note. Francis Galton’s finding on parent–child heights mentioned
earlier (taken from Wikipedia), in terms of the notation used
above, is

Ŷ − Ȳ

sd(Y )
=

2

3

(x − x̄)

sd(x)
,

where x = weighted average of mother’s and father’s heights,
Y = child’s height, and sd(x) and sd(Y ) are the sample standard
deviations of xi ’s and Yi ’s, respectively.
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Properties of LSE

The residuals obtained from the least squares line are

ei = Yi − Ŷi = Yi − β̂0 − β̂1 xi , i = 1, . . . , n.

Properties:

(i)
∑n

i=1 ei = 0,

(ii)
∑n

i=1 xiei = 0,

(iii)
∑n

i=1 Ŷiei = 0.

Properties (i) and (ii) follow from the normal equations:

0 =
n∑

i=1

(Yi − β̂0 − β̂1xi ) =
n∑

i=1

ei ,

0 =
n∑

i=1

xi (Yi − β̂0 − β̂1xi ) =
n∑

i=1

xiei .

Property (iii) follows from properties (i) and (ii):∑n
i=1(β̂0 + β̂1xi )ei = β̂0

∑n
i=1 ei + β̂1

∑n
i=1 xiei = 0.
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ESTIMATING β 15

The column of ones incorporates the intercept term. One simple example is the null
model where there is no predictor and just a mean y = µ+ ε:

⎛
⎝

y1
. . .
yn

⎞
⎠=

⎛
⎝

1
. . .
1

⎞
⎠µ+

⎛
⎝

ε1
. . .
εn

⎞
⎠

We can assume that Eε = 0 since if this were not so, we could simply absorb the
nonzero expectation for the error into the mean µ to get a zero expectation.

2.3 Estimating β

The regression model, y = Xβ + ε, partitions the response into a systematic compo-
nent Xβ and a random component ε. We would like to choose β so that the systematic
part explains as much of the response as possible. Geometrically speaking, the re-
sponse lies in an n-dimensional space, that is, y ∈ IRn while β ∈ IRp where p is the
number of parameters. If we include the intercept then p is the number of predictors
plus one. It is easy to get confused as to whether p is the number of predictors or
parameters, as different authors use different conventions, so be careful.

The problem is to find β so that Xβ is as close to Y as possible. The best choice,
the estimate β̂, is apparent in the geometrical representation seen in Figure 2.1. β̂
is, in this sense, the best estimate of β within the model space. The β̂ values are
sometimes called the regression coefficients. The response predicted by the model
is ŷ = X β̂ or Hy where H is an orthogonal projection matrix. The ŷ are called pre-
dicted or fitted values. The difference between the actual response and the predicted
response is denoted by ε̂ and is called the residual. .

ŷ

y

ε̂

Space spanned by X

Figure 2.1 Geometrical representation of the estimation β. The data vector Y is
projected orthogonally onto the model space spanned by X . The fit is represented by
projection ŷ = X β̂ with the difference between the fit and the data represented by the
residual vector ε̂.

The conceptual purpose of the model is to represent, as accurately as possible,
something complex, y, which is n-dimensional, in terms of something much simpler,
the model, which is p-dimensional. Thus if our model is successful, the structure in
the data should be captured in those p dimensions, leaving just random variation in
the residuals which lie in an (n− p)-dimensional space. We have:

Figure: Geometrical representation of the least squares estimation. The
data vector Y = (Ŷ1, . . . , Ŷn)′ is projected orthogonally onto the model
space spanned by X , whose columns are (1, ..., 1)′ and (x1, . . . , xn)′. The
fit is represented by projection Ŷ = (Ŷ1, . . . , Ŷn)′ with the difference
between the fit and the data represented by the residual vector
e = (e1, . . . , en)′.
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Properties (i) and (ii) mean that the vector (e1, . . . , en) is
orthogonal to the vectors (1, ..., 1) and (x1, . . . , xn). This implies
that nothing in (e1, . . . , en) can be affected by (1, ..., 1) and
(x1, . . . , xn). If the orthogonality does not hold, then there are still
some variation in (Y1, . . . ,Yn) that can be explained by (1, ..., 1)
and (x1, . . . , xn) meaning that we had not yet squeezed out all
information on (Y1, . . . ,Yn) provided by (1, ..., 1) and (x1, . . . , xn).

Property (iii) means the vectors (Ŷ1, . . . , Ŷn) and (e1, . . . , en) are
orthogonal. This, along with the fact that (Ŷ1, . . . , Ŷn) lies in the
space generated by (1, ..., 1) and (x1, . . . , xn), says (Ŷ1, . . . , Ŷn) is
the orthogonal projection of (Y1, . . . ,Yn) onto the space generated
by (1, ..., 1) and (x1, . . . , xn), and so among all feasible vectors in
the space generated by (1, ..., 1) and (x1, . . . , xn), (Ŷ1, . . . , Ŷn) is
the closest (measured in the Euclidean distance) to the observed
vector (Y1, . . . ,Yn).
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LSE in Matrix Form

The simple linear regression model can be rewritten as

Y = Xβ + ε

where

Y =




Y1

Y2
...
Yn


 , X =




1 x1
1 x2
...

...
1 xn


 , β =

(
β0
β1

)
, and ε =




ε1
ε2
...
εn


 .
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Denote the transpose of a matrix A by A′. Write β̂ = (β̂0, β̂1)′,
Ŷ = (Ŷ1, . . . Ŷn)′, e = (e1, . . . , en)′. Then we have

β̂ = (X ′X )−1X ′Y ,

Ŷ = X (X ′X )−1X ′Y ≡ HY ,

e = Y − Ŷ = (I −H)Y ,

where I is the n × n identity matrix, and the hat matrix
H = X (X ′X )−1X ′ is a projection matrix onto the linear space
spanned by the columns of the design matrix X (i.e. H is
symmetric, HX = X , HH = H , H(I −H) = 0, where 0 denotes
the n × n zero matrix).
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Note that e ′X = Y ′(I −H)X = Y ′(X − X ) = 0, where 0
denotes the 2× 1 zero matrix.

Note also that Ŷ = HY = X β̂ lies in the linear subspace spanned
by the columns of X , and Ŷ and e are orthogonal:

Ŷ · e = Ŷ ′e = 0 ,

where · denotes dot product.
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Simple linear regression with normal errors

Model:
Yi = β0 + β1xi + εi , , i = 1, . . . , n,

where xi are fixed, εi are i.i.d. with N (0, σ2) distribution, and β0,
β1 and σ2 are unknown constant parameters.
Equivalently:

Yi ∼ N (β0 + β1xi , σ
2), i = 1, . . . , n, independent.

Y : Dependent variable, response variable
x : Independent variable, explanatory variable, covariate
ε: Unexplainable, or random, error
Deterministic: β0 + β1xi
Random: εi
Observed: (x1,Y1), · · · , (xn,Yn)
Unobserved: ε1, · · · , εn
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Maximum Likelihood Estimation

The likelihood function given (x1,Y1), . . . , (xn,Yn) is

`(β0, β1, σ
2) =

( 1√
2πσ2

)n
e−

1
2σ2

∑n
i=1(Yi−β0−β1xi )2 .

Log likelihood function is

L(β0, β1, σ
2) = log `(β0, β1, σ

2)

= −n log
√

2π − n

2
log σ2 − 1

2σ2

n∑

i=1

(Yi − β0 − β1xi )2 .

For any fixed σ2, maximising L(β0, β1, σ
2) is equivalent to

minimising the sum of squares S =
∑n

i=1(Yi − β0− β1xi )2. Hence,
the MLE of β0 and β1 is the same as the LSE.
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Maximum likelihood estimator for σ2 is obtained by maximising
L(β0, β1, σ

2) w.r.t. σ2, by keeping β0 and β1 fixed at β̂0 and β̂1. It
is

SSE

n
,

where SSE =
∑n

i=1 e
2
i =

∑n
i=1(Yi − β̂0 − β̂1xi )2, which is biased.

An unbiased estimator for σ2 is

σ̂2 =
SSE

n − 2
,

in which the denominator is the value of the degrees of freedom;
we lose two degrees of freedom because we estimate two
parameters in order to get Ŷi .
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Different parametrisations

One aspect of the linear model that can cause some difficulty at
first is the fact that there is often more than one way to write the
same model.
For example, an alternative form for simple linear regression is

Yi = γ0 + γ1(xi − x̄) + εi , i = 1, . . . , n,

where x̄ = 1
n

∑
xi is the mean of the xi . By equating the

systematic parts of the two models, we have

γ0 + γ1(xi − x̄) = β0 + β1xi , i = 1, . . . , n,

if and only if γ1 = β1 and γ0 − γ1x̄ = β0 (i.e. γ1 = β1 and
γ0 = β0 + β1x̄). The slope parameters are the same in the two
models, but the intercepts differ. One, β0, is the intercept at
x = 0, the other, γ0, is the intercept at x = x̄ . If you fit either
model by least squares you will get the same straight line, but
described by different parameters.
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Another parametrisation (by centering both Yi and xi ) is

Yi − Ȳ = η0 + η1(xi − x̄) + εi , i = 1, . . . , n.

Then, by equating the systematic parts, we have

Ȳ + η0 + η1(xi − x̄) = β0 + β1xi ,

and thus
η1 = β1 and Ȳ + η0 − η1x̄ = β0,

i.e.
η1 = β1 and η0 = β0 + β1x̄ − Ȳ .
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