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Simple linear regression with normal errors

Model:
Yi = β0 + β1xi + εi , i = 1, . . . , n,

where ε1, . . . , εn are i.i.d with N (0, σ2) distribution.

Least Squares Estimator (LSE):

β̂1 =
CxY

Cxx
, β̂0 = Ȳ − β̂1x̄ ,

where

x̄ =
1

n

n∑
i=1

xi , Ȳ =
1

n

n∑
i=1

Yi ,

CxY =
n∑

i=1

(xi − x̄)(Yi − Ȳ ), Cxx =
n∑

i=1

(xi − x̄)2.
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Note

CxY =
n∑

i=1

(xiYi − xi Ȳ − x̄Yi + x̄ Ȳ )

=
n∑

i=1

(xi − x̄)Yi +
n∑

i=1

(−xi + x̄)Ȳ

=
n∑

i=1

(xi − x̄)Yi − nx̄Ȳ + nx̄Ȳ

=
n∑

i=1

(xi − x̄)Yi .
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Similarly,

Cxx =
n∑

i=1

(x2
i − 2x̄xi + x̄2) =

n∑
i=1

xixi − nx̄ x̄

=
n∑

i=1

xixi − x̄
n∑

i=1

xi =
n∑

i=1

(xi − x̄)xi .

It follows from the previous results that

β̂1 =
CxY

Cxx
=

∑n
i=1(xi − x̄)Yi

Cxx
≡

n∑
i=1

kiYi ,

where ki = xi−x̄
Cxx

, i = 1, . . . , n.
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Therefore,

E(β̂1) = E
( n∑

i=1

kiYi

)
=

n∑
i=1

kiE(Yi ) =
n∑

i=1

ki (β0 + β1xi )

=
n∑

i=1

xi − x̄

Cxx
β0 +

n∑
i=1

(xi − x̄)xi
Cxx

β1

= β1 ,

var(β̂1) = var
( n∑

i=1

kiYi

)
=

n∑
i=1

k2
i var(Yi ) =

n∑
i=1

(xi − x̄)2

C 2
xx

σ2

=
σ2

Cxx
,

and

β̂1 ∼ N
(
β1,

σ2

Cxx

)
.
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For the estimator of σ2,

σ̂2 =
SSE

n − 2
=

∑n
i=1 e

2
i

n − 2
,

we can show that
n − 2

σ2
σ̂2 ∼ χ2

n−2 ,

and σ̂2 is independent of β̂1. Therefore

β̂1 − β1√
σ̂2/Cxx

=
β̂1 − β1√
σ2/Cxx

/√
n − 2

σ2
σ̂2
/

(n − 2) ∼ tn−2 .
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Hypothesis Testing and Confidence Intervals

H0 : β1 = 0
H1 : β1 6= 0

Test statistic: T = β̂1√
σ̂2/Cxx

.

Reject H0 if |t| > tn−2,1−α/2, where t is observed value of T .

1− α = P
(
− tn−2,1−α/2 ≤

β̂1 − β1√
σ̂2/Cxx

≤ tn−2,1−α/2

)
= P

(
β̂1 − tn−2,1−α/2

σ̂√
Cxx
≤ β1 ≤ β̂1 + tn−2,1−α/2

σ̂√
Cxx

)
Level 1− α confidence interval for β1 is

β̂1 ± tn−2,1−α/2
σ̂√
Cxx

.
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For β̂0, we have

β̂0 = Ȳ − β̂1x̄ =

∑n
i=1 Yi

n
−

n∑
i=1

kiYi x̄

=
n∑

i=1

(
1

n
− ki x̄)Yi

≡
n∑

i=1

ciYi .

Hence,

E(β̂0) = E(Ȳ − β̂1x̄) = E
(∑n

i=1 Yi

n

)
− β1x̄

=

∑n
i=1(β0 + β1xi )

n
− β1x̄

=

∑n
i=1 β0

n
+ β1

∑n
i=1 xi
n

− β1x̄

= β0 ,
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var
(
β̂0

)
= var

(
Ȳ − β̂1x̄

)
= var

(
Ȳ
)

+ x̄2var(β̂1)− 2cov(Ȳ , β̂1x̄)

=
σ2

n
+ x̄2 σ

2

Cxx
− 2x̄cov(

n∑
i=1

Yi/n,
n∑

i=1

kiYi )

=
σ2

n
+ x̄2 σ

2

Cxx
− 2x̄

1

n

n∑
i=1

n∑
j=1

cov(Yi , kjYj)

=
σ2

n
+ x̄2 σ

2

Cxx
− 2x̄

1

n

n∑
i=1

cov(Yi , kiYi )

=
σ2

n
+ x̄2 σ

2

Cxx
− 2x̄

1

n

n∑
i=1

kiσ
2

=
σ2

n
+ x̄2 σ

2

Cxx
− 2x̄

1

n

n∑
i=1

xi − x̄

Cxx
σ2

= σ2
(1

n
+

x̄2

Cxx

)
,
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and

β̂0 ∼ N
(
β0, σ

2
(1

n
+

x̄2

Cxx

))
.

In addition, we can show that β̂0 and σ̂2 are independent, and so
we have

β̂0 − β0

σ̂
√

1
n + x̄2

Cxx

∼ tn−2 ,

which allows us to construct hypothesis testing and confidence
intervals for β0.
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Estimation of mean response at x = x0

For a given value of x = x0,

Y0 = β0 + β1x0 + ε0 , ε0 ∼ N (0, σ2) independent of ε1, . . . , εn,

an estimator for the mean response E(Y0) at x = x0 is the value of
the least squares regression line at x = x0: Ŷ0 = β̂0 + β̂1x0 . Then

E(Ŷ0) = E(β̂0 + β̂1x0) = β0 + β1x0 ,

var(Ŷ0) = var
(
β̂0 + β̂1x0

)
= var(β̂0) + var(β̂1)x2

0 + 2x0cov(β̂0, β̂1)

= σ2
(1

n
+

x̄2

Cxx

)
+ x2

0

σ2

Cxx
+ 2x0cov(Ȳ − β̂1x̄ , β̂1)

= σ2
(1

n
+

x̄2

Cxx

)
+ x2

0

σ2

Cxx
+ 2x0cov(Ȳ , β̂1)− 2x0x̄var(β̂1)

= σ2
(1

n
+

x̄2

Cxx

)
+ x2

0

σ2

Cxx
+ 0− 2x0x̄

σ2

Cxx

= σ2
[1

n
+

(x0 − x̄)2

Cxx

]
.

11 / 37



Thus,

Ŷ0 ∼ N
(
β0 + β1x0, σ

2
[1

n
+

(x0 − x)2

Cxx

])
,

and
Ŷ0 − (β0 + β1x0)

σ̂
√

1
n + (x0−x)2

Cxx

∼ tn−2.

This leads to the following level-(1− α) confidence interval for the
mean response at x = x0:

Ŷ0 ± tn−2;1−α/2 · σ̂

√
1

n
+

(x0 − x)2

Cxx
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Prediction for a future response at x = x0

As a prediction for a future response Y0 at x = x0,

Y0 = β0 + β1x0 + ε0 ,

where ε0 ∼ N (0, σ2) is independent of ε1, . . . , εn, Ŷ0 = β̂0 + β̂1x0

is again unbiased i.e. E(Ŷ0 − Y0) = 0, and its mean squared
prediction error is

E[(Ŷ0 − Y0)2] = E[Ŷ0 − E(Ŷ0) + E(Ŷ0)− Y0]2

= var(Ŷ0)− 2cov(Ŷ0,Y0) + var(Y0)

= var(Ŷ0) + var(Y0)

= σ2
[
1 +

1

n
+

(x0 − x̄)2

Cxx

]
.

This leads to a level-(1− α) prediction interval for Y0:

Ŷ0 ± tn−2;1−α/2 · σ̂

√
1 +

1

n
+

(x0 − x)2

Cxx
.
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Note that the standard error of the prediction of an individual is
always larger than that of the estimation of the mean, but both of
them will take their smallest values at x0 = x .

Extrapolation (estimation of the mean response or prediction of an
individual response for values of x that fall outside the range of the
values of x in the sample) may lead to large error because (i) the
standard error is large, and more importantly (ii) we use the
regression model to describe only the relationship between x and
Y for values of x that fall in the observed range.
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Figure: The default output of the confidence envelopes together with the
regression line using the statement model y=x under proc reg.
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Analysis of Variance

Define

SST = total sum of squares ≡
∑

(Yi − Y )2 (df = n − 1),

SSR = regression sum of squares ≡
∑

(Ŷi − Ŷ )2 (df = 1),

SSE = error sum of squares ≡
∑

(Yi − Ŷi )
2 =

∑
e2
i (df = n − 2).

Note

Ŷ =

∑
Ŷi

n
=

∑
(β̂0 + β̂1xi )

n
= β̂0 + β̂1x = Y ,

and so SSR =
∑

(Ŷi − Ŷ )2 =
∑

(Ŷi − Y )2.
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The regression sum of squares SSR is the variability in Y1, . . . ,Yn

accounted for by the regression model, and it has only df = 1
coming from the slope parameter because the variation in
Ŷ1, . . . , Ŷn is fixed once the slope of the line is fixed (the intercept
is determined by the slope and Y ).

The error sum of squares SSE is the variability in Y1, . . . ,Yn not
accounted for by the regression model, and it has df = n − 2
because though the variation comes from all n observed data, it
loses two degrees of freedom as we estimated two parameters in
order to get all the Ŷi .
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Now, we break the total variability into two components:∑
(Yi − Y )2︸ ︷︷ ︸
SST

=
∑

(Yi − Ŷi + Ŷi − Y )2

=
∑

(Ŷi − Y )2︸ ︷︷ ︸
SSR

+
∑

(Yi − Ŷi )
2︸ ︷︷ ︸

SSE

+2
∑

(Ŷi − Y )(Yi − Ŷi )︸ ︷︷ ︸
=
∑

ei Ŷi︸ ︷︷ ︸
=0

−Y
∑

ei︸ ︷︷ ︸
=0

.

Hence, we have:
SST = SSR + SSE . (1)

It is then obvious that the sum of the degrees of freedom of SSR
and SSE should be equal to the degrees of freedom of SST .
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∑
ε2
i

=
∑

(Yi − β0 − β1xi )
2

=
∑

(Yi − β̂0 − β̂1xi + β̂0 + β̂1xi − Y + Y − β0 − β1xi )
2

=
∑

(ei + Y − β̂1x + β̂1xi − Y + Y − β0 − β1xi + β1x − β1x)2

=
∑

[ei + (Y − β0 − β1x) + (β̂1 − β1)(xi − x)]2

=
∑

e2
i + n(Y − β0 − β1x)2 + (β̂1 − β1)2

∑
(xi − x)2 ,

where the third equality holds because β̂0 = Y − β̂1x and the last
equality holds because

∑
ei = 0 and

∑
eixi = 0.

Note that
∑
ε2
i

σ2 ∼ χ2
n, and we can show that

∑
e2
i

σ2 ,
n(Y−β0−β1x)2

σ2 ∼ χ2
1 and (β̂1−β1)2

∑
(xi−x)2

σ2 ∼ χ2
1 are independent.

Therefore, we have
∑

e2
i

σ2 ∼ χ2
n−2.
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In addition, we have∑
ε2
i =

∑
e2
i + n(Y − β0 − β1x)2 + β̂2

1

∑
(xi − x)2

+β1(β1 − 2β̂1)
∑

(xi − x)2

= SST + n(Y − β0 − β1x)2 + β1(β1 − 2β̂1)
∑

(xi − x)2 ,

and so SST has n − 1 degrees of freedom.

20 / 37



Coefficient of Determination

Moreover, from equation (1), we have

1 =
SSR

SST︸ ︷︷ ︸
:=R2

+
SSE

SST
,

where 0 ≤ R2 ≤ 1, called the coefficient of determination, is
interpreted as the proportion of the sum of squares of deviations of
the Y values about their mean that can be attributed to a linear
relationship between Y and x .

If R2 = 1, then SSE = 0 and all points are lying on the
regression line;
if R2 = 0, then no variability in Yi is explained by the
regression line, meaning that the regression line is flat so that
it does not explain any variability in Yi ;
if R2 = 0.8, then the regression line accounts for 80% of the
total variability of Yi around their mean. 21 / 37
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Figure: Value of R2 in different situations.
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Mean Square

Recall that each sum of squares has its degrees of freedom. The
ratio of the sum of squares to its degrees of freedom is called the
mean square. In particular,

MSE :=
SSE

n − 2
=

∑
(Yi − Ŷi )

2

n − 2
= σ̂2,

which is an estimator for the variance σ2 of ε; the alphabet M in
MSE stands for Mean (and we may read MSE as mean squared
error).

Note that (n − 2)σ̂2/σ2 = SSE/σ2 ∼ χ2
n−2, and the mean of the

χ2-distribution is its degrees of freedom. Hence,
E((n − 2)σ̂2/σ2) = n − 2⇒ E(σ̂2) = σ2.

In general, the denominator of an MS (mean square) is the df of
SS (sum of squares) because we should divide an SS by the
number of free terms that have been summed up in order to
calculate its mean.
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By the same token, we denote the ratio of SSR to its degrees of
freedom by MSR:

MSR :=
SSR

k

(stands for regression mean square), where k is the number of
independent variables in the model. Here we consider just one
independent variable, i.e. we have k = 1 and so MSR = SSR.
Since Ŷi − Y = β̂1(xi − x), we have

MSR :=
SSR

1
=
∑

(Ŷi − Y )2 =
∑

β̂2
1(xi − x)2 = β̂2

1Cxx .

Then

E(MSR) = E(β̂2
1Cxx) = Cxx · E(β̂2

1) = Cxx

{
var(β̂1) + [E(β̂1)]2

}
= Cxx

{
σ2

Cxx
+ β2

1

}
= σ2 + β2

1Cxx .
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Thus, if β1 = 0 and so Y = β0 + ε only, then E(MSR) = σ2,
meaning that MSR is also an estimator of σ2 if Y is just a
constant plus a random error.

That is to say, for the same σ2, we have two different estimators,
namely, MSE = σ̂2 and, if Y = β0 + ε, MSR = β̂2

1Cxx .

Hence, if β1 = 0, the ratio MSR/MSE should be close to 1.

However, if the ratio MSR/MSE is large, then MSR contains not
only the variation from the random errors but also some extra
variation caused by the variation in the expected values of the
responses Y1, . . . ,Yn, meaning that β1 is not zero.
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ANOVA F -test

H0 : β1 = 0
H1 : β1 6= 0
Because under the null hypothesis that β1 = 0, we have
SSR/σ2 ∼ χ2

1 and so the test statistic is

F :=
MSR

MSE
=

SSR
σ2 /1

SSE
σ2 /(n − 1− 1)

∼ F1,n−1−1,

giving us the rejection region {F ≥ F1,n−2;1−α}, where F1,n−2;1−α
is the (1− α)-quantile of the F1,n−2 distribution.

This is a one-sided rejection region because a small value of F
means no extra variation from the independent variables, which
means there is no evidence against the null hypothesis. This test
for H0 : β1 = 0 is called ANOVA F -test.
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ANOVA Table

ANOVA table
Source of Sum of degrees of
variation Squares freedom Mean square F -ratio p-value

Model SSR 1 MSR = SSR
1

MSR
MSE

Pr(F1,n−1−1 ≥ F -ratio)

Error SSE n − 1 − 1 MSE = SSE
n−1−1

Total SST n − 1
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For the simple linear regression this ANOVA F -test is equivalent to
the t-test for testing H0 : β1 = 0, because

t2
df =

z2

(χ2
df /df )

=
χ2

1/1

(χ2
df /df )

= F1,df

and for testing H0 : β1 = 0, since var(β̂1) = σ2/Cxx , we use the
following form as the test statistic for the t-test:

T =
β̂1√
σ̂2/Cxx

= (sign of β̂1)×

√
β̂2

1Cxx

MSE
= (sign of β̂1)×

√
MSR

MSE
.

Thus, the t-test is equivalent to the F -test here. Note that the
t-statistic has the same sign as β̂1, and so the t-test allows us to
have one-sided alternative, while the F -test only allows us to have
two-sided alternative. (When we move to models with k > 1
independent variables, the ANOVA F -test is a test for all β1, . . .,
βk while the t-test is a test for an individual βi , and so these two
tests are not equivalent in general. That is why we have two tests.) 28 / 37



Connection with Correlation Analysis

Let us consider the algebraic form of the coefficient of
determination R2 in more details. It is defined by

R2 :=
SSR

SST
.

In the above discussion, we already noticed that
Ŷi − Y = β̂1(xi − x), which implies that

SSR :=
∑

(Ŷi − Y )2 = β̂2
1

∑
(xi − x)2 = β̂2

1Cxx ,

and because SST :=
∑

(Yi − Y )2 =: CYY , we have

R2 =
β̂2

1Cxx

CYY
=

(
CxY
Cxx

)2
Cxx

CYY
=

C 2
xY

CxxCYY
.
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For the simple linear regression, we consider deterministic predictor
x .

Suppose we have paired data {(Xi ,Yi )} where both Xi and Yi are
random. Then we are talking about correlation analysis, in which
we use a quantity describing the relationship between the two
random variables X and Y , namely, the correlation coefficient,
which is defined by

ρ :=
cov(X ,Y )√
var(X )var(Y )

,

where cov(X ,Y ) = E{(X − µX )(Y − µY )}.
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The sample covariance and the sample variances are

̂cov(X ,Y ) =

∑
(Xi − X )(Yi − Y )

n − 1
,

v̂ar(X ) =

∑
(Xi − X )2

n − 1
, v̂ar(Y ) =

∑
(Yi − Y )2

n − 1

and hence the sample correlation coefficient, denoted by r , is

r :=

∑
(Xi − X )(Yi − Y )√∑

(Xi − X )2
∑

(Yi − Y )2
.

Algebraically, we can see that

R2 = r2,

but note that r can be positive or negative and its sign is the same
as that of the slope of the regression line. Thus,

r = β̂1 ×

√
Cxx

CYY
= (sign of β̂1)×

√
R2.
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In particular, suppose (X ,Y ) follows the bivariate normal
distribution. In MATH2206 you learned that if ρ = 0, then

T =
r
√
n − 2√

1− r2
∼ tn−2,

which can be used to test the null hypothesis H0:ρ = 0. This
t-distribution of the test statistic actually comes from the
F -distribution of the ANOVA, which can be seen by noting the
fact that algebraically,

1− r2 =
SSE

SST
and r2 =

SSR

SST
,

and so the ANOVA F -statistic in this case can be re-written as:

F =
MSR

MSE
=

SSR/1

SSE/(n − 2)
=

SSR · (n − 2)

SSE

=
SSR · (n − 2)

SST · (1− r2)
=

(SSR/SST ) · (n − 2)

(1− r2)
=

r2(n − 2)

(1− r2)
.

Take the square root of each side with the corresponding sign
given to the right-hand side will lead to the t-statistic. 32 / 37



In this context, we prefer t-test to F -test because the former
(which has either the plus or minus sign) allows us to have
one-sided test.

However, this t-distribution result is not true when ρ 6= 0. That is,
we are not able to construct confidence intervals for ρ.

To address this point, we used the Fisher Z -transform:

Z := tanh−1 r =
1

2
log

1 + r

1− r

approx.∼ N
(
tanh−1(ρ),

1

n − 3

)
,

where tanh(·) is the hyperbolic tangent.

The Fisher transform allows us to construct confidence intervals
and also allows us to test the null hypothesis that H0 :ρ = ρ0.
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Note that although R2 (the coefficient of determination) and r2

(the square of the sample correlation coefficient) are algebraically
the same, they are different notions.

The coefficient of determination tells you how well your regression
line (where the independent variable x is deterministic) can explain
the variability in Y1, . . . ,Yn, while the correlation coefficient is a
measure of the strength of the linear relationship between two
random variables.

There is a true but unknown population correlation coefficient ρ,
but we do not have a population coefficient of determination.

Also, note that high correlation does not imply causality.
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Simple linear regression without intercept

In some particular applications (e.g. size–weight relationship), we
may know in advance that the regression line must pass through
the origin so that

Yi = β1xi + εi , i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. with N (0, σ2) distribution.

The mathematical treatment of such a regression is almost the
same as that of the regression with an unknown intercept β0,
except that now we have only one unknown parameter to estimate.
In particular, the least squares estimator for β̂1 is

β̂1 =

∑
xiYi∑
x2
i

;

it is unbiased with variance var(β̂1) = σ2∑
x2
i
, and

β̂1 ∼ N
(
β1,

σ2∑
x2
i

)
.
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The least squares fitted valued for the mean response E(Y0) at
x = x0, where

Y0 = β1x0 + ε0, ε0 ∼ N (0, σ2) independent of ε1, . . . , εn,

is Ŷ0 = β̂1x0; it is unbiased for E(Y0) and

var(Ŷ0) = x2
0var(β̂1) = σ2 x2

0∑
x2
i

.

As a prediction for a future response Y0, Ŷ0 has mean squared
prediction error

E[(Y0 − Ŷ0)2] = σ2

(
1 +

x2
0∑
x2
i

)
.

And,

σ̂2 =
SSE

n − 1
, where SSE =

∑
Y 2
i − β̂1

∑
xiYi .

These resemble the corresponding ones in the ordinary simple
linear regression, except that the sample means x and Y are now
gone, and the value of the degrees of freedom of σ̂2 is n − 1. 36 / 37



Sum of squares:

SST :=
∑

Y 2
i ,

SSR :=
∑

Ŷ 2
i =

∑
β̂2

1x
2
i ,

SSE :=
∑

(Yi − Ŷi )
2 =

∑
(Yi − β̂1xi )

2 =
∑

Y 2
i − β̂1

∑
xiYi .

∑
Y 2
i =

∑
(Yi − β̂1xi + β̂1xi )

2

=
∑

(Yi − β̂1xi )
2 + 2

∑
(Yi − β̂1xi )β̂1xi +

∑
β̂2

1x
2
i

=
∑

(Yi − β̂1xi )
2 + β̂2

1

∑
x2
i

The degrees of freedom of SSE is n − 1.

The SST is now called Uncorrected Total Sum of Squares

because it is just
∑

Y 2
i , i.e. the data are not centered by

subtracting the sample mean from them (i.e. are uncorrected), and
hence its degrees of freedom is n.
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