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Multiple Linear Regression

Multiple linear regression model:

Yi = β0 + β1x1i + β2x2i + . . .+ βkxki + εi, i = 1, . . . , n, (1)

where n ≥ k + 1, εi ∼ N (0, σ2) are i.i.d, and xji is the ith observation
of the jth independent variable.

General linear model is linear in its parameters. The independent
variables can be higher order terms like x2 or log x. That is, the model

Y = β0 + β1x+ β2x
2 + β3 log x+ ε

is still a linear model; it is linear in its parameters. An example of
nonlinear model is

Y = β0 + β1x
β2 + ε,

which is not linear in its parameters.
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The model given in (1) is in fact a system of linear equations, and can
be expressed in matrix terms as follows:

Y = Xβ + ε, (2)

where

Y =


Y1
Y2
...
Yn

 , X =


1 x11 x21 · · · xk1
1 x12 x22 · · · xk2
...

...
...

1 x1n x2n · · · xkn

 , β =


β0
β1
...
βk

 , ε =

ε1
ε2
...
εn

 .
Note that xij is the ith row jth column element of the design matrix X.

We have a column of 1’s in X because we include β0 in β so that in
equation (2) we do not need a separate intercept term.
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Revision of matrix algebra
Let us denote a matrix by

An×m = A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm

 = [aij ]n×m.

Matrix addition/subtraction is done elementwise:

A±B = [aij ± bij ],

and so is scalar multiplication:

kA = [kaij ],

but matrix multiplication is more complicated:

An×mBm×p =
[ m∑
k=1

aikbkj

]
n×p

,

and so in general AB 6= BA.
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The transpose of a matrix A = [aij ]n×m is denoted by A′, which is
defined by

A′ = [aji]m×n,

and (AB) ′ = B′A′. Obviously (A′) ′ = A.

If A′ = A, then A is symmetric; it is of course a square matrix, in
which n = m. A simple example of a symmetric matrix is A′A because
(A′A) ′ = A′A.

The identity matrix I is the square matrix that the diagonal elements
are all 1, whilst all others are zero, and so IA = AI = A.

The inverse of a square matrix , denoted by A−1, if exists, is the
unique matrix satisfying AA−1 = A−1A = I. If A−1 exists, then we
say that A is non-singular.
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A system of linear equations, expressed in matrix terms, is

Ax = β̂,

and the solution is simply
x = A−1β̂.

Let x = [x1, x2, . . . , xn]
′ (a column vector) and y be a real-valued

function of x1, x2, . . ., xn, then define the derivative of y with respect to
the column vector x to be the column vector of partial derivatives:

∂y

∂x
=



∂y
∂x1

∂y
∂x2

...

∂y
∂xn


n×1

.
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If a = [a1, a2, . . . , an]
′ (a vector of constants; constants mean they are

not functions of x) and y = a′x = a1x1 + a2x2 + · · ·+ anxn, then we
have

∂a′x

∂x
=
∂y

∂x
=



∂y
∂x1

∂y
∂x2

...

∂y
∂xn


=


a1
a2
...
an

 = a.
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Suppose A is a matrix of constants:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm


n×m

,

and

Y = x′A = [x1, x2, . . . , xn]


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm


= [(a11x1 + a21x2 + · · ·+ an1xn), . . . , (a1mx1 + a2mx2 + · · ·+ anmxn)]1×m .
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Then for the row vector Y = x′A, its partial derivative with respect to
the column vector x will be a matrix:

∂x′A

∂x
=

∂Y

∂x
=

[
∂y1
∂x

,
∂y2
∂x

, . . . ,
∂ym
∂x

]

=



∂Y
∂x1

∂Y
∂x2

...

∂Y
∂xn


=


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm

 = A. (3)
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If y = x′Ax =
∑n

i=1

∑n
j=1 aijxixj , then applying the product rule:

∂u′Av

∂x
=
∂u′

∂x
Av +

∂v′

∂x
A′u,

for vector-valued functions u, v of x, we have

∂x′Ax

∂x
=
∂y

∂x
=


∂
∑∑

aijxixj
∂x1

...

∂
∑∑

aijxixj
∂xn

 =
∂x′

∂x
Ax+

∂x′

∂x
A′x = (A+A′)x.

In particular, if A is symmetric so that A = A′, then we have

∂x′Ax

∂x
=
∂y

∂x
= 2Ax. (4)
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Least Squares Estimation

Now, the least squares estimation for the model parameter β of the
multiple regression model

Y =Xβ + ε

can be obtained straightforwardly. Consider

ε = Y −Xβ.

The sum of squares of errors (which is a scalar) is equal to

Q = ε′ε = (Y −Xβ)′(Y −Xβ) = Y ′Y − 2β′X ′Y + β′X ′Xβ

(notice that β′X ′Y and Y ′Xβ are the same because they are
scalars).

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2020 11 / 60



To minimize Q we take the partial derivative with respect to β. Using
equations (3) and (4) above, we get

∂Q

∂β
= −2X ′Y + 2X ′Xβ.

The least squares estimator β̂ for the parameter β should satisfy the
normal equation

∂Q

∂β

∣∣∣∣
β=β̂

= 0⇒ X ′Y =X ′Xβ̂ ,

and its solution is
β̂ = (X ′X)−1X ′Y . (5)

From this elegant expression, we can see immediately that if ε has a
normal distribution, then Y has a normal distribution, and so does β̂
[which is a non-random matrix (X ′X)−1X ′ times the normally
distributed Y ].
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Multivariate Normal Distribution

We say a column vector has a multivariate normal distribution, denoted
by

Xn×1 ∼ N (µ,Σ),

if and only if the joint probability density function fX is given by

fX(x) =

(
1√
2π

)n 1√
|Σ|

e−
(x−µ)′Σ−1(x−µ)

2 , for all x ∈ Rn,

where |Σ| denotes the determinant of Σ.
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Maximum Likelihood Estimation

Now, if ε ∼ N (0, σ2I) (i.e. εi are i.i.d. normal with mean zero and
variance σ2; the independence between εi results in a diagonal
covariance matrix because the covariance between εi and εj is the
(i, j)-element in Σ; the identical distribution assumption results in one
common value σ2 for all diagonal elements in Σ), then the likelihood is
just

`(β) =

(
1√
2πσ2

)n
e−

ε′ε
2σ2 =

(
1√
2πσ2

)n
e−

(Y −Xβ)′(Y −Xβ)
2σ2 .

So maximizing ` is equivalent to minimizing (Y −Xβ)′(Y −Xβ), i.e.

MLE = LSE. (6)
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Note that the equivalence given in (6) is true if we have normally
distributed errors. If the errors follow another distribution, it may not be
true. For example, if the errors are i.i.d., following the Laplace
distribution, i.e.

f(ε) =
1

2σ
e−
|ε|
σ , for all ε ∈ R,

then the likelihood is given by

`(β) =

(
1

2σ

)n
e−

∑
i |εi|
σ ,

and so maximizing the likelihood ` is equivalent to minimizing
∑

i |εi|
(least absolute deviations, or LAD for short).

Under LSE, each deviation is squared, i.e. each of them is weighted by
itself, while under LAD, each deviation carries the same weight.
Therefore, an outlier will have a stronger influence on the LSE than on
the LAD, as a larger deviation will play a more dominant role in LSE
than in LAD.
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Geometry of the LSE
Recall that two vectors p and q are orthogonal if p′q = q′p = 0. Now,
consider the fitted value Ŷ and residual e:

Ŷ =Xβ̂ =X(X′X)−1X′Y ≡HY , e = Y −Ŷ = Y −Xβ̂ = (I−H)Y ,

where H =X(X′X)−1X′ is the hat matrix. The actual observation
Y is in Rn. Because

Ŷ =Xβ̂ = β̂0


1
1
...
1

+ β̂1


x11
x12

...
x1n

+ · · ·+ β̂k


xk1
xk2

...
xkn


the fitted value Ŷ is lying in the so-called estimation space, which is
the space generated by the p = k + 1 columns of X (we use p to
represent the number of parameters, including the intercept β0), whilst
the residual e is lying in the error space, which has n− p = n− k − 1
dimensions.
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Since

Ŷ ′e = (Xβ̂)′e = β̂′X ′(Y −Xβ̂) = β̂′(X ′Y −X ′Xβ̂) = 0,

(note that X ′Y =X ′Xβ̂ is the normal equation), we can see that the
fitted value Ŷ and residual e are orthogonal, and hence the name
normal equation, because under which the residual e is a normal
vector (i.e. a vector perpendicular) to the estimation space.

Therefore, the least squares fitting procedure splits the space Rn into
two orthogonal spaces; every vector in the estimation space is
orthogonal to every vector in the error space, and the fitted value Ŷ is
the orthogonal projection of the observed Y to the estimation space
(Ŷ =HY , HŶ =HHY =HY = Ŷ , e′Ŷ = 0), so that no other
vector in the estimation space is closer (measured in the Euclidean
distance) to Y than Ŷ is.
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The unbiasedness of β̂ (which will be shown below) implies

E(e) = E(Y −Xβ̂) = E(Xβ)+E(ε)−E(Xβ̂) =Xβ+0n×1−Xβ = 0n×1,

where 0l×m is the l ×m matrix of zeros. And we can show that these
two orthogonal random vectors Ŷ and e are uncorrelated:

cov(Ŷ , e) = cov{HY , (I −H)Y }
= E[H(Y −Xβ)(Y −Xβ)′(I −H)′] =Hcov(Y )(I −H)

= H(σ2I)(I −H) = σ2H(I −H) = σ2(H −H) = 0n×n .

The expression given in equation (5) allow us to derive the statistical
properties of LSE. The mean and the covariance matrix of β̂ are

E(β̂) = E{(X ′X)−1X ′Y } = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β (i.e. unbiased),

cov(β̂) = cov{(X ′X)−1X ′Y } =: cov(AY ) = A cov(Y ) A′

= A (σ2I) A′ = σ2AA′ = σ2{(X ′X)−1X ′}{X(X ′X)−1
′}

= σ2(X ′X)−1(X ′X)(X ′X)−1 = σ2(X ′X)−1,

where for ease of presentation we wrote A := (X ′X)−1X ′.
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Finally, to work out the distribution of the estimator β̂, we just have to
note that β̂ = AY (where A := (X ′X)−1X ′) is random because Y is
random, and Y =Xβ + ε is random because ε is random. Thus, to
know the distribution of β̂, we have to know the distribution of ε. If
ε ∼ N (0, σ2I), then Y ∼ N (Xβ, σ2I) and consequently, we can see

β̂ = AY ∼ N (AXβ, σ2AA′) = N (β, σ2(X ′X)−1).

Let me put the formula and its distribution together in one line for your
quick reference:

β̂ = (X ′X)−1X ′Y ∼ N (β, σ2(X ′X)−1) .

Consequently, because Ŷ is simply the product of a constant matrix
and β̂, it also has the normal distribution:

Ŷ =Xβ̂ ∼ N (Xβ, σ2X(X ′X)−1X ′).
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For Ŷ0 at some x0 for a given fixed vector x0 containing specified
values of the independent variables

x0 = (1, x10, x20, . . . , xk0)
′,

using the same argument, we have

Ŷ0 = x
′
0β̂ ∼ N (x′0β, σ

2x′0(X
′X)−1x0).
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Mathematically, we can see that if X ′X is singular, then
β̂ = (X ′X)−1X ′Y is not well defined, because (X ′X)−1 does not
exist. The implication of the singularity of X ′X is that we cannot
estimate β uniquely.

In the simple linear regression, if all observed xi are the same, there
will be infinitely many regression lines that pass through (x, Y ).

In the multiple regression, if the matrix X is such that any of its
columns can be explained as a linear combination of some other
columns, this dependency will be transferred to X ′X and so X ′X will
have a zero determinant and be singular.

The linear dependence arises often because the data are inadequate
for fitting the model or, what is the same thing, the model is too
complex for the available data. We need either more data or a simpler
model for the available data.
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ANOVA F -Test

The ANOVA F -test is a global test, testing the null hypothesis that
β1 = · · · = βk = 0 (note that the intercept β0 is NOT included in the null
hypothesis).

ANOVA table
Source of Sum of degrees of
variation Squares freedom Mean square F -ratio p-value

Model SSR k MSR = SSR
k

MSR
MSE

Pr(Fk,n−k−1 ≥ F -ratio)

Error SSE n− k − 1 MSE = SSE
n−k−1

Total SST n− 1
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Here
SST =

∑
(Yi − Y )2 =

∑
Y 2
i −

1

n
(
∑

Yi)
2 = Y ′

[
I − 1

n
11′
]
Y ,

SSE =
∑

(Yi − Ŷi)2 = e′e = (Y −Xβ̂)′(Y −Xβ̂)

= Y ′Y − β̂′X ′Y ,

SSR =
∑

(Ŷi − Y )2 = (HY − 1

n
11′Y )′(HY − 1

n
11′Y )

= Y ′HHY − 1

n
Y ′H11′Y − 1

n
Y ′11′HY +

1

n2
Y ′11′11′Y

= Y ′HY − 1

n
Y ′11′Y − 1

n
Y ′11′Y +

1

n
Y ′11′Y

= β̂′X ′Y − 1

n
Y ′11′Y = SST − SSE,

in which H =X(X ′X)−1X ′ and 1 = 1n×1 = [1, . . . , 1]′.
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T -test
For each `, where 0 ≤ ` ≤ k, to test the null hypothesis that the
individual parameter β` = 0, we use t-test:

T =
β̂`

σ̂
√
c`+1,`+1

∼ tn−k−1 when β` = 0,

where c`+1,`+1 is the (`+ 1)st diagonal element of (X ′X)−1. The
σ2c`+1,`+1 is the variance of β̂`, and the variance σ2 of ε, when
unknown, is estimated by sample variance of ei:

σ̂2 =

∑
(Yi − Ŷi)2

n− k − 1
=

(Y −Xβ̂)′(Y −Xβ̂)
n− k − 1

=
e′e

n− k − 1
=

SSE

n− k − 1
=MSE.

(Recall that the value of the degrees of freedom of the t-distribution in
the t-test is the same as the degrees of freedom of
(n− k − 1)σ̂2/σ2 ∼ χ2

n−k−1. It is the same as the dimension of the
error space, in which the residual vector e is lying.)
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Partial F -test

The ANOVA F -test tests whether all parameters except the intercept
are zero, and the t-test tests whether an individual parameter is zero.
Can we test whether some (more than one, but less than k)
parameters are zero?

If we want to test whether a subset of parameters are all zero, then we
are in fact comparing two models.

Two models are nested if one model contains all the terms of the
second model and at least one additional term. Reduced (or
restricted) model is a special case of (nested within) the complete (or
full) model.
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Suppose we suspect some independent variables are insignificant and
we arrange the order of x1, . . . , xk so that the “suspicious” variables
are labelled as the (g + 1)st, . . . , kth independent variables.

We separate the independent variables into two groups and write:

Y =X1β1 +X2β2 + ε,

where β1 = [β0, β1, . . . , βg]
′ and β2 = [βg+1, βg+2, . . . , βk]

′, where β0
still denotes the intercept term. (Why β0 must belong to the first group?
Can we move β0 to the second group?)
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To test the null hypothesis that β2 = 0 against the alternative β2 6= 0,
we use the partial F -test:

F =
extra SS/#paramters being tested

MSEcomplete

=
(SSEreduced − SSEcomplete)/(k − g)

SSEcomplete/(n− k − 1)
∼ Fk−g,n−k−1,

where the extra SS is the extra sum of squares of errors (extra
unexplainable variation in Yi) that we will have if we use the reduced
model. The idea is that if using the reduced model, we will of course
get a larger SSE (i.e. a smaller SSR [a smaller explainable variation]).
But if the increase in SSE (i.e. the loss in SSR [loosely speaking, the
loss in the information by the reduced model]) is not too large, then we
can use the reduced model. This is exactly the principle of
parsimony, which requires that in situations where two competing
models have essentially the same predictive power, we choose the
more parsimonious of the two; a parsimonious model is a model with a
small number of parameters.

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2020 27 / 60



In fact, this partial F -test can test not only the reduced model with
fewer parameters (i.e. some parameters are zero) but also reduced
models with constraints on the parameters, e.g. β2 = β4 = 0.5 or
β3 + β6 = 2.3, etc., and in such cases the value of the numerator
degrees of freedom F -statistic is the number of constraints being
tested, i.e.

F =
extra SS/#constraints being tested

MSEcomplete
.

However, note that the partial F -test cannot be used to compare two
different models in general; the extra SS is nonnegative here because
we know that SSEreduced cannot be smaller than SSEcomplete, as the
reduced model is only a special case of the complete model and of
course cannot be better than the complete model.
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Coefficient of multiple determination

The coefficient of multiple determination

R2 =
SSR

SST
= 1− SSE

SST

should be interpreted as, the same as that for the simple linear
regression, how many percent of the variation in Y can be explained
by the multiple regression model.

However, a larger value of R2 computed from the sample data does
not necessarily mean that the model provides a better fit of all of the
data points in the whole population. You will always obtain a perfect fit
R2 = 1 for a sample of n points if the model contains exactly n
parameters.
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Adjusted coefficient of multiple determination

Thus, we introduce the adjusted coefficient of multiple
determination:

R2
a := 1− n− 1

n− k − 1

SSE

SST
= 1− n− 1

n− k − 1
(1−R2)

≤ 1− n− 1

n− 1
(1−R2) = R2.

The idea is that R2
a takes into account (adjusted for) both the sample

size and the number of parameters such that a model of more
parameter will have a heavier penalty so that R2

a cannot be forced to 1
by simply adding more and more parameters.

One obvious disadvantage of R2
a is that its numerical value does not

have a nice and easy to understand interpretation, while R2 does.
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Both R2 and R2
a may be misleading when there are repeat

observations. For example, if we have 100 observations in 5 groups
(observations in each group have the same set of values for the
independent variables), each of 20 repeats.

A 5-parameter model will provide a perfect fit to the 5 sample
means of Y and may give a very large value of R2 or R2

a,
especially if σ2 is small compared with the spread of the 5 means.
However, such a model, which passes through the 5 sample
means of Y at the 5 observed values of x actually may be a very
bad model if we could observe more distinct values of x.
Even if we do not have repeat observations at the same value of
x, we may still have 5 groups such that in each group the
within-group variation is very small, whilst the between-group
variation is large, leading again to a high R2 or R2

a.
Therefore, we must make a scatter plot of the data before we do any
analysis.
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Coefficient of partial determination

The coefficient of partial determination is defined as

R2
Y,B|A =

SSEA − SSEA,B
SSEA

=
SSEreduced − SSEcomplete

SSEreduced
,

where tells us the percentage of variation that cannot be explained in
the reduced model but can be explained in the complete model.

For example, R2
Y,x2,x3|x1 will be the percentage of variation that cannot

be explained in the reduced model Y = β0 + β1x1 + ε but can be
explained in the complete model Y = β0 + β1x1 + β2x2 + β3x3 + ε, i.e.
it measures the contribution of x2 and x3, when added to the model
already containing x1, in terms of the model’s explanatory power for
the variation in Y .
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Partial coefficient

Typically, we will consider the case that B contains only one
independent variable, i.e. R2

Y,xi|A (adding xi to the model already
containing the variables listed in A).

The square root of R2
Y,xi|A, with the sign (i.e. positive or negative) the

same as the sign of β̂i (the estimate of the coefficient of xi in the
model), is called the partial correlation between xi and Y , given A.
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Confidence Intervals

Next, consider confidence intervals. We know that

β̂ ∼ N (β, σ2(X ′X)−1) and Ŷ =Xβ̂ ∼ N (Xβ, σ2X(X ′X)−1X ′).

These normal distributions would allow us, if we knew σ2, to construct
confidence intervals for each individual βj and for the estimation of the
mean response and the prediction of an individual response.
In practice we would not know σ2, and thus we have to use the sample
variance to estimate it:

σ̂2 =

∑
(Yi − Ŷi)2

n− k − 1
=

(Y −Xβ̂)′(Y −Xβ̂)
n− k − 1

=
SSE

n− k − 1
=MSE.

These upper and lower confidence limits are reported by SAS if we
add the clb clm cli option after the model statement.
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Note that if the model is underspecified (i.e. some true independent
variables are missing), then σ̂2 is, on the average, an overestimate of
σ2, because the variation in the calculated SSE comes from not only
the errors (of variance σ2) but also from the variation due to the
missing independent variables which have not been accounted for in
the regression model.
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Because
β̂ ∼ N (β, σ2(X ′X)−1),

for a given fixed vector x0 containing specified values of the
independent variables

x0 = (1, x10, x20, . . . , xk0)
′,

the point estimation of the mean response and the prediction of an
individual response at x = x0 are

Ŷ0 = x
′
0β̂ ∼ N (x′0β, σ

2x′0(X
′X)−1x0).

and the unknown σ2 again is estimated by
σ̂2 =MSE = SSE/(n− k − 1). Thus, we have the following
100(1− α)% confidence intervals for estimation of the mean response:

Ŷ0 ± tn−k−1;α/2 σ̂
√
x′0(X

′X)−1x0,

and for prediction of a future response:

Ŷ0 ± tn−k−1;α/2 σ̂
√
1 + x′0(X

′X)−1x0.
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Confidence Regions

We may want to construct a joint confidence region for more than one
parameters, i.e. a region which, with 100(1− α)% confidence, contains
the true parameter vector.

Such a joint confidence region is a kind of simultaneous inference for
several unknown parameters.

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2020 37 / 60



For the parameter vector β in the multiple regression model with
normally distributed errors, because the LSE (also MLE) estimator
β̂ ∼ N (β, σ2(X ′X)−1), if normalising this general multivariate normal
to the standard multivariate normal (by subtracting the mean and
“dividing” by the standard deviation) and then taking square, we will
have the χ2-distribution:

1

σ2
(β̂ − β)′X ′X(β̂ − β) ∼ χ2

k+1.

Combining with the facts that SSE/σ2 is also χ2-distributed and that
they are independent, we have

{(β̂ − β)′X ′X(β̂ − β)}
σ2

/
(k + 1)

SSE

σ2

/
(n− k − 1)

∼ Fk+1,n−k−1,

where SSE/(n− k − 1) =MSE = σ̂2.

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2020 38 / 60



Hence a 100(1− α)% joint confidence region for β can be obtained
from solving

(β̂ − β)′X ′X(β̂ − β) ≤ (k + 1)σ̂2Fk+1,n−k−1;α, (7)

where Fk+1,n−k−1;α denotes the value such that with 100(1− α)%
probability, a random variable following the Fk+1,n−k−1 distribution is
not larger than Fk+1,n−k−1;α.

The equality given in (7) is the equation of the boundary of an
elliptically (or ellipsoidally, when k > 1) shaped contour in Rk+1, and
the strict inequality is the interior of the ellipse (ellipsoid).

The joint confidence region takes into account the correlation between
the estimators β̂0, β̂1, . . . , β̂k.
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The individual confidence intervals are only appropriate for specifying
the ranges for the individual parameters irrespective of the value of the
other parameters.

If we (inappropriately) interpret these intervals for individual
parameters simultaneously, i.e. wrongly regard the (hyper-)rectangle
that they define as a joint confidence region, then e.g. it may be
thought that a point lying outside the ellipse but inside the rectangle
provide a reasonable value for β, but it is in fact not reasonable
because it is not in the 95% joint confidence region.

When only two parameters are involved, construction of the confidence
ellipse is not difficult. In practice, however, even for two parameters, it
is rarely drawn.
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Bonferroni Correction

What is more popular in simultaneous inference is the Bonferroni
correction (also known as the Bonferroni adjustment, the Bonferroni
procedure, etc.). It is based on the Bonferroni inequality, which is
described as follows.

Let Ai denote the event that the confidence interval Ii of βi does not
cover the true βi and suppose the confidence level is 100(1− γ)%, i.e.

Pr(βi 6∈ Ii) = Pr(Ai) = γ.

We might take the hyper-rectangle I0 × I1 × · · · × Ik as a 100(1− α)%
joint confidence region if the following were true:

Pr(β ∈ I0 × I1 × · · · × Ik) = Pr(A0 ∩A1 ∩ · · · ∩Ak) = 1− α,

where Ai denotes the complement of Ai, i.e. Ai = {βi ∈ Ii}.
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However, because these Ai are not independent and the dependence
structure between Ai and Aj is complicated, the best we can do is to
be conservative, i.e. choose a γ such that

Pr(A0 ∩A1 ∩ · · · ∩Ak) ≥ 1− α. (8)

Now,

Pr(A0 ∩A1 ∩ · · · ∩Ak)
= 1− Pr(A0 ∪A1 ∪ · · · ∪Ak)
= 1− {Pr(A0) + · · ·+ Pr(Ak)− Pr(parts counted more than once)}
= 1− {Pr(A0) + · · ·+ Pr(Ak)}+ Pr(parts counted more than once)
≥ 1− {Pr(A0) + · · ·+ Pr(Ak)} = 1− (k + 1)γ.

Therefore, in order to achieve (8), we require that

γ =
α

k + 1
=

α

# parameters
.
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That is to say, using the Bonferroni adjustment, the rectangular region
formed by the Cartesian product of k + 1 intervals, each of them is a
100(1− α

k+1)% confidence interval of an individual parameter β`:

β̂` ± tn−k−1; α
2(k+1)

· σ̂ · √c`+1, `+1, ` = 0, 1, . . . , k,

where c`+1, `+1 is the (`+ 1)st diagonal element of (X′X)−1, is a joint
confidence region for the k + 1 parameters in the vector β, the
confidence level of this rectangle is at least 100(1− α)%.

This is more popular than the exact 100(1− α)% confidence ellipsoid
because a hyper-rectangle is easier for understanding and
interpretation for individual parameters than an ellipsoid.
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Of course the Bonferroni inequality can also be applied to multiple
testing problems so that if we want to perform, say, individual t-test for
each of m parameters, in order to have the overall significance level
not higher than α, each t-test should use α/m as its significance level.

Note that whilst using Bonferroni adjustment we can control the overall
significance of multiple t-tests to be bounded above by α, but using
ANOVA we can control the significance level of the F -test at exactly α.
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Higher-order models

Suppose we have two independent variables x1 and x2. The model
containing only the first-order terms is

Y = β0 + β1x1 + β2x2 + ε.

Under this model, for each fixed x2, the relationship between x1 and Y
is a straight line with slope β1 and intercept β0 + β2x2.

That is to say, for different values of x2, we get a set of parallel lines
with different intercepts; the value of x2 does not affect the relationship
(i.e. the slope) between x1 and Y . In such a situation we say that x1
and x2 have no interaction.
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However, in real applications, it is common that the independent
variables interact, i.e. the relationship between x1 and Y depends on
the value of x2.

Imagine a situation in which for x2 = 10, the straight line relationship
between x1 and Y have a positive slope, whilst that for x2 = 50, x1 and
Y have a negative slope; we have nonparallel lines.

In such a situation, we say x1 and x2 have interaction and the model
that allows interaction between two independent variables will include
the cross-product term of these two independent variables.
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In particular, if we have only two independent variables, then the model

Y = β0 + β1x1 + β2x2 + β3x1x2 + ε (9)

is an interaction model, where β1 + β3x2 is the change in E(Y ) for
every 1-unit increase in x1, holding x2 fixed, and β2 + β3x1 is the
change in E(Y ) for every 1-unit increase in x2, holding x1 fixed.

The interaction term x1x2 is a second-order term, whilst x1 and x2,
called the main effects, are first-order.
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When we use an interaction model, extreme care is needed in
interpreting the signs and sizes of coefficients. A negative β1 does not
necessarily mean that an increase in x1 is accompanied by a decrease
in the mean of Y .

The most important parameter is the one associated with the highest
order term in the model. Once an interaction is significant, do NOT test
on the first-order terms of the interacting variables.

In models with more than two independent variables, there may be
several higher order terms (e.g. third- or fourth-order interactions). The
same principle applies to such cases: do NOT test on the lower order
terms of the variables contained in the existing higher order terms in
the model.
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The presence of interaction implies that the lower order terms are
important regardless of their p-values shown on the computer printout.

However, note that it is not a restriction required by mathematics; this
is a principle that makes practical interpretation of the model easier
and neater. The mathematics would not go wrong even if we excluded
lower order terms but kept their higher order terms.
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The model given in (9) is a second-order model. If we have only one
independent variable, we still can form a second-order model, namely
the quadratic model

Y = β0 + β1x+ β2x
2 + ε,

where the parameter β2 controls the rate of curvature so that if β2 > 0,
the curve is concave upward, whilst if β2 < 0, the curve is concave
downward.
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In a quadratic model, model interpretations are not meaningful outside
the range of the independent variables; in particular, β̂0 can be
meaningfully interpreted only if the range of the predictor includes
x = 0.

The parameter β1, in general, will not have a meaningful interpretation
at all, and so rather than interpreting the numerical value of the
estimate β̂1 itself, we utilize a graphical representation of the model to
describe the model, which can be done in the SAS procedure gplot:
proc gplot;
symbol v=plus i=rq;
plot y*x;
run;
in which i=rq means that the interpolation method is regression and
the model is quadratic. An example of the output is given in Figure 3,
which is the fitted model for Example 4.7.
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Figure 3: The scatterplot of the dataset aerobic in Example 4.7 on
pages 203–207, with the fitted quadratic model.
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If we have two independent variables, the complete second-order
model is

Y = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 + ε.

Since most relationships in the real world are curvilinear, at least to
some extent, and so a good first choice would be the complete
second-order model. [A curvilinear regression typically refers to a
regression model containing quadratic, cubic, quartic, or higher order
terms of one or more independent variables.]

If we have prior information that there is no curvature, then we may let
β4 = β5 = 0, leading to the interaction model given in (9). If there is no
interaction, then we may let β3 = 0. If we do not have any prior
information, we may still test whether a reduced model is as good as
the complete model by the partial F -test. Which variables should be
kept in the model and which should be removed from the model is the
problem of variable selection, which will be discussed in details in
Chapter 6.
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Qualitative (categorical) independent variables
Up to here, we have considered only quantitative independent
variables. Suppose we have qualitative (categorical) independent
variables, then we have to introduce dummy variables. The different
values of a qualitative independent variable are called its levels. For a
two-level independent variable (say, level A and level B), we need one
dummy variable:

x =

{
1, if level A,

0, if level B,

and write
Y = β0 + β1x+ ε,

so that

at level A: mean of the response is β0 + β1,

at level B: mean of the response is β0.
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In general, if we have an m-level qualitative independent variable, we
need m− 1 dummy variables

xi =

{
1, for the ith level,

0, otherwise,

for i = 1, . . ., m− 1, and write

Y = β0 + β1x1 + · · ·+ βm−1xm−1 + ε,

so that the mean responses are

at the ith level: mean of the response is β0 + βi, i = 1, . . ., m− 1,

at the mth level: mean of the response is β0.
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But, wait, why don’t we define a variable, say,

x =



0, for the first level,

1, for the second level,

2, for the third level,

...
...

m− 1 for the mth level,

instead of getting into the trouble of introducing m− 1 dummy
variables?
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The answer is that if we do so, then we actually assume that changing
x from level 1 to level 2, or changing x from level 4 to level 5, the
change in the mean of Y is the same; this is because the change in
the value of x is 1 in either case.

In other words, at each level of this categorical variable we get, say, a
straight line and if we have no interaction, then such an artificial x will
give us parallel lines that are equally apart, i.e. the vertical distance
between two consecutive lines is always the same value (equal to the
coefficient in front of x). This is not desirable unless there is a good
reason to impose such a strong restriction by scientific theory.

To allow parallel lines that are not equally apart, each level should
contribute a different βi to the intercept, and this has to be done by
using dummy variables. If using the artificial x, it means we require
artificially β2 = 2β1 and β3 = β2 + β1 = 3β1, and so on.
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Let us consider m− 1 dummy variables x1, . . . , xm−1 for an m-level
categorical independent variable, i.e.

Y = β0 + β1x1 + · · ·+ βm−1xm−1 + ε. (10)

Testing the null hypothesis that β1 = · · · = βm−1 = 0 by the F -test in
the ANOVA table of the Regression Analysis studied in this course is
equivalent to testing the null hypothesis that all m means are the same
µ1 = · · · = µm = 0, where µi is the mean response at level i. The latter
is the ANOVA that we have learnt in MATH2206 Prob. Stat. These two
ANOVA are of course the same.
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A neater expression for the model in (10) is:

Yi = β0 + βi + ε, i = 1, . . . ,m,

where Yi denotes the response at level i and βm = 0 (so that the mean
response at level m is just the intercept term β0), or equivalently,

Yi = µ+ αi + ε, i = 1, . . . ,m,

where µ is the overall mean and
∑
αi = 0. The parameter αi is

interpreted as the effect of the level i on the mean, and so the mean
response at level i will be the overall mean µ plus the effect αi (some
are positive and some are negative), i.e.

µi = µ+ αi,

which immediately leads to the constraint we wrote above:

µ =

∑
µi
m

=

∑
(µ+ αi)

m
= µ+

∑
αi
m
⇒
∑

αi = 0.

This formulation is commonly used for ANOVA, and this will be the
model for the simplest case in experimental design (MATH3815).
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