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Model Building

Model building means writing a model that will provide a good fit to a
set of data and that will give good estimates of the mean
response and good predictions of the response for given
values of the independent variables.

Terms have to be added to the model to account for interrelationships
among the independent variables and for curvature in the response
function Y .

Failure to include needed terms causes (a) inflated values of SSE, (b)
insignificance in statistical tests, and, often, (c) erroneous practical
conclusions.

Continuous (quantitative) independent variables are treated differently
from categorical (qualitative) independent variables.
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Polynomial Regression

First, consider the polynomial regression model for one continuous
independent variable x:

Y = β0 + β1x+ β2x
2 + · · ·+ βkx

k + ε. (1)

To decide the order k in the model building process, we should first
construct a scatterplot. We know that a kth-order polynomial, when
graphed, will exhibit k − 1 peaks, troughs or reversals in direction.

In real applications, most responses are curvilinear and so we should
try a second-order model in order to capture the curvature.

Third- or higher-order models would be used only when you expect
more than one reversal in the direction of the curve. These situations
are rare, except where the response is a function of time.
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Example 5.2
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Figure 5.5 MINITAB scatterplot for 
power load data
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Figure 5.6 MINITAB output for 
third-order model of power load
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Figure 5.7 MINITAB output for 
second-order model of power load
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Example 5.2 gives us an example where the second-order
polynomial model (quadratic regression) is significantly better than
the first-order model (simple linear regression) and is not
significantly worse than the third-order model (cubic model).
By saying ‘significantly better’, we mean the parameter for the
quadratic term in the quadratic model is significant (but it does not
necessarily mean that the parameter for the quadratic term in the
cubic model or in even higher order models is still significant).
By saying ‘not significantly worse’, we mean the parameter for the
cubic term in the cubic model is not significant.
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R2 increases when more terms are included in the model but the
increased amount can be small, while the adjusted R2 does not
necessarily increase together with the number of parameters.
The adjusted R2 of the quadratic regression model is higher than
that of the cubic model, which has a higher R2 than the quadratic
regression.
Such a comparison of the (adjusted) R2 values among the models
for helping us decide whether a term should be included or not will
be discussed in more details in Chapter 6.
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For the cubic regression, we also encountered in this numerical
example a situation that the p-value in the ANOVA is small,
suggesting that not all coefficients are zero, whilst the p-values in
the t-tests for testing individual coefficients are all large,
suggesting that each coefficient is not significant, when tested
individually.
Such a paradoxical situation is not due to the inflated overall type I
error rate in multiple testing (the t-tests do not suggest rejection
and so we will not commit type I error!), but due to the problem of
multicollinearity, which will be discussed in more details later in
Chapter 7, but the next page gives a brief explanation of the
phenomenon observed in the ANOVA and t-tests.
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Technically speaking, multicollinearity happens when the column
vectors in X are not linearly independent.
E.g. when x2 = 2x1 in Y = β0 + β1x1 + β2x2 + ε, then the true
model is in fact Y = β0 + β∗1x1 + ε. However, in the model with
both x1 and x2, we actually split the single parameter β∗1 into two
parameters β1 and β2 such that β1 + 2β2 = β∗1 , and then we
estimate these two parameters; under such a situation, either β1
or β2 alone will have an infinite standard deviation (because any
one of them alone can be any value) and hence is not significant
in the individual t-test, but if β∗1 is significant, then β1 and β2
cannot be both insignificant in the F -test.
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First-order model with k continuous independent
variables

The above polynomial regression model is for one continuous
independent variable. Now, suppose we have k continuous
independent variables.

We may simply form the first-order model, and then the response
surface is just a hyperplane in a (k+ 1)-dimensional space, i.e. there is
no curvature and the contour lines are parallel. That is, the
independent variables affect the response independently of each other
and so the independent variables do not interact.
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Figure 5.8 Response surface for 
first-order model with two quantitative 
independent variables
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Figure 5.9 Contour lines of E(y) for 
x2 = 1,2,3 (first-order model)
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Interaction (second-order) model with k continuous
independent variables

If we include the second-order interaction terms (i.e. the products
xixj), then e.g. for k = 2, the response surface is a twisted plane,
which can be obtained by twisting (but not bending or folding) a sheet
of paper.

Consequently the contour lines are nonparallel, meaning that the effect
of a one-unit change in one independent variable, while keeping the
other independent variables fixed, will depend on the values of the
other independent variables, i.e. the slope (and the intercept) depends
on the values of the other independent variables.

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2021 16 / 74



Copyright © 2012 Pearson Education, Inc. All rights reserved.
5- 24

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2021 17 / 74



Copyright © 2012 Pearson Education, Inc. All rights reserved.
5- 22

Figure 5.10 Response surface for 
an interaction model (second-order)
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Figure 5.11 Contour lines of E(y) for x2 = 
1,2,3 (first-order model plus interaction)
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Complete second-order model with k continuous
independent variables

If we include all second-order interaction terms and second-order
terms of individual variables (i.e. the squares x2i ), we have the
complete second-order model.

For k = 2, the three possible response surface are a paraboloid
opening upward, a paraboloid opening downward and a
saddle-shaped surface.

The response surfaces for higher-order models would have very
complicated geometrical structures, and in real applications, we
seldom consider third- or higher-orders unless there are good scientific
reasons to expect more than one reversals in direction.
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Figure 5.12 Graphs of three 
second-order surfaces
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Figure 5.13 Contours of E(y) for x2 = 
-1,0,1 (complete second-order model)
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Coding of a continuous independent variable
For a continuous independent variable, say xi, we also have to
consider whether we should standardise (or normalise) it by

uij =
xij − xi
si

,

where xi and si are the sample mean and sample standard deviation
of the observed values {xi1, xi2, . . . , xin} of the independent variable
xi. The resultant variable is then denoted by ui. Such a
standardisation (normalisation) is a kind of coding the independent
variables. The advantages of standardisation are

(i) the new standardised origin = the centre of the standardised
values,

(ii) the range of uij is approximately the same (mostly between
−3 and +3) for each fixed i,

(iii) the correlation between xi and x2i , after standardisation, i.e.
between ui and u2i , will be reduced (we will explain why below).
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Why these properties are advantages? Because of the two potential
problems:

Rounding error: considerable rounding error may occur in the
computation of the inverse of the information matrix X ′X, if the
numbers in the matrix vary greatly in absolute value. Thus,
points (i) and (ii) above help us cope with the problem of rounding
error.
Multicollinearity: When polynomial regression models are used,
the problem of multicollinearity is unavoidable, especially when
higher-order terms are included. The likelihood of rounding errors
in the regression coefficients is increased in the presence of these
highly correlated independent variables. Point (iii) above reduces
the trouble caused by multicollinearity.
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However, the interpretation of the least squares estimates for
standardised variables is indirect (and may be difficult to be
understood by laymen).

A one-unit change in u is equal to a one-sample standard deviation
change in x, and so for a simple linear regression, a one-unit change
in x is accompanied by a ( β̂sx )-unit change in the mean of Y .

However, the sample deviation is nothing but just a numerical value
from the sample, not any universal constant having physical meaning.
Thus, it is likely not understandable to laymen if one says “increasing x
by one sample standard deviation”.
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On the other hand, the interpretation of the intercept term after
standardisation may be more meaningful than that in the original
model.

In the original model, the intercept is the estimated mean response
when all independent variables are zero, but in some applications
zero-valued independent variables (e.g. height, weight) are
meaningless and so is the intercept.

In the standardised model, the intercept is the estimated mean
response when all standardised independent variables are zero, i.e.
when all independent variables (without standardisation) are set at
their mean values in the sample; hence there is no extrapolation and
the intercept is always meaningful. [This interpretation of the intercept
is a consequence of point (i) above.]
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For a polynomial regression model, there are two possible ways to
standardise higher-order terms xk, namely, we either take the kth

power of the standardised value u or standardise directly the values xk.

The former will allow us to have again a polynomial regression model
but the computational advantages mentioned in points (i) and (ii)
above are no longer true [nevertheless, point (iii) is actually referring to
such a procedure and so it remains true].

The latter will create a regression model that is no longer a polynomial,
leading to entirely different interpretations, and so is not
recommended.
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Now, why point (iii) is true? Let’s start with an intuitive explanation first.

Clearly, if x is only on the positive half line, when x increases, then x2

increases, and so they are positively correlated, and if x is only on the
negative half line, the correlation is negative.

To visualize it, consider the curve f(x) = x2. If you focus only on the
positive part (or negative part, respectively), you will see a positive
correlation (or negative correlation, respectively), and the correlation is
getting more positive (or more negative, respectively) when you move
the interval to the right-hand side (or to the left-hand side,
respectively); that is, the further away from zero the interval of x is, the
stronger the correlation between x and x2 over that interval it will be.
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By centering, i.e. x∗ = x− x, you move the interval so that the
mid-point of the interval is zero, and consequently the correlation will
be weakened, because then the correlation is negative on the left half
of the interval and positive on the right half.

Also, after centering, we are considering the flattest part of the curve
(as just mentioned above, the correlation is small when the interval is
close to zero).

Thus, when we consider the correlation between x∗ and x2∗, this
correlation should be lower than the original correlation between x and
x2.
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More mathematically, after some algebra, it can be shown that

sample cov(x, x2) = m3 + 2m2x,

where mk =
∑n

i=1(xi − x)k/(n− 1) is the kth centered sample moment
of x.

Because mk is the centered moment, shifting xi by the same amount
will not change mk, i.e. mk for x is also mk for x∗.

Thus, if xi are positive (or negative, respectively), then 2m2x is positive
(or negative, respectively), and after centering,

sample cov(x∗, x2∗) = m3

is closer to zero than sample cov(x, x2), and hence the severity of the
problem of multicollinearity will be reduced.
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This mathematics also suggests an even better coding, namely
x∗∗ = x− something, so that x∗∗ = −m3/(2m2), leading to a zero
sample covariance between x∗∗ and x2∗∗. This results in the so-called
orthogonal polynomial , a topic that is beyond the scope of this course.

However, it should be kept in mind that standardisation is an option but
not a must; whether you standardise or you don’t standardise is a
matter of personal judgement.
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In SAS, the procedure proc standard can be used to standardise
the variable(s) specified after var] and the standardised values are still
under the same variable but in a new data set whose name is given
after out=, zmos say.

To create new variables such as the square of the standardised
variable, we have to use data again to make another new data set.
The command set zmos will move all variables in the data set zmos
to the new data set, and because we are under data, we are allowed
to transform existing variables to create new variables.

The option corr after proc reg will report the correlations between
all variables in the model statement(s).

The procedure proc corr is different from the option corr of proc
reg; it is a procedure for calculating correlations between variables,
and the p-values for testing zero correlation are reported for each
correlation.
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Figure 5.16  MINITAB printout for 
the quadratic model, Example 5.4
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Figure 5.18 MINITAB printout for the 
quadratic model with coded temperature
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In Example 5.4 we can see the correlation between temp and temp2
is much higher than that between u and u2, while the F -test in
ANOVA, the MSE, R2, etc. all remain the same after standardisation.

For individual t-tests, the p-value for the highest order term will remain
the same because its coefficient will only be rescaled by dividing by
the sample standard deviation after standardisation; asking whether
the rescaled parameter is equal to zero is the same as asking whether
the original one is equal to zero.

However, for a lower-order term, after centring the coefficient will not
only be rescaled but actually will be changed to a linear combination of
several parameters in the original model, and so testing whether the
coefficient of a lower-order standardised term is zero is different from
testing whether the original coefficient is zero. (Recall that the
intercept, which is a lower-order term, is interpreted differently in the
original model and the standardised model.)
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Categorical independent variables

One-way ANOVA

For a regression model with only one independent variable, which is a
categorical variable having m levels, there is only one model

Y = β0 + β1x1 + · · ·+ βm−1xm−1 + ε,

where xi are the dummy variables.

Note that xki = xi for any positive integer k and xixj = 0 whenever
i 6= j. Thus, we do not have any “higher-order terms” xki or “interaction
terms” xixj .

This is exactly the one-way ANOVA model, and testing whether
β1 = · · · = βm−1 = 0 is the same as testing whether µ1 = · · · = µm,
where µi is the mean response at level i.
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Figure 5.19  SPSS printout for dummy 
variable model, Example 5.5
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Two-way ANOVA

If we have two categorial independent variables, e.g. the first one
having 3 levels and the second one having 2 levels, then the first-order
model (main effect model) is

Y = β0 + β1x1 + β2x2︸ ︷︷ ︸
main effect terms

+ β3x3︸︷︷︸
main effect term

+ ε, (2)

where x1 and x2 are the dummy variables for the first (3-level)
independent variable, and x3 is the dummy variable for the second
(2-level) independent variable.

The null hypothesis that β1 = β2 = 0 means that the first independent
variable has no effect on the mean of Y , whilst the null hypothesis that
β3 = 0 means that the second independent variable has no effect.
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This situation arises when we have two factors that may affect the
mean, e.g. we have a factor called, say, “Group” and another factor
called “Class”, which may affect the mean of the response. The data
will be tabulated in the format as the following table.

Table: The format of the data in two-way ANOVA

The factor “Class”
Class C1 Class C2 · · · Class CJ

Group G1

The factor “Group”
...

Group GI
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We may ask whether in different groups the means are the same, i.e.
the mean of each row is the same as the means of the other rows. To
answer this question, we test whether the parameters of the I − 1
dummies corresponding to the categorical variable “Group” are all zero
or not.

We may also ask whether in different classes the means are the same,
i.e. the mean of each column is the same as the means of the other
columns. To answer, we test whether the parameters of the J − 1
dummies corresponding to the categorical variable “Class” are all zero
or not.

These two tests are applied to model (2), which is called the two-way
ANOVA model. The regression model for the ANOVA problem we
encountered in MATH2206 is called the one-way ANOVA model.
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When we have one-way ANOVA and two-way ANOVA, it is
straightforward to generalise to k-way ANOVA model if we have k
categorical variables.

The idea is to decompose the total sum of squares into k + 1 terms,
corresponding to the k terms of the sum of squares of individual
categorical variables and one more term of error sum of squares; then
we can test whether each categorical variable has a sum of square
that is significantly different from the error sum of squares or not by a
partial F -test.

Therefore, we will carry out k partial F -tests, one for each categorical
variable, in such a k-way ANOVA model. Each partial F -test is testing
whether the coefficients of all dummy variables of a categorical
variable, in the full model having the dummy variables of all these k
categorical variables, are all zero or not.
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Though we still have to carry out the k partial F -tests, this approach is
different from (and more powerful than) applying the one-way ANOVA
analysis to the same data k times, because the one-way ANOVA
model has only one categorical variable (i.e. the regression model
containing only the dummy variables of this categorical variable) and
so the error sum of squares in the one-way ANOVA actually includes
the variation not only from the errors but also from the missing
variables, resulting in an over-estimate of the error variance σ2.
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Note that the k-way ANOVA model does not contain any continuous
variables, and also note that when we talk about ANOVA of a
regression model (which can contain categorical and continuous
variables), we are talking the F -test of the null hypothesis that all
parameters, except the intercept, are zero, while when we talk about
k-way ANOVA analysis, we are talking about the partial F -test
procedure applied to the parameters of the dummy variables of each
categorical variable, individually, in the k-way ANOVA model.
Nevertheless, these are just matters of terminology.
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Now, if we add the interaction terms to the model given in (2), we have
the model of 2-way ANOVA with interaction:

Y = β0 + β1x1 + β2x2 + β3x3 + β4x1x3 + β5x2x3︸ ︷︷ ︸
interaction terms

+ ε.

The interaction terms will involve all possible two-way cross-products
between each of the two dummy variables (x1 and x2) for the first
independent variable and the one dummy (x3) for the second
independent variable. (The product of two dummies is still a dummy
and so is still of first-order.)
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In general, we have

# interaction terms
= (# main effect terms of the first independent variable)
× (# main effect terms of the second independent variable).

Hence, if the two independent variables have I levels and J levels
respectively, there are (I − 1)(J − 1) interaction terms, plus
(I − 1) + (J − 1) main effect terms, plus 1 overall mean, giving us I × J
parameters for the I × J different combinations of the levels of the two
independent variables.
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The interaction model will give a perfect fit for all cell-averages, where
a cell-average is the sample mean of the data at a particular
combination of the levels of the two independent variables.

Thus, if at each combination of the levels of the two independent
variables, there is no replicate (i.e. only one observation in each cell),
the interaction model will give us a perfect fit for all observations i.e.
the model explains 100% the variation in Y .

However, random errors are really present, but the perfect fit model
does not have the error term and hence should not be considered a
good model.
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Usual testing strategy in two-way ANOVA:
1 Test for interaction.

If significant (usually p < 0.05), stop testing, interpret all effects.
2 Else, test for row and column effects (separately).
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Figure 5.20 Main effects model: Mean 
response as a function of F and B when F
and B affect E(y) independently
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Figure 5.21 Interaction model: Mean 
response as a function of F and B when F
and B interact to affect E(y)
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Figure 5.22 SAS printout for main 
effects model, Example 5.10
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Figure 5.23 SAS printout for 
interaction model, Example 5.10
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Figure 5.25 SAS printout for 
nested model F-test of interaction
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Models with both quantitative and qualitative
independent variables

Consider first a model with one continuous independent variable x1
and a three-level categorical independent variable, which requires two
dummy variables x2 and x3. The quadratic model without interaction is

Y = β0 + β1x1 + β2x
2
1︸ ︷︷ ︸

continuous,
second-order,
main effects

+β3x2 + β4x3︸ ︷︷ ︸
dummies,
main effects

+ ε,

which will give us three parallel curves (more precisely, three parallel
parabolas), each corresponds to one different level of the categorical
independent variable.
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If we include interactions, then we have the complete second-order
model:

Y = β0 + β1x1 + β2x
2
1︸ ︷︷ ︸

main effects

+β3x2 + β4x3︸ ︷︷ ︸
main effects

+β5x1x2 + β6x1x3 + β7x
2
1x2 + β8x

2
1x3︸ ︷︷ ︸

continuous-categorical interaction terms

+ ε, (3)

which is still a second-order model, because the dummy variables in
x21x2 and x21x3 are not making any contribution to the order and so
these two terms are still second-order.

We will get three different parabolas for three different levels of the
categorical predictor. This requires nine parameters (3 parameters per
parabola × 3 parabolas).

The estimates of the parameters are the same as if we split the data
into three groups, corresponding to the three different levels, and then
fit a quadratic regression model to each group.
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Fitting one model with all interaction terms and fitting three separate
quadratic regression models individually give the same three fitted
parabolas.

Thus, why don’t we write three separate models? The reason are:
1 In the estimation of the parameters of the curve at level 1 (β1 and
β2) we use information of the data from levels 2 and 3 when fitting
model (3), whereas we would not use any information of the data
from levels 2 and 3 when fitting three separate quadratic
regression models.

2 If we write three models, then we will have three different
variances σ21, σ22 and σ23 for the error terms. If we assume the
variances are the same and equal to σ2, then using one single
model allows us to obtain a pooled estimate of σ2 (i.e. an estimate
from the pooled data).

3 Moreover, using one single model allows us to use partial F -tests
to test whether the parabolas are parallel or to test any nested
models.
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Suppose now we have one continuous independent variable x1 and
two categorical independent variables, each of which has two levels.
Then the complete second-order model is

Y = β0 + β1x1 + β2x
2
1︸ ︷︷ ︸

continuous,
second-order,
main effects

+β3x2 + β4x3︸ ︷︷ ︸
dummies,
main effects

+ β5x2x3︸ ︷︷ ︸
categorical-categorical interaction term

+ β6x1x2 + β7x1x3 + β8x1x2x3︸ ︷︷ ︸
(first-order) continuous-categorical interaction terms

+ β9x
2
1x2 + β10x

2
1x3 + β11x

2
1x2x3︸ ︷︷ ︸

(second-order) continuous-categorical interaction terms

+ ε,

which requires twelve parameters (3 parameters per parabola × 4
parabolas).
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How many parameters do we need for, say, two continuous
independent variables and two categorical independent variables, one
of which has two and the other has three levels? A paraboloid (or a
saddle-shape) surface requires 6 parameters and there are 2× 3
combinations of the two categorical variables. It will be better to count
in a more systematic way.

How many? for
1 intercept β0,

5 all first- and second-order terms, including interaction, of the
two continuous independent variables, i.e., x1, x2, x21, x22, x1x2,

5 one dummy x3 for the first, two dummies x4 and x5 for the
second categorical independent variables, and two interaction
terms x3x4 and x3x5,

5× 5 all (first- and second-order) continuous-categorical interaction
terms.

36 the full model in total.
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We can see how important it is to carefully select the independent
variables to be considered, because even for such a simple model with
just four independent variables, we need 36 parameters!

Chapter 6 will tell us how to perform variable screening in order to
choose more important variables to be included in the model building
process.
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Model Validation

Models that fit the sample data well may not be a successful model for
prediction of Y when applied to new data.

For this reason, it is important to assess the validity (how successful it
will be, when applied to new or future data) of the regression model in
addition to its adequacy (how adequate the model is, when used to fit
the sample data) before using it in practice.

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2021 68 / 74



Five ways to assess its validity are as follows.
(i) Examining the predicted values: The predicted values Ŷ can help

to identify an invalid model. Nonsensical or unreasonable
predicted values may indicate that the form of the model is
incorrect or that the coefficients are poorly estimated.

(ii) Examining the estimated model parameters: Prior information on
the relative size and sign of the model parameters could be used
as a check on the estimated coefficients.
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(iii) Collecting new data for prediction: One of the most effective ways
is to use the model to predict Y for a new sample and then
compare them with the new observations. Suppose the new
sample of size m is {Yn+1, . . . , Yn+m}, we can consider the
following measures of model validity:
(a)

R2
prediction := 1−

∑n+m
i=n+1(Yi − Ŷi)2∑n+m
i=n+1(Yi − Y )2

,

where Y is the sample mean of the original data (alternatively, the
sample mean of the new data may be used), and Ŷi is the predicted
value using the fitted model.
If R2

prediction compares favourably to R2, then the model seems
trustworthy for prediction. If there is a substantial drop, then we
should be cautious.

(b)
MSEprediction :=

∑n+m
i=n+1(Yi − Ŷi)2

m− k − 1
,

which should be comparable to the MSE of the least squares fit.
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For either one, the new data set should be large enough to reliably
assess the model’s prediction performance and it has been
suggested that at least 15–20 new observations are needed.

(iv) Cross-validation (data-splitting): If no new data are available, the
original data can be split into two parts, with one part used to
estimate and the other to calculate R2

prediction and MSEprediction to
assess the fitted model’s predictivity ability. Random splits are
usually applied in cases where there is no logical basis for dividing
the data. In this case, we should have at least n = 2k + 25
observations for a model with k independent variables.
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(v) Jackknifing: The jackknife method involves leaving each
observation out of the data set, one at a time, and calculating the
difference Yi − Ŷ(i) for all observations in the data set, where Ŷ(i)
denotes the predicted value for the ith observation obtained when
the regression model is fitted without the data point for Yi, so that
Ŷ(i) and Yi are independent. We can then calculate

PRESS = prediction sum of squares :=

n∑
i=1

(Yi − Ŷ(i))2,

R2
jackknife := 1− PRESS∑n

i=1(Yi − Y )2
,

MSEjackknife :=
PRESS

n− k − 1
.
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Since least squares estimation (LSE) will minimize
SSE :=

∑n
i=1(Yi − Ŷi)2 =

∑n
i=1 e

2
i and so the least squares fit Ŷi

should be closer to Y than the jackknife prediction Ŷ(i) should be,
suggesting that in general

SSE < PRESS,

which implies that R2
jackknife < R2 and MSEjackknife > MSE.

However, the model parameters used in getting Ŷ(i) depend on i
and hence are not fixed; that is to say, this argument could not
immediately lead to these inequalities.
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However, these inequalities are true in general. (Later in this
course we will discuss the matrix X(X′X)−1X′. Denote its ith

diagonal element by hii, which is called the ith leverage. It can be
shown that 0 ≤ hii ≤ 1 and
PRESS =

∑
i{ei/(1− hii)}2 >

∑
i e

2
i = SSE. This also shows

that we need not fit the regression model repeatedly to get all Ŷ(i)
for the calculation of PRESS.)
When R2

jackknife (or MSEjackknife) is reasonably close to R2 (or
MSE, respectively), the validity of the model is good.
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