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Variable Screening

The purpose of variable screening methods is to determine
quantitatively which candidate variables in a given list of
available variables should be included as independent variables
for explaining the variation in Y and which variables do not
contribute to the variation in Y so that we do not include them
in the model.

Obviously, we in fact have a dilemma.
I On one hand we would like to include as many of xi as

possible to make the model useful for prediction.
I On the other hand we should include as few of xi as

possible to make the model parsimonious.
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This chapter is talking about variable selection, while the last
chapter is talking about model building.

In real applications, we select variables first and then build a
model based on the selected variables.

Thus, it is quite common that in the variable selection we
consider only the first-order terms.

The first kind of variable selection methods we discussed is the
stepwise-type regression, which includes (a) forward
selection, (b) backward elimination and (c) stepwise
regression.
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(a) Forward selection:
Step 1. No independent variable in the model.
Step 2. Include in the model the independent variable (from the

candidate variables that have not yet included in the model)
that has the largest partial F -statistic (for testing whether
the reduced model [the one without the new variable] is as
good as the “complete” model [referring just to the one with
the new variable, not really the true complete model
including all candidate variables]), provided that its F
-statistic is larger than Fin (F -to-enter). (This partial
F -statistic will be just the square of the t-statistic for testing
whether the parameter is zero. However, talking about
F -statistic allows us to generalise this procedure to a
procedure that could add more than one variable in this
step, e.g. several dummy variables corresponding to one
categorical independent variable.)

Step 3. Repeat Step 2 until the largest partial F -statistic among the
remaining variables does not exceed Fin or when the last
candidate variable is added.
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Choosing the cutoff value Fin can be thought of as specifying a
stopping criterion for this algorithm. Some computer programs
allow the analyst to specify this number directly while some
others (like SAS) require the choice of a type I error rate αin to
generate Fin.

That is to say, in step 2 we may specify a level-to-enter αin such
that the candidate variable with the smallest p-value is added to
the model, provided that the p-value is less than αin.

The variable having the largest partial F -statistic of course is
the variable having the smallest p-value. However, these two
stopping criteria (using a fixed Fin and using a fixed αin) are not
equivalent since the value of the degrees of freedom of the
partial F -statistic depends on the number of parameters in the
model, and hence is not a constant. That is, a fixed αin
corresponds to different Fin values in different steps.
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Nowadays we will find that using a fixed αin is a more natural
stopping criterion.

However, in the old days when statisticians had been using
tables and pocket calculators, calculating the p-values would be
very laborious, and so using a fixed Fin allowed a more efficient
algorithm.

It is anyway a screening procedure, involving many partial
F -tests. Thus, a very precise significance level at each step of
the selection process does not mean a well-controlled overall
significance level for the resultant model. Thus, even nowadays
we may use a fixed Fin.
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(b) Backward elimination:
Step 1. Include all candidate variables in the model.
Step 2. Remove from the model the independent variable that has

the smallest partial F -statistic, provided that its F -statistic is
less than Fout (F -to-remove). [Alternatively but not
equivalently, remove the independent variable that has the
largest p-value, provided that its p-value is larger than αout.]

Step 3. Repeat Step 2 until the smallest partial F among the
existing independent variables in the model is not less than
Fout [alternatively, the largest p-value is not larger than αout]
or when all independent variables are removed.

The backward elimination is particularly favoured by analysts
who like to see the effect of including all the candidate
variables, just so that nothing “obvious” will be missed. The
disadvantage is that we have to fit models with many
parameters in early steps, i.e. we have to pay a higher
computational cost.
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The two procedures above suggest a number of possible
combinations. One of the most popular is the stepwise
regression, a modification of forward selection in which at each
step, after a variable entered, all independent variables now in
the model are reassessed via their partial F -statistics. An
independent variable added at an earlier step may now be
redundant because of the relationships between it and other
independent variables now in the model. If the smallest partial
F -statistic among the existing independent variables is less that
Fout, the corresponding independent variable is dropped from
the model. [Alternatively, one may specify αin and αout instead
of Fin and Fout and proceed in the same way.]
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(c) Stepwise regression:
Step 1. No independent variable in the model.
Step 2. Include in the model the independent variable that has the

largest partial F -statistic, provided that its F -statistic is
larger than Fin. [Alternatively but not equivalently, include in
the model the independent variable having the smallest
p-value, provided that it is less than αin when added to the
model.] Fit the model with the new independent variable
and remove from the model the independent variable that
has the smallest partial F -statistic, provided that its
F -statistic is less than Fout. [Alternatively but not
equivalently, remove from the model the predictor having
the largest p-value, provided that it is greater than αout.]

Step 3. Repeat Step 2 until the largest partial F -statistic among the
remaining variables does not exceed Fin [Alternatively but
not equivalently, the smallest p-value among the remaining
candidate predictors is not less than αin.], or when all
predictors are added and cannot be removed.
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The stepwise regression procedure requires two cutoff values
Fin and Fout.

Some analysts prefer to choose Fin = Fout, although it is not
necessary.

If we choose Fin > Fout, we make it relatively more difficult to
add an independent variable than to delete one.

We should never use Fin < Fout (i.e. never use αin > αout)
because a partial F -statistic lying between these two cutoff
values will lead to cycling, where a variable is continually
entered and removed.

It is popular to use Fin = Fout = 4, which corresponds roughly to
(but not the same as) αin = αout = 0.05.
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Figure 6.1 MINITAB stepwise 
regression results for executive salaries
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Figure 6.2 SAS backward stepwise 
regression for executive salaries
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To conclude the stepwise-type procedures, we have to note the
following comments:

1. It is NOT true that all important variables have been
identified and unimportant variables removed.

2. A large number of single β-parameter t-test have been
done, meaning that very probable that we included some
unimportant variable (type I errors) and eliminate some
important ones (type II errors).

3. It is likely not that there is one best subset model (a subset
model means a model containing a subset of the candidate
variables), but that there are several equally good ones.

4. The order in which the independent variables enter or
leave the model does not necessarily imply an order of
importance.

5. The three procedures do not necessarily lead to the same
choice of final model.
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6. The partial F value examined at each stage is the
maximum of several correlated partial F -statistics (i.e. it is
a result of multiple testing), thinking of p-value reported in
the computer output as a level of significance or type I
error rate of one single test for an individual parameter is
misleading.

7. When we choose the variables to be included in the list of
candidate variables, we may often omit higher order terms
to keep the number of variables manageable. Thus, it is
just a variable screening procedure and after we decide
which independent variables have important main effect
terms, we should then consider their second-order terms
and other interactions, as we did in Chapter 5.

8. Stepwise-type regression should be used only when
necessary, that is, when you want to determine which of a
large number of potentially important independent
variables should be used in the model-building process.
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9. In the forward selection, the MSE (i.e. the sample variance
σ̂2 of the residuals of the model) values will tend to be
inflated during the initial steps, because important
independent variables have been omitted. When they are
omitted, the variation in the residuals comes not only from
the random fluctuation caused by ε but also from the
variation in the missing variables. (Variation in an
independent variable is accompanied by variation in the
response, even without the random error.) Thus, the
sample variance of the residuals overestimates σ2. This in
turn leads to partial F -statistics that are too small (or
p-values too large), making remaining candidate variables
difficult to enter. In the backward elimination, the MSE
values tend to be more nearly unbiased because important
independent variables are retained at each step.
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10. NEVER let a computer select independent variables
mechanically. The computer does not know your research
questions nor the literature upon which they rest. It cannot
distinguish independent variables of direct substantive
interest from those whose effects you want to control.
Computer’s job is to compute and we human beings are
responsible for making decisions.

17 / 26



All-possible-regression selection procedure.
The procedure is to consider first the null model

Y = β0 + ε,

then all one-variable models [ there are in total
(k

1

)
such

models ]
Y = β0 + βixi + ε, for i = 1, . . . , k ,

then all two-variable models [ there are in total
(k

2

)
such models ]

Y = β0 + βixi + βjxj + ε, for i 6= j ,

and so on, up to the full model

Y = β0 + β1x1 + · · ·+ βkxk + ε.

That is to say, we consider
(k

0

)
+
(k

1

)
+ · · ·+

(k
k

)
= 2k models.

(Note that when e.g. k = 10, we have to consider 1024 models,
and when k = 13, there are 2k = 8182 possible models.) Then
choose one from all possible models, according to some
criterion, as the “best” model.
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Commonly used criteria.
1. R2-criterion: find a subset model so that adding more

variables to the model will yield only small increases in R2.
Unlike that in stepwise-type regression, the decision about
when to stop adding variable is a subjective one. In
general, the best models with p1 parameters are not
necessarily nested with the best models with p2
parameters, where p2 > p1. (The phenomenon is not
desirable and may cause interpretation problems.)
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2. R2
a-criterion/MSE-criterion: choose the model with the

highest R2
a or choose the model by using the same

graphical approach as the R2 criterion except that we
consider R2

a instead of R2. Note that

R2
a = 1−

(
n − 1
n − p

)
SSEp

SSTcomplete
= 1− (n − 1)

MSEp

SSTcomplete
,

where SSEp is the error sum of squares of a p-parameter
model and SSTcomplete is the total sum of squares of the
complete model containing all candidate variables (as a
matter of fact, SSTcomplete =

∑
(Yi − Y )2 has nothing to do

with the number of parameters in the model), and so the
model of the highest R2

a is also the model of the lowest
MSEp. However, since MSEp = SSEp/(n − p), having the
lowest MSEp among all models with different p does not
necessarily imply the model also has the lowest SSEp,
unless we restrict to a fixed p.
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3. Mallows’ Cp-criterion: find the model such that (i) for
prediction purpose, Cp close to or below the line Cp = p, or
(ii) for parameter estimation purpose, Cp close to or below
the line Cp = 2p − k , where k is the total number of
candidate variables available. The former line Cp = p was
proposed by Mallows in 1973, while the latter line
Cp = 2p − k was suggested by Hocking in 1976. The idea
of this Cp criterion is as follows. We define the total mean
squared error (TMSE) by

TMSE :=
∑

E
{
[Ŷi − E(Yi)]

2
}
,

where Ŷi is the fitted value of Yi by the model under
consideration, and we want to have a model whose TMSE
is small. However, the value of TMSE also depends on the
error variance σ2. To standardise, we take the ratio
TMSE/σ2 but neither TMSE nor σ2 can be calculated from
the data. A good estimator of this ratio is Mallows’ Cp,
defined by

Cp :=
SSEp

MSEcomplete
− (n − 2p) = (n − p)

MSEp

MSEcomplete
− (n − 2p).
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(Note that in the textbook p denotes the number of
independent variables and so the formula looks different
from ours.) If MSEP (the sample variance of the residuals
Yi − Ŷi , where Ŷi comes from a model with p parameters)
is equal to MSEcomplete, then Cp = p, and typically (but
empirically it is not always that) the variance of the
residuals in a subset model is greater than that in the
complete model, i.e. MSEp > MSEcomplete. Thus, it is
desirable that the Cp value is close to or below the
reference line Cp = p. The argument for the reference line
Cp = 2p − k is less obvious, and we do not go into details
of this argument here and accept this as a rule of thumb.

4. PRESS-criterion: use the same graphical approach as the
R2 criterion, except that now we should look for small
values for PRESS. However, SAS does not have this
option available in the choices of selection method.
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Figure 6.3 MINITAB all-possible-
regressions selection results for executive 
salaries
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Figure 6.4 MINITAB plots of all-possible-
regressions selection criteria for Example 
6.2
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According to all four criteria, the variables x1, x2, x3, x4 and x5
should be included in the group of the most important
predictors.
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