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Multicollinearity

Multicollinearity exists when two or more of the independent variables
used in the model are moderately or highly correlated

If we have designed experiments, then the values of the independent
variables are well controlled by us and we probably can avoid the
problem of multicollinearity.

However, if we have only observational studies, then the values of the
independent variables are uncontrolled (but we assumed that they are
measured without error; regression with measurement error is an
advanced topic in statistics) and so multicollinearity may be a problem.
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Undesirable consequences of multicollinearity include (but not limited
to) (i) the inverse of the matrix X′X is highly sensitive to rounding
errors in the calculation of the LSE β̂ of β and (ii) inflated standard
errors.

Typical indicators of multicollinearity are:
1. High correlations between pairs of independent variables.
2. Insignificant t-test for all or nearly all the individual coefficients

while the F -test for overall model adequacy is significant.
3. Opposite signs (from what is expected) in the estimated

parameters.
4. Large changes in the parameter estimates resulted from deletion

of a row or column of the X matrix. See Figure 1 for a geometric
interpretation.
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Figure 1:

(a) Low correlation between x1 and x2 — regression plane well supported.
(b) Perfect correlation between x1 and x2 — infinitely many least squares

regression planes.
(c) High but not perfect correlation between x1 and x2 — regression plane

not well supported; a small change in (x1, x2), or a deletion/addition
of a vector may lead to a dramatic change in the parameter estimates.

Hong Kong Baptist University MATH3805 Regression Analysis Fall 2021 4 / 20



Multicollinearity may happen without high correlation between one
single pair of independent variables; it may be caused by that one
independent variable can be expressed as a linear combination of
all other independent variables.

In terms of matrices, it means that it is not necessarily two column
vectors are linearly dependent (or nearly linearly dependent); the
matrix is still singular (or close to singular) if one column can be
expressed as (or almost as) a linear combination of other
columns, and the latter is exactly the interpretation of a high R2

i .
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5. A variance inflation factor (VIF) for a β-parameter greater than 10,
where

VIFi :=
1

1−R2
i

, i = 1, 2, . . . , k,

in which R2
i is the multiple coefficient of determination for the

regression model:

xi = α0 + α1x1 + · · ·+ αi−1xi−1 + αi+1xi+1 + · · ·+ αkxk + ε′.
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By definition, a high R2
i means a high VIFi, but why we transform

R2
i to VIFi?

One reason why the t-tests on the individual β-parameters
suggest insignificance is that the standard errors of the least
squares estimates β̂i are inflated in the presence of
multicollinearity. More precisely, when the response and the
independent variables are standardised to have zero sample
mean and unit sample variance, we have

s2
β̂i

=
σ̂2

n
· 1

1−R2
i

,

and hence the name “variance inflation factor.”

Some software packages will report, equivalently, the tolerance,
which is just the reciprocal of VIF. The rule of thumb is that the
multicollinearity problem is severe when

R2
i > 0.9, or equivalently VIFi > 10, or equivalently Tolerancei < 0.1.
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6. High condition indices associated with high proportions of
variance in the eigensystem analysis of X ′X. If there are one or
more linear dependences in the data, then one or more
eigenvalues of X ′X will be small. Recall from Linear Algebra that
if M is a square matrix, the eigendecomposition is

M = QΛQ−1,

where Λ is a diagonal matrix containing eigenvalues and columns
of Q are the corresponding eigenvectors. In particular, if M is
symmetric, then all eigenvalues are real numbers. If M is
nonsingular, then

M−1 = QΛ−1Q−1.

Thus, if some eigenvalues of X ′X are small, the inverse (X ′X)−1

will be unstable and may suffer from serious rounding error.
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We define

condition indexi :=

√
λmax

|λi|
=
σmax

σi
,

where λi are eigenvalues of X ′X and λmax is the maximum of
the absolute values of eigenvalue, while σi are known as singular
values of X and σmax is the maximum singular value. (Not all
matrices have real eigenvalues but all matrices have real,
nonnegative singular values. That is the reason why we use
singular values to define condition index, because the it can be
defined for all matrices. For more details, check the topic “singular
value decomposition”, or “SVD” for short. Note that we borrow this
concept from Linear Algebra, in which people would not restrict
themselves to symmetric matrices. That is the reason why here
even it is possible, we do not consider the ratios of eigenvalues
but the ratios of singular values.)
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The rule of thumb is that when a condition number (the largest
conditional index, i.e. the ratio of the maximum singular value to
the minimum singular value) is greater than 30, then we may have
multicollinearity, but there is one further condition to check,
namely, to check its proportions of variance, which tell us how
influential that particular singular value is. To see its influence, we
consider the fact (without proof) that

VIFj =

k+1∑
i=1

t2ji
λi
, j = 1, · · · , k + 1

where tji is the jth element in the eigenvector ti corresponding to
the eigenvalue λi. Thus, we have

πij =
t2ji/λi

VIFj
= proportion of the variation of the jth VIF

contributed by the ith eigenvalue.
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(Technical note: Consider the eigendecomposition of X ′X as
TΛT−1, where Λ is a (k+1)× (k+1) diagonal matrix whose main
diagonal elements λi are the eigenvalues of X ′X, and column
vectors ti of T are eigenvectors. It is obvious that if T is multiplied
by a scalar, then T−1 will be divided by the same scalar and so
the decomposition remains valid, meaning that T is not unique.
Here, we require that T is an orthogonal matrix, i.e. T ′ = T−1,
making it unique. We are allowed to do so because X ′X is
symmetric. Hence, we are considering the unique decomposition

X ′X = TΛT ′

in this eigensystem analysis.) Now, the rule of thumb is:

If, for some i, the condition index for the ith eigenvalue is
greater than 30 and two or more πij are greater than 0.5,
then the multicollinearity is severe.
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Remedies to multicollinearity

If we have the multicollinearity problem, what can we do? There are
several solutions, described as follows.

1. Drop one or more correlated independent variables by
stepwise-type regression.

2. If you are interested in estimation and prediction only, you may
decide not to drop any of the independent variables. Confidence
intervals for the mean estimation and individual response
prediction generally remain unaffected as long as the values of the
independent variables used to predict Y follow the same pattern
of multicollinearity exhibited in the sample data, i.e. the values of
independent variables are in the experimental region defined
jointly by the values of observed x1, . . . , xk.

3. Combine two or more independent variables into a single index.
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4. Use ridge regression, which is explained in details below.
The problem of multicollinearity is that the inverse (X ′X)−1 is
unstable. The ridge regression (also known as Tikhonov
regularisation in mathematics) is a modification of least squares
such that the ridge estimator β̂R is the solution to

(X∗′X∗ + cI)β̂R =X∗′Y ∗, c ≥ 0,

where the independent variables and the response have been
often centred and scaled by:

Y ∗j =
1√
n− 1

(Yj − Y
sY

)
, x∗ij =

1√
n− 1

(xij − xi
sxi

)
,

in which sY =
√∑

j(Yj − Y )2/(n− 1), sxi
=
√∑

j(xij − xi)2/(n− 1),

so that X∗′X∗ is the correlation matrix of X, and X∗′Y ∗ is the
vector of correlation coefficients between Y and each xi.
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Note that the above transformation of the data leads to the
standardised model . For ridge regression it is typical (e.g. in SAS)
but not mathematically a must to consider the standardised
model. (In SAS output the estimates are transformed back to
become parameter estimates for the original model.)
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When c = 0, it is the same as LSE.
When c > 0, β̂R is biased, but let us consider the mean squared
error (MSE): Denote µR = E(β̂R).

MSE(β̂R) = E
{
(β̂R − β)′(β̂R − β)

}
= E

{
(β̂R − µR + µR − β)′(β̂R − µR + µR − β)

}
= E

{
(β̂R − µR)′(β̂R − µR)

}
+ (µR − β)′(µR − β)

+2E
{
(β̂R − µR)′(µR − β)

}
=

∑
var(β̂Ri ) +

∑
[bias(β̂i)]2 =

= σ2
∑ λi

(λi + c)2
+ c2β′(X∗′X∗ + cI)−2β.

Thus, when c increases, the variance decreases but the bias
increases.
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If some λi is very small, the LSE β̂ (when c = 0) is unbiased but
imprecise because of the term 1/λj , whereas β̂R is more precise
but has a bias. In ridge regression, we would like to choose c such
that the reduction in the variance is greater than the increase in
the squared bias such that MSE(β̂R) < MSE(β̂).
Mathematics shows that there always exists some value c > 0 for
which the inequality MSE(β̂R) < MSE(β̂) can really be
achieved. The difficulty is that the optimal value of c varies from
one application to another and hence is not a universal constant.
And when we said “there exists”, it means the proof of its
existence is not by construction and hence the explicit expression
(in terms of X and Y ) of the optimal c is unknown. Therefore, the
determination of c will be a problem that we have to solve
whenever we apply the ridge regression.
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A commonly used method of determining c is based on the ridge
trace, which is a plot of individual parameter estimates in β̂R

versus c for values of c usually in [0, 1].
The estimates β̂R may fluctuate widely as c changes slightly from
0, and some of them may even change signs. Gradually, however,
these wide fluctuations cease and the magnitude of the regression
coefficients tend to move slowly toward zero as c increases
further.
At the same time VIFi tend to fall rapidly as c changes from zero
and become stable as c increases further.
We therefore examine the ridge trace and choose the smallest c
where it is deemed that the parameter estimates first become
stable and VIF values have become sufficiently small (remind you
that a VIF value greater than 10 is an indicator of multicollinearity).
Hopefully this will produce a set of estimates with smaller MSE
than the MSE of the least squares estimators.
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Example

Figure: A plot of VIF vs ridge parameter and ridge trace

c = 0.01 is a good choice.
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Two data-driven methods for the determination of c:
1 a fixed value

c =
k · σ̂2

β̂′β̂
,

where k is the number of parameters, excluding the intercept, and
β̂ the least squares estimators (in the above example this formula
gives c = 0.0131);

2 an iterative procedure

c0 =
k · σ̂2

β̂′β̂
, the fixed value as above,

ci =
k · σ̂2

β̂R(ci−1)′β̂R(ci−1)
, i ≥ 1,

until the difference in ci+1 − ci is negligible, where β̂R(ci−1) is the
ridge estimator with c = ci−1.

There is, however, no guarantee that these methods are
superior to the straightforward inspection of the ridge trace.
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A major limitation of ridge regression is that ordinary inference
procedures are not applicable and exact distributional properties
are not known.
Just for your interest: Ridge estimates can be obtained by the
method of penalised least squares which, in this case, minimises

n∑
j=1

{Y ∗j − (β1x1j + · · ·+ βkxkj)}2 + c

k∑
i=1

β2i ,

Thus, for c > 0, the “best” coefficients generally will be smaller in
absolute magnitude than the least squares because large
absolute parameters lead to a large penalty. Because of this, the
ridge estimators are examples of the shrinkage estimators.
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