## Solution for Assignment 1, MATH3805

1. Exercise 3.22 ( $3^{\prime}$ for each sub-question)
(a) $x$ is the unflooded area ratio; $y$ is heat transfer enhancement value. The regression model is

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

where,

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{S S_{x y}}{S S_{x x}} \\
& =\frac{\sum_{i=1}^{24}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{24}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{9.592}{3.9532}=2.4264 \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta}_{1} \bar{x}=0.2134
\end{aligned}
$$

So the least square line to the data is

$$
\text { heat }=0.2134+2.4264 \mathrm{ratio}
$$

(b) Figure 1
(c)

$$
\begin{gathered}
S S E=\sum_{i=1}^{24}\left(y_{i}-\hat{y}_{i}\right)^{2}=4.5311 \\
s^{2}=\frac{S S E}{n-2}=0.2060
\end{gathered}
$$

(d)

$$
s=\sqrt{0.2060}=0.4539
$$

Interpretation of $s$ : We expect most (approximately 95\%) of the observed $y$-values to lie within $2 s$ of their respective least squares predicted values, $\hat{y}$.
SAS output(Figure 2).


Figure 1: the scatterplot and the regression line

## The SAS System

The REG Procedure Model: MODEL1
Dependent Variable: y1

| Number of Observations Read | 24 |
| :--- | :--- |
| Number of Observations Used | 24 |


| Analysis of Variance |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Sum of <br> Squares | Mean <br> Square | F Value | Pr > F |
| Model | 1 | 23.27392 | 23.27392 | 113.00 | $<.0001$ |
| Error | 22 | 4.53108 | 0.20596 |  |  |
| Corrected Total | 23 | 27.80500 |  |  |  |


| Root MSE | 0.45383 | R-Square | 0.8370 |
| :--- | :--- | :--- | :--- |
| Dependent Mean | 4.77500 | Adj R-Sq | 0.8296 |
| Coeff Var | 9.50421 |  |  |


| Parameter Estimates |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Variable | DF | Parameter <br> Estimate | Standard <br> Error | t Value | $\mathrm{Pr}>\|\mathrm{t}\|$ |
| Intercept | 1 | 0.21339 | 0.43900 | 0.49 | 0.6317 |
| $\mathbf{x 1}$ | 1 | 2.42639 | 0.22825 | 10.63 | $<.0001$ |

Figure 2: SAS output for Exercise 3.22
2. Exercise 3.24 ( $3^{\prime}$ for each sub-question)
(a) $H_{0}: \beta_{1}=0 \quad H_{1}: \beta_{1}>0$.

$$
\begin{aligned}
& \text { Test statistic: } t=\hat{\beta}_{1} / s_{\hat{\beta}_{1}}=\frac{\hat{\beta}_{1}}{s / \sqrt{\mathrm{SS}_{x x}}}=38.132 \\
& p-\text { value }<0.00005(\text { one side })
\end{aligned}
$$

Given that p -value is smaller than 0.05 , there is sufficient evidence to indicate that $\beta_{1}$ is positive, i.e. there is a positive linear relationship between $x$ and $y$.
(b) $95 \%$ confidence interval for the slope is $(1.335,1.482)$. It means that when appraised properties value increase 1 unit, the increment of sale price y will fall into $[1.335,1.482]$ with probability $95 \%$.
(c) remove the intercept.(Figure 4) collect more observations. SAS output(Figure 3).

## The SAS System

The REG Procedure
Model: MODEL1 Dependent Variable: y2

| Number of Observations Read | 76 |
| :--- | :--- |
| Number of Observations Used | 76 |


| Analysis of Variance |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| Source | DF | Sum of <br> Squares | Mean <br> Square | F Value | Pr > F |  |
| Model | 1 | 6874034 | 6874034 | 1454.06 | $<.0001$ |  |
| Error | 74 | 349833 | 4727.46974 |  |  |  |
| Corrected Total | 75 | 7223866 |  |  |  |  |


| Root MSE | 68.75660 | R-Square | 0.9516 |
| :--- | ---: | :--- | :--- |
| Dependent Mean | 431.69342 | Adj R-Sq | 0.9509 |
| Coeff Var | 15.92718 |  |  |


| Parameter Estimates |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | DF | Parameter Estimate | Standard Error | t Value | $\mathrm{Pr}>\|\mathrm{t}\|$ | 95\% Confidence Limits |  |
| Intercept | 1 | 1.35868 | 13.76817 | 0.10 | 0.9217 | -26.07501 | 28.79237 |
| x2 | 1 | 1.40827 | 0.03693 | 38.13 | 0001 | 1.33468 | 1.48186 |

Figure 3: SAS output for Exercise 3.24

## The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: y2

| Number of Observations Read | 76 |
| :--- | :---: |
| Number of Observations Used | 76 |

Note: No intercept in model. R-Square is redefined.

| Analysis of Variance |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Sum of <br> Squares | Mean <br> Square | F Value | Pr > F |
| Model | 1 | 21037287 | 21037287 | 4509.55 | $<.0001$ |
| Error | 75 | 349879 | 4665.05064 |  |  |
| Uncorrected Total | 76 | 21387166 |  |  |  |


| Root MSE | 68.30118 | R-Square | 0.9836 |
| :--- | ---: | :--- | :--- |
| Dependent Mean | 431.69342 | Adj R-Sq | 0.9834 |
| Coeff Var | 15.82169 |  |  |


| Parameter Estimates |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | DF | Parameter Estimate | Standard Error | t Value | $\mathrm{Pr}>\|\mathrm{t}\|$ | 95\% Confid | e Limits |
| x 2 | 1 | 1.41126 | 0.02102 | 67.15 | $<.000$ | 1.36939 | 1.45312 |

Figure 4: SAS output without intercept for Exercise 3.24
3. Exercise 3.58 ( $10^{\prime}$ )
(1) We hypothesize a straight-line probabilistic model: $y=\beta_{0}+\beta_{1} x+\varepsilon$
(2) We collect the $(x, y)$ values for each of the $n=223$ experimental units in the sample.
(3) Next, we enter the data into a computer and use statistical software to estimate the unknown parameters in the deterministic component of the hypothesized model.

$$
\hat{\beta}_{0}=0.35255, \quad \hat{\beta}_{1}=0.11644
$$

Thus

$$
\hat{y}=0.35+0.12 x
$$

(4) Now, we specify the probability distribution of the random error component $\varepsilon$. The assumptions about the distribution are:
(1) $E(\varepsilon)=0$
(2) $\operatorname{Var}(\varepsilon)=\sigma^{2}$ is constant for all $x$-values
(3) $\varepsilon$ has a normal distribution
(4) $\varepsilon$ 's are independent

$$
s^{2}=26.18066
$$

(5) We can now check the utility of the hypothesized model,
(a) Test of model utility:

$$
\begin{gathered}
H_{0}: \beta_{1}=0 \\
H_{a}: \beta_{1} \neq 0 \\
p=.7821>0.05
\end{gathered}
$$

Given that p -value is larger than 0.05 , it is not sufficient to support the linear relationship between $x$ and $y$.
(b) Confidence interval for slope: $(-0.70754,0.940424)$

$$
\hat{\beta}_{1} \pm\left(t_{\alpha / 2}\right) s_{\hat{\beta}_{1}}=0.11644 \pm 1.96 \times 0.42040
$$

(c) Numerical descriptive measures of model adequacy

$$
r^{2}=0.0003
$$

(6) $\hat{y}=1.284$ if $x=8.00$, confidence interval is $(-8.78654,11.35454)$

$$
\hat{y} \pm\left(t_{\alpha / 2}\right) s \sqrt{1+\frac{1}{n}+\frac{\left(x_{\mathrm{p}}-\bar{x}\right)^{2}}{\mathrm{SS}_{x x}}}=1.284 \pm 1.96 \times 5.11670 \sqrt{1+\frac{1}{223}+\frac{8-7.4267}{148.1339}}
$$

The prediction is unreliable since the evidence for $\beta_{1}$ is insufficient.
SAS output(Figure5-6)

## The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: y3

$$
\begin{array}{|l|l|}
\hline \text { Number of Observations Read } & 223 \\
\hline \text { Number of Observations Used } & 223 \\
\hline
\end{array}
$$

| Analysis of Variance |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Sum of <br> Squares | Mean <br> Square | F Value | Pr > F |
| Model | 1 | 2.00842 | 2.00842 | 0.08 | 0.7821 |
| Error | 221 | 5785.92676 | 26.18066 |  |  |
| Corrected Total | 222 | 5787.93519 |  |  |  | | Root MSE | 5.11670 | R-Square | 0.0003 |  |  |
| :--- | ---: | ---: | ---: | :---: | :---: |
|  | Dependent Mean | 1.21731 | Adj R-Sq |  |  |
|  -0.0042  |  |  |  |  |  |


| Parameter Estimates |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | DF | Parameter Estimate | Standard Error | t Value | $\mathrm{Pr}>\|\mathrm{t}\|$ | 95\% Confidence Limits |  |
| Intercept | 1 | 0.35255 | 3.14094 | 0.11 | 0.9107 | -5.83749 | 6.54258 |
| x 3 | 1 | 0.11644 | 0.42040 | 0.28 | 0.7821 | -0.71207 | 0.94495 |

Figure 5: SAS output for Exercise 3.58

## The SAS System

## The REG Procedure Model: MODEL Dependent Variable: y3

Fit Diagnostics for y3



Observations 223
Parameters 2
Error DF 221
MSE $\quad 26.181$
R-Square 0.0003 Adj R-Square -0.004

Figure 6: test for Exercise 3.58
4. Exercise 3.64 ( $3^{\prime}$ for each sub-question)
(a) A straight-line model through the origin is

$$
\begin{gathered}
y=\beta_{1} x+\varepsilon \\
\hat{\beta}_{1}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\frac{158400}{33020}=0.2085
\end{gathered}
$$

(b)

$$
\begin{aligned}
& \mathrm{SSE}=\sum\left(y_{i}-\hat{y}\right)^{2}=22.66414 \\
& s^{2}=\frac{\mathrm{SSE}}{n-1}=\frac{22.66414}{9}=2.518238 \\
& s=\sqrt{s^{2}}=1.586896
\end{aligned}
$$

(c)

$$
\begin{aligned}
& t=\frac{\hat{\beta}_{1}}{s / \sqrt{\sum x_{i}^{2}}}=\frac{0.20846}{1.586896 / \sqrt{158400}}=52.28 \\
& p-\text { value }<0.00005(\text { one side) }
\end{aligned}
$$

Given that p-value is smaller than 0.05 , so we can think the evidence is sufficient to support the linear relationship between $x$ and $y$.
(d) $95 \%$ confidence interval for $\beta_{1}$ is $(0.19944,0.21748)$

$$
\hat{\beta}_{1} \pm\left(t_{\alpha / 2}\right) s_{\hat{\beta}_{1}}=\hat{\beta}_{1} \pm\left(t_{\alpha / 2}\right)\left(\frac{s}{\sqrt{\sum x_{i}^{2}}}\right)=0.20846 \pm 1.833 \times 0.00399
$$

(e) $95 \%$ confidence interval for $E(y)$ when $x=125$ is $(24.9300,27.1849)$

$$
\hat{y} \pm\left(t_{\alpha / 2}\right) s_{\hat{y}}=\hat{y} \pm\left(t_{\alpha / 2}\right) s\left(\frac{x_{\mathrm{p}}}{\sqrt{\sum x_{i}^{2}}}\right)=26.00575 \pm 1.833 \times 1.586896 \frac{125}{\sqrt{33020}}
$$

(f) $95 \%$ confidence interval for $y$ when $x=125$ is $(22.47521,29.53629)$

$$
\hat{y} \pm\left(t_{\alpha / 2}\right) s_{(y-\hat{y})}=\hat{y} \pm\left(t_{\alpha / 2}\right) s \sqrt{1+\frac{x_{\mathrm{p}}^{2}}{\sum x_{i}^{2}}}=26.00575 \pm 1.833 \times 1.586896 \sqrt{1+\frac{125^{2}}{33020}}
$$

## The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: y4

| Number of Observations Read | 10 |
| :--- | :--- |
| Number of Observations Used | 10 |

Note: No intercept in model. R-Square is redefined.

| Analysis of Variance |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | $\begin{array}{r}\text { Sum of } \\ \text { Squares }\end{array}$ | $\begin{array}{r}\text { Mean } \\ \text { Square }\end{array}$ | F Value |  |$) \operatorname{Pr}>$ F


| Root MSE | 1.58690 | R-Square | 0.9967 |
| :--- | ---: | ---: | ---: |
| Dependent Mean | 23.60000 | Adj R-Sq | 0.9964 |
| Coeff Var | 6.72413 |  |  |


| Parameter Estimates |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | DF | Parameter <br> Estimate | Standard <br> Error | t Value | $\operatorname{Pr}>\|\mathrm{t}\|$ | 95\% Confidence Limits |  |
| $\mathbf{x 4}$ | 1 | 0.20846 | 0.00399 | 52.28 | $<.0001$ | 0.19944 | 0.21748 |

Figure 7: SAS output for Exercise 3.64
5. Exercise 3.68 (3' for each of (a)-(g) and $2^{\prime}$ for (h) and (i))
(a) Figure 8
(b) Figure 8
(c) The parameter $\beta_{1}$ reflect the relationship between the number of factors per patient and the patient's length of stay. $\beta_{1}$ can be interpreted by, when the number of factors increase 1 , the average of patient's length of stay will increase $\beta_{1}$.

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x \\
& \beta_{1}=0.01475
\end{aligned}
$$

(d)

$$
\begin{array}{ll}
H(0): \beta_{1}=0 & \\
H(1): \beta_{1} \neq 0 & p-\text { value }<0.0001
\end{array}
$$

Given that p-value is small enough, it is sufficient to support the linear relationship between $x$ and $y$.
(e) We have $95 \%$ confidence that $(0.00922,0.02029)$ covers $\beta_{1}$.
(f) $R^{2}=0.3740 \Rightarrow r=\sqrt{R^{2}}=0.6116$. It shows that the patient's length of stay is positive related to the number of factors per patient.
(g) The result of ANOVA is shown in Figure 9. R-square is 0.374 . We can find that the f -value is 28.68 and the p-value of the test is smaller than 0.05 . So the model we constructed in part b is useful.
(h) The $95 \%$ prediction interval at $x=231$ is $(2.4480,10.9808)$.
(i) MSE is large. Other variables or information are needed to improve the performance.

SAS output(8-10)


Figure 8: scatter plot and regression line for Exercise 3.68

## The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: y5

| Number of Observations Read | 50 |
| :--- | :--- |
| Number of Observations Used | 50 |


| Analysis of Variance |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Sum of <br> Squares | Mean <br> Square | F Value |  | Pr>F


| Root MSE | 2.10077 | R-Square | 0.3740 |
| :--- | ---: | :--- | :--- |
| Dependent Mean | 6.54000 | Adj R-Sq | 0.3610 |
| Coeff Var | 32.12193 |  |  |


| Parameter Estimates |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | DF | Parameter <br> Estimate | Standard <br> Error | $\mathbf{t}$ Value | $\operatorname{Pr}>\|\mathbf{t}\|$ | 95\% Confidence Limits |  |
| Intercept | 1 | 3.30603 | 0.67297 | 4.91 | $<.0001$ | 1.95293 | 4.65914 |
| $\mathbf{x 5}$ | 1 | 0.01475 | 0.00276 | 5.36 | $<0001$ | 0.00922 | 0.02029 |

Figure 9: SAS output for Exercise 3.68

## The SAS System

The REG Procedure Model: MODEL1
Dependent Variable: y5

| Output Statistics |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Dependent Variable | Predicted Value | Std Error Mean Predict | 95\% CI Dredict |  | Residual |
| 1 | 9 | 6.7144 | 0.2989 | 2.4480 | 10.9808 | 2.2856 |
| 2 | 7 | 8.0718 | 0.4124 | 3.7673 | 12.3764 | -1.0718 |
| 3 | 8 | 4.9733 | 0.4169 | 0.6671 | 9.2796 | 3.0267 |
| 4 | 5 | 6.3750 | 0.2987 | 2.1087 | 10.6414 | -1.3750 |
| 5 | 4 | 5.6963 | 0.3363 | 1.4187 | 9.9740 | -1.6963 |
| 6 | 4 | 5.0323 | 0.4093 | 0.7290 | 9.3357 | -1.0323 |
| 7 | 6 | 5.6521 | 0.3402 | 1.3731 | 9.9310 | 0.3479 |
| 8 | 9 | 5.7996 | 0.3277 | 1.5246 | 10.0746 | 3.2004 |

Figure 10: Predict value for Exercise 3.68
8. Exercise 3.80 ( $2^{\prime}$ for each sub-question)
(a)

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

Calculation steps:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{S S_{x y}}{S S_{x x}} \\
& =\frac{\sum_{i=1}^{24}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{24}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{-15.728}{297.716}=-0.05283 \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta}_{1} \bar{x}=-13.4903
\end{aligned}
$$

Intepretation: For the slope, when temperature increases 1 unit, the average of proportion of impurity will decrease 0.0528 . The regression line passes $(0,-13.4903)$ while this point is not meaningful here since this case only focuses on the quite low temperature around $-260^{\circ} \mathrm{C}$.
(b)

$$
\begin{gathered}
H(0): \beta_{1}=0 \\
H(1): \beta_{1}>0 \\
\hat{\beta_{1}} \pm t_{2 / \alpha} \hat{\beta}_{\beta_{1}}=-0.05283 \pm 1.96 \times 0.00773
\end{gathered}
$$

$95 \%$ confidence interval for $\beta_{1}$ is $(-0.07065,-0.03501)$. The interval supports the hypothesis that temperature contributes information about the proportion of impurity.
(c) $R^{2}=0.8538$, So the linear model can explain $85.38 \%$ variation of response.
(d) The prediction interval is

$$
\hat{y} \pm\left(t_{\alpha / 2}\right) \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}=(0.5987,1.2653)
$$

The proportion will appear in this interval with probability $95 \%$.
(e) Because $y$ is bounded in $[0,1]$ and we do not take this constrain into consideration. If we transform $y$ to $\log (-\log (y))$ or $\log (y /(1-y))$, prediction interval will be more reliable.

SAS output(Figure13)

## The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: PROPPASS

| Number of Observations Read | 10 |
| :--- | :--- |
| Number of Observations Used | 10 |


| Analysis of Variance |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Sum of <br> Squares | Mean <br> Square | F Value | Pr > F |
| Model | 1 | 0.83089 | 0.83089 | 46.73 | 0.0001 |
| Error | 8 | 0.14225 | 0.01778 |  |  |
| Corrected Total | 9 | 0.97315 |  |  |  |


| Root MSE | 0.13335 | R-Square | 0.8538 |
| :--- | ---: | :--- | :--- |
| Dependent Mean | 0.68260 | Adj R-Sq | 0.8356 |
| Coeff Var | 19.53519 |  |  |


| Parameter Estimates |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Variable | DF | Parameter <br> Estimate | Standard <br> Error | $\boldsymbol{t}$ Value | Pr > \|t| | 95\% Confidence Limits |  |  |
| Intercept | 1 | -13.49035 | 2.07377 | -6.51 | 0.0002 | -18.27247 | -8.70822 |  |
| TEMP | 1 | -0.05283 | 0.00773 | -6.84 | 0.0001 | -0.07065 | -0.03501 |  |

Figure 13: SAS output for Exercise 3.80

