Solution for Assignment 1, MATH3805

1. Exercise 3.22 (3' for each sub-question)

(a) x is the unflooded area ratio; y is heat transfer enhancement value. The regression model is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where,

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}}$$

$$= \frac{\sum_{i=1}^{24} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{24} (x_{i} - \bar{x})^{2}}$$

$$= \frac{9.592}{3.9532} = 2.4264$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} = 0.2134$$

So the least square line to the data is

heat
$$= 0.2134 + 2.4264$$
ratio

(b) Figure 1

(c)

$$SSE = \sum_{i=1}^{24} (y_i - \hat{y}_i)^2 = 4.5311$$
$$s^2 = \frac{SSE}{n-2} = 0.2060$$

(d)

 $s = \sqrt{0.2060} = 0.4539$

Interpretation of s: We expect most (approximately 95%) of the observed y-values to lie within 2s of their respective least squares predicted values, \hat{y} .

SAS output(Figure 2).

Figure 1: the scatterplot and the regression line

The SAS System													
The REG Procedure Model: MODEL1 Dependent Variable: y1													
	Number of Observations Read 24												
	Number of Observations Used 24												
	Analysis of Variance												
s	Sourc	e		DF	-	um (uare			Mear Square		Valu	ıe	Pr > F
N	lode			1	23.2739		92	23	23.27392		113.00		<.0001
E	rror			22	(4.	5310	8	0).2059(6			
C	Corre	cted T	otal	23	27.	8050	00						
		Root	MSE		(0.4	538	3	R-Squ	ıare	0.8	370)
		Depe	nder	nt Me	an	4.7	750	0	Adj R	-Sq	0.8	296	6
		Coef	f Var			9.50	042	1					
				Pa	aran	nete	r Es	sti	mates				
	Var	iable	DF		Parameter Estimate		St		idard Error	t Value		P	r > t
	Intercept 1 0.			0.21	0.21339		0.43900		0.49 0		0.	6317	
	x1		1	(2.42639		0.22825		10).63	<.	0001	

Figure 2: SAS output for Exercise 3.22

2. Exercise 3.24 (3' for each sub-question)

(a)
$$H_0: \beta_1 = 0 \quad H_1: \beta_1 > 0.$$

Test statistic:
$$t = \hat{\beta}_1 / s_{\hat{\beta}_1} = \frac{\hat{\beta}_1}{s/\sqrt{SS_{xx}}} = 38.132$$

 $p - value < 0.00005(one \ side)$

Given that p-value is smaller than 0.05, there is sufficient evidence to indicate that β_1 is positive, i.e. there is a positive linear relationship between x and y.

- (b) 95% confidence interval for the slope is (1.335, 1.482). It means that when appraised properties value increase 1 unit, the increment of sale price y will fall into [1.335, 1.482] with probability 95%.
- (c) remove the intercept.(Figure 4) collect more observations.SAS output(Figure 3).

			1	Fhe Ma	REG odel:	P M	Syst roced IODEI /ariat	lu L1	re						
	Number of Observations Read76Number of Observations Used76														
			ŀ	nal	ysis	of	Varia	an	се						
	Sourc	ce	DF	-	um c uare		9		lean uare	F١	Value	Pr >	• F		
	Mode	el -	1	6874034		4	6874034		14	54.06	<.00	01			
	Error		74	74 34983		3	4727	.4	6974						
	Corre	cted Total	75 722386		2386	6									
		Root MSE					660		-Squa		0.951	_			
		Depender	nt Me	an			9342	A	dj R-S	Sq	0.950	9			
		Coeff Var			15.	.92	2718								
			F	Para	mete	er	Estim	a	tes						
Variable	DF	Paramete Estimate				t١	Value	÷	Pr >	> t 95% C		onfidence Lim		its	
Intercept	ntercept 1 1.3586			13.76817			0.10 0.92		0.921	7	-26.075		2	28.792	37
x2	1	1.4082	7	0.03	693		38.13	3	<.000		1.3	3468		1.481	86

Figure 3: SAS output for Exercise 3.24

	The SAS System The REG Procedure Model: MODEL1 Dependent Variable: y2										
		Nu	nber	of (Observ	atio	ns Read	76			
	Number of Observations Used 76										
Note: No intercept in model. R-Square is redefined.										1	
			A		ysis of			_			-
5	Source	•	DF	Sum of Squares		- I	Mean Square		Value	Pr > F	
Ν	Nodel		1	21037287		1	21037287	4	509.55	<.0001	
E	rror		75	34987		46	65.05064				
L	Jncorr	ected Tota	76	21	387166	;					
		Root MSE			68.30	118	R-Squa	re	0.9836]	
		Depender	nt Mea	an	431.69	342	Adj R-S	q	0.9834		
	Coeff Var 15.82169										
Parameter Estimates											
Variable	DF	Paramete Estimate	r Sta	Standard			e Pr > t	1 9	95% Cor	fidence	Limits
x2	1	1.4112	5 0.	0.02102			5 <.000	-	1.369		1.45312

Figure 4: SAS output without intercept for Exercise 3.24

- 3. Exercise 3.58 (10')
 - (1) We hypothesize a straight-line probabilistic model: $y = \beta_0 + \beta_1 x + \varepsilon$
 - (2) We collect the (x, y) values for each of the n = 223 experimental units in the sample.
 - (3) Next, we enter the data into a computer and use statistical software to estimate the unknown parameters in the deterministic component of the hypothesized model.

$$\hat{\beta}_0 = 0.35255, \quad \hat{\beta}_1 = 0.11644$$

Thus

$$\hat{y} = 0.35 + 0.12x$$

(4) Now, we specify the probability distribution of the random error component ε . The assumptions about the distribution are:

$$s^2 = 26.18066$$

- (5) We can now check the utility of the hypothesized model,
 - (a) Test of model utility:

$$\begin{aligned} H_0 &: \beta_1 = 0 \\ H_a &: \beta_1 \neq 0 \end{aligned}$$

$$p = .7821 > 0.05$$

Given that p-value is larger than 0.05, it is not sufficient to support the linear relationship between x and y.

(b) Confidence interval for slope: (-0.70754, 0.940424)

$$\hat{\beta}_1 \pm (t_{\alpha/2}) s_{\hat{\beta}_1} = 0.11644 \pm 1.96 \times 0.42040$$

(c) Numerical descriptive measures of model adequacy

$$r^2 = 0.0003$$

(6) $\hat{y} = 1.284$ if x = 8.00, confidence interval is (-8.78654, 11.35454)

$$\hat{y} \pm \left(t_{\alpha/2}\right) s \sqrt{1 + \frac{1}{n} + \frac{\left(x_{\rm p} - \bar{x}\right)^2}{\mathrm{SS}_{xx}}} = 1.284 \pm 1.96 \times 5.11670 \sqrt{1 + \frac{1}{223} + \frac{8 - 7.4267}{148.1339}}$$

The prediction is unreliable since the evidence for β_1 is insufficient. SAS output(Figure 5-6)

The SAS System												
				Mo	del	Proce MODE t Varia	EL1	1				
	Number of Observations Read 223											
	Number of Observations Used 223											
			A	nal	ysis	of Var	iar	nce				
	Source DF Sum of Squares Mean Square F Value Pr > F									F		
	Mode	I	1	2.00		0842	12 2.008			0.08	0.782	21
	Error		221	57	85.92	2676	26.	18066				
	Corre	cted Total	222	57	87.9	3519						
		Root MSE			5.	11670	R	-Squa	re	0.000	3	
		Depender	nt Mea	an	1.	21731	Α	dj R-S	q -	0.004	2	
		Coeff Var			420	32899						
			Р	ara	met	er Esti	ma	ites				
Variable DF Parameter Standard Error							ıe	Pr >	t 95	5% Co	onfide	nce Limits
Intercep	tercept 1 0.35255			3.14094		0.1	11	0.910	7	-5.83	3749	6.54258
x3	1	0.1164	4 (0.42	040	0.2	28	0.782		-0.7	1207	0.94495

Figure 5: SAS output for Exercise 3.58

The SAS System

The REG Procedure

Figure 6: test for Exercise 3.58

4. Exercise 3.64 (3' for each sub-question)

(a) A straight-line model through the origin is

$$y = \beta_1 x + \varepsilon$$
$$\hat{\beta}_1 = \frac{\sum x_i y_i}{\sum x_i^2} = \frac{158400}{33020} = 0.2085$$

(b)

SSE =
$$\sum (y_i - \hat{y})^2 = 22.66414$$

 $s^2 = \frac{\text{SSE}}{n-1} = \frac{22.66414}{9} = 2.518238$
 $s = \sqrt{s^2} = 1.586896$

(c)

$$t = \frac{\hat{\beta}_1}{s/\sqrt{\sum x_i^2}} = \frac{0.20846}{1.586896/\sqrt{158400}} = 52.28$$

p - value < 0.00005(one side)

Given that p-value is smaller than 0.05, so we can think the evidence is sufficient to support the linear relationship between x and y.

(d) 95% confidence interval for β_1 is (0.19944, 0.21748)

$$\hat{\beta}_1 \pm (t_{\alpha/2}) \, s_{\hat{\beta}_1} = \hat{\beta}_1 \pm (t_{\alpha/2}) \left(\frac{s}{\sqrt{\sum x_i^2}}\right) = 0.20846 \pm 1.833 \times 0.00399$$

(e) 95% confidence interval for E(y) when x = 125 is (24.9300, 27.1849)

$$\hat{y} \pm (t_{\alpha/2}) \, s_{\hat{y}} = \hat{y} \pm (t_{\alpha/2}) \, s\left(\frac{x_{\rm p}}{\sqrt{\sum x_i^2}}\right) = 26.00575 \pm 1.833 \times 1.586896 \frac{125}{\sqrt{33020}}$$

(f) 95% confidence interval for y when x = 125 is (22.47521, 29.53629)

$$\hat{y} \pm (t_{\alpha/2}) \, s_{(y-\hat{y})} = \hat{y} \pm (t_{\alpha/2}) \, s_{\sqrt{1 + \frac{x_{\rm p}^2}{\sum x_i^2}}} = 26.00575 \pm 1.833 \times 1.586896 \sqrt{1 + \frac{125^2}{33020}}$$

				٦	The	SA	S S	yste	em			
					Мо	del	6 Pro : MOI t Var	DEL				
			Nun	nber	of (Dbse	ervat	ions	Read	10]	
	Number of Observations Used 10											
Note: No intercept in model. R-Square is redefined.												
	Analysis of Variance											
So	urce			DF	9	Sum of Squares			Mean Square		Value	Pr > F
Мо	del			1	688	83.33586 6883.33586			5 2	2733.39	<.0001	
Erre	or			9	2	22.66414 (2.518)			2.51824	⊅		
Uno	согге	ected To	tal	10	690	6.00	0000					
		Root I	A SE			(1.	5869		Squar	e ().9967	
		Deper	nden	t Me	ean	23.	6000	0 A	dj R-So	1	0.9964	
Coeff Var 6.72413												
Parameter Estimates												
/ariable	DF	Param Estim		Sta	anda Er	ard ror	t Va	lue	Pr > t	9	5% Con	fidence
x4	1	0.20)846	(0.00399		52	2.28	<.000	X	0.199	44 0.

Figure 7: SAS output for Exercise 3.64

- 5. Exercise 3.68 (3' for each of (a)-(g) and 2' for (h) and (i))
 - (a) Figure 8
 - (b) Figure 8
 - (c) The parameter β_1 reflect the relationship between the number of factors per patient and the patient's length of stay. β_1 can be interpreted by, when the number of factors increase 1, the average of patient's length of stay will increase β_1 .

$$y = \beta_0 + \beta_1 x$$
$$\beta_1 = 0.01475$$

(d)

$$\begin{split} H(0) &: \beta_1 = 0 \\ H(1) &: \beta_1 \neq 0 \\ \end{split} \qquad p-value < 0.0001 \end{split}$$

Given that p-value is small enough, it is sufficient to support the linear relationship between x and y.

- (e) We have 95% confidence that (0.00922, 0.02029) covers β_1 .
- (f) $R^2 = 0.3740 \Rightarrow r = \sqrt{R^2} = 0.6116$. It shows that the patient's length of stay is positive related to the number of factors per patient.
- (g) The result of ANOVA is shown in Figure 9. R-square is 0.374. We can find that the f-value is 28.68 and the p-value of the test is smaller than 0.05. So the model we constructed in part b is useful.
- (h) The 95% prediction interval at x = 231 is (2.4480, 10.9808).
- (i) MSE is large. Other variables or information are needed to improve the performance.

SAS output(8-10)

Figure 8: scatter plot and regression line for Exercise 3.68

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: y5

Number of Observations Read	50
Number of Observations Used	50

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	1	126.58393	126.58393	28.68	<.0001	D				
Error	48	211.83607	4.41325		\sim					
Corrected Total	49	338.42000								

Root MSE	2.10077	R-Square	0.3740
Dependent Mean	6.54000	Adj R-Sq	0.3610
Coeff Var	32.12193		

Parameter Estimates									
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confid	ence Limits		
Intercept	1	3.30603	0.67297	4.91	<.0001	1.95293	4.65914		
x5	1	0.01475	0.00276	5.36	<.0001	0.00922	0.02029		

Figure 9: SAS output for Exercise 3.68

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: y5

	Output Statistics									
Obs	Dependent Predicted Mean Predict 95% CL Predict									
1	9	6.7144	0.2989	2.4480	10.9808	2.2856				
2	7	8.0718	0.4124	3.7673	12.3764	-1.0718				
3	8	4.9733	0.4169	0.6671	9.2796	3.0267				
4	5	6.3750	0.2987	2.1087	10.6414	-1.3750				
5	4	5.6963	0.3363	1.4187	9.9740	-1.6963				
6	4	5.0323	0.4093	0.7290	9.3357	-1.0323				
7	6	5.6521	0.3402	1.3731	9.9310	0.3479				
8	9	5.7996	0.3277	1.5246	10.0746	3.2004				

Figure 10: Predict value for Exercise 3.68

8. Exercise 3.80 (2' for each sub-question)

(a)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Calculation steps:

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}}$$

$$= \frac{\sum_{i=1}^{24} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{24} (x_{i} - \bar{x})^{2}}$$

$$= \frac{-15.728}{297.716} = -0.05283$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} = -13.4903$$

Interpretation: For the slope, when temperature increases 1 unit, the average of proportion of impurity will decrease 0.0528. The regression line passes (0,-13.4903) while this point is not meaningful here since this case only focuses on the quite low temperature around -260° C.

(b)

$$H(0): \beta_1 = 0$$

 $H(1): \beta_1 > 0$

$$\hat{\beta}_1 \pm t_{2/\alpha} \hat{s}_{\beta_1} = -0.05283 \pm 1.96 \times 0.00773$$

95% confidence interval for β_1 is (-0.07065, -0.03501). The interval supports the hypothesis that temperature contributes information about the proportion of impurity.

- (c) $R^2 = 0.8538$, So the linear model can explain 85.38% variation of response.
- (d) The prediction interval is

$$\hat{y} \pm (t_{\alpha/2}) \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}} = (0.5987, 1.2653)$$

The proportion will appear in this interval with probability 95%.

(e) Because y is bounded in [0, 1] and we do not take this constrain into consideration. If we transform y to $\log(-\log(y))$ or $\log(y/(1-y))$, prediction interval will be more reliable.

SAS output(Figure13)

The	SAS	S	/sten	n
		_		

The REG Procedure Model: MODEL1 Dependent Variable: PROPPASS

Number of Observations Read	10
Number of Observations Used	10

Analysis of Variance							
Source	DF	Sum of Squares		F Value	Pr > F		
Model	1	0.83089	0.83089	46.73	0.0001		
Error	8	0.14225	0.01778				
Corrected Total	9	0.97315					

Root MSE	0.13335	R-Square	0.8538
Dependent Mean	0.68260	Adj R-Sq	0.8356
Coeff Var	19.53519		

Parameter Estimates										
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits				
Intercept	1	-13.49035	2.07377	-6.51	0.0002	-18.27247	-8.70822			
TEMP	1	-0.05283	0.00773	-6.84	0.0001	-0.07065	-0.03501			

Figure 13: SAS output for Exercise 3.80