Solution for HW2, MATH3805

1. (a)

$$
\begin{gathered}
Y=X \beta+\epsilon \\
X=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)^{T}, Y=\left(\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)^{T}
\end{gathered}
$$

Then we can write the derivatives of the sum of squared errors and set it equal to 0 . Then the normal equation is

$$
X^{\top} X \hat{\beta}-X^{\top} Y=0
$$

(b)
(c) $\left[\begin{array}{l}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} Y$ $\left(X^{T} X\right)^{-1} X^{T} Y=\frac{1}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left(\begin{array}{cc}\sum x_{i}^{2} & -\sum_{n} x_{i} \\ -\sum x_{i} & n\end{array}\right)\binom{\sum y_{i}}{\sum x_{i} y_{i}}$

So we have

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{y}-\bar{x} \hat{\beta}_{1}
\end{aligned}
$$

where $\bar{y}=\sum_{i=1}^{n} y_{i}$ and $\bar{x}=\sum_{i=1}^{n} x_{i}$ That is

$$
\begin{aligned}
& \hat{\beta}_{0}=\frac{\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{i} y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
& \hat{\beta}_{1}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
\end{aligned}
$$

(d)
(e)

$$
\left[\begin{array}{cc}
{\left[\begin{array}{cc}
\operatorname{var}\left(\hat{\beta}_{0}\right) & \operatorname{cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) \\
\operatorname{cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & \operatorname{var}\left(\hat{\beta}_{1}\right)
\end{array}\right]=\sigma^{2}\left(X^{T} X\right)^{-1}} \\
\operatorname{var}\left(\hat{\beta}_{0}\right)=\frac{\sigma^{2} \sum x_{i}^{2}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
\operatorname{var}\left(\hat{\beta}_{1}\right)=\frac{n \sigma^{2}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
\end{array}\right.
$$

2. Exercise B. 16
(a) $Y=(4,3,3,1,-1)^{T}, X=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2\end{array}\right)^{T}$
(b) $X^{T} X=\left(\begin{array}{ll}5 & 0 \\ 0 & 10\end{array}\right), X^{T} Y=\binom{10}{-12}$
(c) $\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y=\binom{2}{-1.2}$
(d) $\hat{y}=2-1.2 x$
3. Exercise B. 19

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \quad \text { vs } \quad H_{1}: \beta_{1} \neq 0 \\
& \quad s=0.7303 \\
& t=\frac{\hat{\beta}_{1}}{s_{\hat{\beta}_{1}}}=\frac{\hat{\beta}_{1}}{s \sqrt{c_{11}}}=-5.1962
\end{aligned}
$$

p-value: 0.01385 . or Reject region: $|t|>t_{\frac{\alpha}{2}, 3}$
Reject $H_{0}, \beta_{1} \neq 0$
4. Exercise B. 22

$$
\begin{gathered}
E(y \mid x=1)=0.8 \\
\operatorname{var}(E[y \mid x=1])=s^{2} x_{p}^{T}\left(X^{T} X\right)^{-1} x_{p}=0.16
\end{gathered}
$$

90% confidence interval for mean is $(-0.1413,1.7413)$
$E(y \mid x=1)$ will fall into the confidence interval with probability 90%.
Exercise B. 23

$$
\operatorname{var}(y \mid x=1)=s^{2}+s^{2} x_{p}^{T}\left(X^{T} X\right)^{-1} x_{p}=0.6933
$$

90% prediction interval is $(-1.1593,2.7593)$
y will fall into the prediction interval with probability 90%.
5. Exercise B. 30
(a)

$$
y=\left(\begin{array}{c}
5.2 \\
0.3 \\
-1.2 \\
2.2 \\
6.2 \\
5 \\
-0.1 \\
-1.1 \\
2.0 \\
6.1
\end{array}\right), X=\left(\begin{array}{ccc}
1 & -2 & 2 \\
1 & -1 & -1 \\
1 & 0 & -2 \\
1 & 1 & -1 \\
1 & 2 & 2 \\
1 & -2 & 2 \\
1 & -1 & -1 \\
1 & 0 & -2 \\
1 & 1 & -1 \\
1 & 2 & 2
\end{array}\right)
$$

(b) $\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y=(2.46,0.41,1.6143)^{T}$
$y=2.46+0.41 x_{1}+1.6143 x_{2}$
(c) $S S E=(Y-X \hat{\beta})^{T}(Y-X \hat{\beta})=2.4363$

$$
s^{2}=S S E /(7)=0.3480
$$

(d)

$$
\begin{aligned}
F-\text { value }= & \frac{\left[(y-\bar{y})^{T}(y-\bar{y})-S S E\right] / 2}{S S E / 7}=\frac{(78.7640-2.4363) / 2}{2.4363 / 7}=109.6534 \\
& p-\text { value }=1-F_{(2,7)}(109.6661)=0.0000 . \mathrm{or} \\
& F \text { - value }>F_{(2,7)}^{-1}(0.95)=4.74
\end{aligned}
$$

Reject H_{0}. The model contribute information for predicting y.
(e)

$$
R^{2}=\frac{S S R}{S S R+S S E}=0.969
$$

96.9% of y's variation in samples can be explained by the model.
(f)

$$
\begin{gathered}
\operatorname{var}(\hat{\beta})=s^{2}\left(X^{T} X\right)^{-1}=\left(\begin{array}{ccc}
0.0348 & 0 & 0 \\
0 & 0.0174 & 0 \\
0 & 0 & 0.0124
\end{array}\right) \\
t-\text { value }=\frac{\hat{\beta}}{s_{\hat{\beta}}}=\frac{0.41}{\sqrt{0.0174}}=3.1082
\end{gathered}
$$

p-value: 0.01713 . or $\mid t$-value $\mid>2.3646$
Reject $H_{0}, \beta_{1} \neq 0$
The practical implication is the extrusion pressure will effect the strength of the new plastic.
(g)

$$
\begin{gathered}
\hat{y}=x \hat{\beta}=4.8686 \\
\operatorname{Var}(E(\hat{y}))=s^{2} x^{T}\left(X^{T} X\right)^{-1} x=0.1541
\end{gathered}
$$

90% confidence interval for mean is

$$
\left(\hat{y} \pm t_{0.05,7} \sqrt{\operatorname{Var}(E(\hat{y}))}\right)=(4.1248,5.6124)
$$

(h)

$$
\operatorname{Var}(\hat{y})=s^{2}+s^{2} x^{T}\left(X^{T} X\right)^{-1} x=0.5022
$$

90% prediction interval is

$$
\left(\hat{y} \pm t_{0.05,7} \sqrt{\operatorname{Var}(\hat{y})}\right)=(3.5260,6.2111)
$$

6. Exercise 4.11
(a)

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}
$$

(b)

$$
\hat{y}=21087.951+108.451 x_{1}+557.910 x_{2}-340.166 x_{3}+85.681 x_{4}
$$

(c) Holding the value of the remaining variables fixed, the mean change in y for every 1 -unit increase in x_{1} is 108.451 . For x_{2}, the mean change is 557.910 . For x_{3}, the mean change is -340.166 . For x_{4}, the mean change is 85.681 .
(d) SPSS output:

T-statistic for $\beta_{1}: 1.222$ and p -value: $0.236>\alpha$. we can not reject H_{0}. So x_{2} is a useless predictor.
(e) $R^{2}=0.912 R_{a}^{2}=0.894$. R^{2} represents that 91.2% variation of y could be explained. And R_{a}^{2} represents that 89.4% variation in y can be explained when considering the sample size and the number of parameters. Like R^{2}, adjusted R^{2} also evaluates how many percent of the variation in y can be explained by the multiple regression model. However, unlike R^{2}, adjusted R^{2} takes into account (adjusted for) both the sample size and the number of parameters such that a model of more parameter will have a heavy penalty so that adjusted R^{2} cannot be forced to 1 by simply adding more and more parameters. Thus the R_{a}^{2} will be preferred as it takes the sample size and the number of parameters into account.
(f) F -value $=51.720 \mathrm{p}$-value $=0.0000$.
reject H_{0}, at least one should not be 0 .

Model: MODEL1
Dependent Variable: RFEWIDTH

Number of Observations Read	25
Number of Observations Used	25

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	4	49163	12291	51.72	$<.0001$
Error	20	4752.76913	237.63846		
Corrected Total	24	53915			

Root MSE	15.41553	R-Square	0.9118
Dependent Mean	88.32000	Adj R-Sq	0.8942
Coeff Var	17.45417		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	21088	18553	1.14	0.2691		
REDSHIFT	1	108.45084	88.73979	1.22	0.2359		
LINEFLUX	1	557.90980	315.99021	1.77	0.0927		
LUMINOSITY	1	-340.16553	320.76260	-1.06	0.3016		
AB1450	1	85.68102	6.27334	13.66	$<.0001$		

Figure 1: SAS output without intercept for Exercise 4.11
7. Exercise 4.13
(a) The first order model is:

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\beta_{5} x_{5}
$$

where RPM is x_{1}, CPRATIO is x_{2}, INLETTEMP is x_{3}, EXHTEMP is x_{4}, AIRFLOW is x_{5}, HEATRATE is y.
(b)
$\hat{y}=13614+0.08879 x_{1}+0.3519 x_{2}-9.2009 x_{3}+14.3939 x_{4}-0.8480 x_{5}$
(c) β_{0} represent the y-intercept of the line and β_{1} represent the slope. Holding the value of the remaining variables fixed, the mean change in y for every 1-unit increase in RPM x is 0.08879 . For CPRATIO $\left(x_{2}\right)$, the mean change is 0.3519 . For INLETTEMP $\left(x_{3}\right)$, the mean change is 9.2009 . For EXHTEMP $\left(x_{4}\right)$, the mean change is 14.3939. For AIRFLOW $\left(x_{5}\right)$, the mean change is -0.8480 .
(d) $s=458.8284$. It values the variation of y, is an estimator of σ. mean $\pm 2 s$ provide a rough confidence interval.
(e) The adjusted R^{2} is $0.9172 . R_{a}^{2}$ represents that 91.72% variation in y can be explained when considering the sample size and the number of parameters. Like R^{2}, adjusted R^{2} also evaluates how many percent of the variation in y can be explained by the multiple regression model. However, unlike R^{2}, adjusted R^{2} takes into account (adjusted for) both the sample size and the number of parameters such that a model of more parameter will have a heavy penalty so that adjusted R^{2} cannot be forced to 1 by simply adding more and more parameters. Thus the R_{a}^{2} will be preferred as it takes the sample size and the number of parameters into account.
(f) F -value is 147.30 , and P -value <0.0001. So the overall model is useful.
The SAS System
The REG Procedure
Model: MODEL1
Dependent Variable: HEATRATE

Number of Observations Read	67
Number of Observations Used	67

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	5	155055273	31011055	147.30	$<.0001$
Error	61	12841935	210524		
Corrected Total	66	167897208			

Root MSE	458.82843	R-Square	0.9235
Dependent Mean	11066	Adj R-Sq	0.9172
Coeff Var	4.14613		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$	
Intercept	1	13614	370.01294	15.65	$<.0001$	
RPM	1	0.08879	0.01391	6.38	$<.0001$	
CPRATIO	1	0.35190	29.55568	0.01	0.9905	
INLETTEMP	1	-9.20087	1.49920	-6.14	$<.0001$	
EXHTEMP	1	14.39385	3.46095	4.16	0.0001	
AIRFLOW	1	-0.84796	0.44211	-1.92	0.0598	

Figure 2: SAS output without intercept for Exercise 4.13

Exercise 4.24
(a) Under the condition $\mathrm{RPM}=7500$, $\mathrm{CPRATIO}=13.5$, $\mathrm{INLETTEMP}=1000$, EXHTEMP $=525$, AIRFLOW $=10.0, y$ will appear in the interval (11599.6, 13665.5) with probability 95%.
(b) Under the condition $\mathrm{RPM}=7500$, CPRATIO $=13.5$, INLETTEMP $=1000$, EXHTEMP $=525$, AIRFLOW $=10.0, E(y)$ will appear in the interval (12157.9, 13107.1) with probability 95%.
(c) Yes. The confidence interval only considers variance of $X \beta$, but the prediction interval should consider the sum of two variance of $X \beta$ and residual.

Exercise 4.32
(a) The linear order model is:

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4} \beta_{5} x_{5}+\beta_{6} x_{2} x_{5}+\beta_{7} x_{3} x_{5}
$$

where RPM is x_{1}, INLETTEMP is x_{2}, EXHTEMP is x_{3}, CPRATIO is x_{4}, AIRFLOW is x_{5}.
(b)

$$
\begin{aligned}
\hat{y}= & 13646-0.04560 x_{1}-12.6752 x_{2}+23.0025 x_{3}-3.0227 x_{4}+1.2882 x_{5} \\
& +0.0162 x_{2} x_{5}-0.0414 x_{3} x_{5}
\end{aligned}
$$

(c)

$$
H_{0}: \beta_{6}=0 \quad \text { vs } \quad H_{1}: \beta_{6} \neq 0
$$

The t-statistic for $x_{2} x_{5}$ is 4.40 and p -value is less than 0.0001 . So inlet temperature and air flow rate interact is useful to explain heat rate.
(d)

$$
H_{0}: \beta_{7}=0 . \quad \text { vs } \quad H_{1}: \beta_{7} \neq 0
$$

The t -statistic for $x_{3} x_{5}$ is -3.77 and p -value is less than 0.0004 . So exhaust temperature and air flow rate interact is useful to explain heat rate.
(e) part linear relationship between heat rate y and temperature (both inlet and exhaust) depends on air flow rate.

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: HEATRATE

Number of Observations Read	67
Number of Observations Used	67

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	7	158234406	22604915	138.02	$<.0001$
Error	59	9662802	163776		
Corrected Total	66	167897208			

Root MSE	404.69286	R-Square	0.9424
Dependent Mean	11066	Adj R-Sq	0.9356
Coeff Var	3.65694		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > $\mathbf{t} \mid$	
Intercept	1	13646	1068.17448	12.77	$<.0001$	
RPM	1	0.04599	0.01602	2.87	0.0057	
INLETTEMP	1	-12.67517	1.54155	-8.22	$<.0001$	
EXHTEMP	1	23.00252	3.76778	6.11	$<.0001$	
CPRATIO	1	-3.02265	26.41853	-0.11	0.9093	
AIRFLOW	1	1.28815	3.56266	0.36	0.7190	
IA	1	0.01615	0.00367	4.40	$<.0001$	
EA	1	-0.04143	0.01098	-3.77	0.0004	

Figure 3: SAS output without intercept for Exercise 4.32

Exercise 4.64
(a)

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\beta_{4} x_{1}^{2}+\beta_{5} x_{2}^{2}
$$

where PRM is x_{1}, CPR is x_{2}
(b) $H_{0}: \beta_{4}=\beta_{5}=0$ vs H_{1} : at least one are unequal to zero.
(c) Reduced:

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

Complete:

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\beta_{4} x_{1}^{2}+\beta_{5} x_{2}^{2}
$$

(d)

$$
S S E_{R}=25310639, S S E_{C}=19370350, M S E_{C}=317547
$$

(e) $F=\frac{\left(S S E_{R}-S S E_{C}\right) / 2}{\text { SSE }_{C} / 61}=9.3534$
(f) $F^{-1}(0.9 \mid 2,61)=2.3917$.

Thus the rejection region was $F>2.3917$.
(g) the curvature terms in the complete second-order model are useful.

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: HEATRATE

Number of Observations Read	67
Number of Observations Used	67

Analysis of Variance					
Source	DF	Sum of Squaroc	Mean Squaro	F Value	Pr > F
Model	3	142586570	47528857	118.30	$<.0001$
Error	63	25310639	401756		
Corrected Total	66	167897208			

Root MSE	633.84239	R-Square	0.8492
Dependent Mean	11066	Adj R-Sq	0.8421
Coeff Var	5.72761		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$	
Intercept	1	12065	418.52997	28.83	$<.0001$	
RPM	1	0.16969	0.03467	4.89	$<.0001$	
CPRATIO	1	-146.06557	26.65913	-5.48	$<.0001$	
RC	1	-0.00242	0.00312	-0.78	0.4401	

Figure 4: SAS output without intercept for Exercise 4.64

The SAS System

The REG Procedure Model: MODEL1
Dependent Variable: HEATRATE

Number of Observations Read	67
Number of Observations Used	67

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	148526859	29705372	93.55	$<.0001$
Error	61	19370350	317547		
Corrected Total	66	167897208			

Root MSE	563.51284	R-Square	0.8846
Dependent Mean	11066	Adj R-Sq	0.8752
Coeff Var	5.09209		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	15583	1142.85985	13.63	$<.0001$		
RPM	1	0.07823	0.11044	0.71	0.4814		
CPRATIO	1	-523.13391	103.37571	-5.06	$<.0001$		
RPMSQ	1	$-1.80598 \mathrm{E}-7$	0.00000197	-0.09	0.9272		
CPRSQ	1	8.84007	2.16320	4.09	0.0001		
RC	1	0.00445	0.00558	0.80	0.4282		

Figure 5: SAS output without intercept for Exercise 4.64
8. Exercise 4.26
(a) F -value $=226.35$ and p -value <0.001, the overall model is useful.
(b) t -value is -3.09 . Under $\alpha=0.05$, this variable is significant.
(c) Given $x_{2}=1, \hat{y}=0.044+0.269 x_{1}$
(d) Given $x_{2}=7, \hat{y}=0.308-0.673 x_{1}$
(e) In part c, y is positive related to x. when x increase, y will increase. For part d, y is negative related to x.

Figure 6: SAS output without intercept for Exercise 4.26
9. Exercise 4.37
(a) not exact linear relationship.
(b)

$$
H_{0}: \beta_{2}=0 . v s . H_{1}: \beta_{2} \neq 0
$$

t -value is 2.69 and p -value is 0.031 .
Under $\alpha=0.10$, the quadratic variable is significant.

Figure 7: Scatter plot for Exercise 4.37

The SAS System

The REG Procedure Model: MODEL1
Dependent Variable: ENE

Number of Observations Read	10
Number of Observations Used	10

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	94.65852	47.32926	9.83	0.0093
Error	7	33.70548	4.81507		
Corrected Total	9	128.36400			

Root MSE	2.19433	R-Square	0.7374
Dependent Mean	8.94000	Adj R-Sq	0.6624
Coeff Var	24.54504		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	13.71274	1.30625	10.50	$<.0001$		
WEIGHT	1	-0.10184	0.02881	-3.53	0.0095		
WEIGHTSQ	1	0.00027348	0.00010160	2.69	0.0310		

Figure 8: SAS output without intercept for Exercise 4.37
10. Exercise 4.59
(a)

$$
\hat{y}=80.22+156.5 x_{1}+272.84 x_{2}+760.1 x_{1} x_{2}-42.3 x_{1}^{2}+47 x_{1}^{2} x_{2}
$$

(b)

$$
H_{0}: \beta_{1}=\ldots=\beta_{5}=0 \quad \text { vs } \quad H_{1}: \exists i, \beta_{i} \neq 0
$$

F -value is 417.05 , and p -value <0.0001. So the overall model is useful.
(c) There is no enough evidence to indicate that y is curvilinearly related to x_{1}. We should compare with a reduced model:

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

Exercise 4.69
(a) In the null model, we consider the curvilinearly relationship in two ways: 1 . x_{1} is curvilinearly related to y directly; $2 x_{1}$ is curvilinearly related to y based on x_{2}.
(b) $H_{0}: \beta_{4}=\beta_{5}=0$ vs H_{1} : at least one is not 0 .
(c) The curvilinearly variables of x_{1} are useless.
(d) $F=\frac{\left(S S E_{R}-S S E_{C}\right) / 2}{S S E_{C} /(n-6)}=\frac{(89171-88819) / 2}{88819 / 30}=0.0594$
11. Exercise 4.88
(a)

$$
\hat{y}=10.6590-0.28161 x_{1}+0.00267 x_{1}^{2}
$$

(b) $R_{a}^{2}=0.8770(1$ point) the percentage of variation of sample with penalty of degree can be explained by the model.
(c) $s=4.5486$, estimate σ, reflect the variation of y .
(d)

$$
H_{0}: \beta_{1}=\beta_{2}=0 . v s . H_{1}: \exists i, \beta_{i} \neq 0
$$

F -value is 33.08 , and P -value is 0.0003 . So the overall model is useful.
(e)

$$
H_{0}: \beta_{2}=0 . v s . H_{1}: \beta_{2} \neq 0
$$

t -value is 2.13 and P -value is $0.0706>0.05$. The evidence is not enough to conclude that the percentage improvement y increase more quickly for more costly fleet modifications than for less costly fleet modifications.
(f)

$$
\begin{gathered}
H_{0}: \beta_{3}=\ldots=\beta_{5}=0 . v s . H_{1}: \exists 3 \leq i \leq 5, \beta_{i} \neq 0 \\
F=\frac{\left(S S E_{R}-S S E_{C}\right) / 3}{\operatorname{SSE}_{C} /(n-6)}=0.3301, F^{-1}(0.95 \mid 3,4)=6.5914
\end{gathered}
$$

The type of base x_{2} is useless.

The SAS System

The REG Procedure Model: MODEL1
Dependent Variable: PERCENT

Number of Observations Read	10
Number of Observations Used	10

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\operatorname{Pr}>$ F
Model	2	1368.77501	684.38750	33.08	0.0003
Error	7	144.82499	20.68928		
Corrected Total	9	1513.60000			

Root MSE	4.54855	R-Square	0.9043
Dependent Mean	17.20000	Adj R-Sq	0.8770
Coeff Var	26.44504		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t \|}\|$
Intercept	1	10.65904	14.55009	0.73	0.4876
COST	1	-0.28161	0.28088	-1.00	0.3494
COSTSQ	1	0.00267	0.00125	2.13	0.0706

Figure 9: SAS output without intercept for Exercise 4.88

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: PERCENT

$$
\begin{array}{|l|l|}
\hline \text { Number of Observations Read } & 10 \\
\hline \text { Number of Observations Used } & 10 \\
\hline
\end{array}
$$

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	1397.51481	279.50296	9.63	0.0238
Error	4	116.08519	29.02130		
Corrected Total	9	1513.60000			

Root MSE	5.38714	R-Square	0.9233
Dependent Mean	17.20000	Adj R-Sq	0.8274
Coeff Var	31.32059		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	2.03190	22.64502	0.09	0.9328		
COST	1	-0.10364	0.48513	-0.21	0.8413		
BASE	1	49.76686	52.36930	0.95	0.3958		
COSTSQ	1	0.00189	0.00234	0.81	0.4643		
CB	1	-0.87476	0.93575	-0.93	0.4028		
COSTSQBASE	1	0.00353	0.00398	0.89	0.4246		

Figure 10: SAS output without intercept for Exercise 4.88

