Solution for HW2, MATH3805

1. (a)

$$Y = X\beta + \epsilon$$
$$X = \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{pmatrix}^T, Y = \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix}^T$$

Then we can write the derivatives of the sum of squared errors and set it equal to 0. Then the normal equation is

$$X^{\top}X\hat{\beta} - X^{\top}Y = 0$$

(b)

(c)
$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = (X^T X)^{-1} X^T Y$$

 $(X^T X)^{-1} X^T Y = \frac{1}{n \sum x_i^2 - (\sum x_i)^2} \begin{pmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{pmatrix} \begin{pmatrix} \sum y_i \\ \sum x_i y_i \end{pmatrix}$

So we have

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \bar{x}\hat{\beta}_{1}$$

where $\bar{y} = \sum_{i=1}^{n} y_i$ and $\bar{x} = \sum_{i=1}^{n} x_i$ That is

$$\hat{\beta}_{0} = \frac{\sum x_{i}^{2} \sum y_{i} - \sum x_{i} \sum x_{i} y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$
$$\hat{\beta}_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

(d)

(e)

$$\begin{bmatrix} \operatorname{var}\left(\hat{\beta}_{0}\right) & \operatorname{cov}\left(\hat{\beta}_{0},\hat{\beta}_{1}\right) \\ \operatorname{cov}\left(\hat{\beta}_{0},\hat{\beta}_{1}\right) & \operatorname{var}\left(\hat{\beta}_{1}\right) \end{bmatrix} = \sigma^{2} \left(X^{T}X\right)^{-1}$$
$$\operatorname{var}\left(\hat{\beta}_{0}\right) = \frac{\sigma^{2} \sum x_{i}^{2}}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}$$
$$\operatorname{var}\left(\hat{\beta}_{1}\right) = \frac{n\sigma^{2}}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}$$

2. Exercise B.16

(a)
$$Y = (4, 3, 3, 1, -1)^T, X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix}^T$$

(b) $X^T X = \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix}, X^T Y = \begin{pmatrix} 10 \\ -12 \end{pmatrix}$
(c) $\hat{\beta} = (X^T X)^{-1} X^T Y = \begin{pmatrix} 2 \\ -1.2 \end{pmatrix}$
(d) $\hat{y} = 2 - 1.2x$

3. Exercise B.19

$$H_0: \beta_1 = 0$$
 vs $H_1: \beta_1 \neq 0$
 $s = 0.7303$
 $t = \frac{\hat{\beta}_1}{s_{\hat{\beta}_1}} = \frac{\hat{\beta}_1}{s\sqrt{c_{11}}} = -5.1962$

p-value: 0.01385. or Reject region: $|t|>t_{\frac{\alpha}{2},3}$ Reject $H_0,\beta_1\neq 0$

4. Exercise B.22

$$E(y|x = 1) = 0.8$$

var(E[y|x = 1]) = s²x_p^T (X^TX)⁻¹ x_p = 0.16

90% confidence interval for mean is (-0.1413, 1.7413) E(y|x = 1) will fall into the confidence interval with probability 90%. Exercise B.23 $\operatorname{var}(y|x = 1) = s^2 + s^2 x_p^T (X^T X)^{-1} x_p = 0.6933$ 90% prediction interval is (-1.1593, 2.7593)y will fall into the prediction interval with probability 90%. 5. Exercise B.30

(a)

$$y = \begin{pmatrix} 5.2\\ 0.3\\ -1.2\\ 2.2\\ 6.2\\ 5\\ -0.1\\ -1.1\\ 2.0\\ 6.1 \end{pmatrix}, X = \begin{pmatrix} 1 & -2 & 2\\ 1 & -1 & -1\\ 1 & 0 & -2\\ 1 & 1 & -1\\ 1 & 2 & 2\\ 1 & -2 & 2\\ 1 & -2 & 2\\ 1 & -2 & 2\\ 1 & -2 & 2\\ 1 & -1 & -1\\ 1 & 0 & -2\\ 1 & 1 & -1\\ 1 & 2 & 2 \end{pmatrix}$$

(b) $\hat{\beta} = (X^T X)^{-1} X^T Y = (2.46, 0.41, 1.6143)^T$
 $y = 2.46 + 0.41x_1 + 1.6143x_2$

(c)
$$SSE = (Y - X\hat{\beta})^T (Y - X\hat{\beta}) = 2.4363$$

 $s^2 = SSE/(7) = 0.3480$

(d)

$$F-value = \frac{\left[(y-\bar{y})^T(y-\bar{y}) - SSE\right]/2}{SSE/7} = \frac{(78.7640 - 2.4363)/2}{2.4363/7} = 109.6534$$
$$p - \text{value} = 1 - F_{(2,7)}(109.6661) = 0.0000.\text{or}$$
$$F - \text{value} > F_{(2,7)}^{-1}(0.95) = 4.74$$

Reject H_0 . The model contribute information for predicting y. (e)

$$R^2 = \frac{SSR}{SSR + SSE} = 0.969$$

96.9% of y's variation in samples can be explained by the model.

(f)

$$\operatorname{var}(\hat{\beta}) = s^2 \left(X^T X \right)^{-1} = \begin{pmatrix} 0.0348 & 0 & 0 \\ 0 & 0.0174 & 0 \\ 0 & 0 & 0.0124 \end{pmatrix}$$
$$t - \operatorname{value} = \frac{\hat{\beta}}{s_{\hat{\beta}}} = \frac{0.41}{\sqrt{0.0174}} = 3.1082$$

p-value: 0.01713. or |t-value| > 2.3646Reject $H_0, \beta_1 \neq 0$

The practical implication is the extrusion pressure will effect the strength of the new plastic.

(g)

$$\hat{y} = x\beta = 4.8686$$

$$\operatorname{Var}(E(\hat{y})) = s^2 x^T \left(X^T X\right)^{-1} x = 0.1541$$
90% confidence interval for mean is
$$\left(\hat{y} \pm t_{0.05,7} \sqrt{\operatorname{Var}(E(\hat{y}))}\right) = (4.1248, 5.6124)$$

(h)

$$\operatorname{Var}(\hat{y}) = s^{2} + s^{2}x^{T} \left(X^{T}X\right)^{-1} x = 0.5022$$

)

90% prediction interval is

$$\left(\hat{y} \pm t_{0.05,7}\sqrt{\operatorname{Var}(\hat{y})}\right) = (3.5260, 6.2111)$$

6. Exercise 4.11

(a)

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

(b)

 $\hat{y} = 21087.951 + 108.451x_1 + 557.910x_2 - 340.166x_3 + 85.681x_4$

- (c) Holding the value of the remaining variables fixed, the mean change in y for every 1-unit increase in x_1 is 108.451. For x_2 , the mean change is 557.910. For x_3 , the mean change is -340.166. For x_4 , the mean change is 85.681.
- (d) SPSS output:

T-statistic for β_1 : 1.222 and p-value: $0.236 > \alpha$. we can not reject H_0 . So x_2 is a useless predictor.

- (e) $R^2 = 0.912 R_a^2 = 0.894$. R^2 represents that 91.2% variation of y could be explained. And R_a^2 represents that 89.4% variation in y can be explained when considering the sample size and the number of parameters. Like R^2 , adjusted R^2 also evaluates how many percent of the variation in y can be explained by the multiple regression model. However, unlike R^2 , adjusted R^2 takes into account (adjusted for) both the sample size and the number of parameters such that a model of more parameter will have a heavy penalty so that adjusted R^2 cannot be forced to 1 by simply adding more and more parameters. Thus the R_a^2 will be preferred as it takes the sample size and the number of parameters.
- (f) F-value = 51.720 p-value = 0.0000. reject H_0 , at least one should not be 0.

	۵)epe		del: M Variat		el1 Rfewig	отн				
	N	umbe	er of (Observa	atio	ns Read	1 2	5			
	Number of Observations Used 25										
	Analysis of Variance										
				Sum of	_	Mean					
Source		DF		quares		Square		Valu	e Pr>		
Model		4		49163		12291		51.7	2 <.000		
Error		20	475	2.76913	2	37.63846	5				
Corrected T	24		53915								
Roo	t MS	F		15.415	53	R-Squa	iro	0.911	18		
		-	lean			Adj R-S		0.894			
Coe			loun	17.454				0.004	-		
				11.43411							
			Para	meter E	sti	nates					
Variable		DF		meter imate	St	andard Error	t V	alue	Pr > t		
Intercept		1		21088		18553		1.14	0.2691		
REDSHIFT	REDSHIFT 1 10			45084	8	8.73979		1.22	0.2359		
LINEFLUX 1 55			557	90980	31	5.99021		1.77	0.0927		
LUMINOS	ITY	1	-340	16553	32	0.76260		1.06	0.3016		
AB1450		1	85	68102		6.27334	1	3.66	<.0001		

Figure 1: SAS output without intercept for Exercise 4.11

- 7. Exercise 4.13
 - (a) The first order model is:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5$$

where RPM is x_1 , CPRATIO is x_2 , INLETTEMP is x_3 , EX-HTEMP is x_4 , AIRFLOW is x_5 , HEATRATE is y.

(b)

$$\hat{y} = 13614 + 0.08879x_1 + 0.3519x_2 - 9.2009x_3 + 14.3939x_4 - 0.8480x_5$$

- (c) β_0 represent the *y*-intercept of the line and β_1 represent the slope. Holding the value of the remaining variables fixed, the mean change in *y* for every 1-unit increase in RPM *x* is 0.08879. For CPRA-TIO (x_2), the mean change is 0.3519. For INLETTEMP (x_3), the mean change is 9.2009. For EXHTEMP (x_4), the mean change is 14.3939. For AIRFLOW (x_5), the mean change is -0.8480.
- (d) s = 458.8284. It values the variation of y, is an estimator of σ . mean $\pm 2s$ provide a rough confidence interval.
- (e) The adjusted R^2 is 0.9172. R_a^2 represents that 91.72% variation in y can be explained when considering the sample size and the number of parameters. Like R^2 , adjusted R^2 also evaluates how many percent of the variation in y can be explained by the multiple regression model. However, unlike R^2 , adjusted R^2 takes into account (adjusted for) both the sample size and the number of parameters such that a model of more parameter will have a heavy penalty so that adjusted R^2 cannot be forced to 1 by simply adding more and more parameters. Thus the R_a^2 will be preferred as it takes the sample size and the number of parameters into account.
- (f) F-value is 147.30, and P -value < 0.0001. So the overall model is useful.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: HEATRATE

 Number of Observations Read
 67

 Number of Observations Used
 67

	Analysis of Variance											
Source DF Sum of Mean F Value												
Model	5	155055273	31011055	147.30	<.0001							
Error	61	12841935	210524									
Corrected Total	66	167897208										

Root MSE	458.82843	R-Square	0.9235
Dependent Mean	11066	Adj R-Sq	0.9172
Coeff Var	4.14613		

	Parameter Estimates												
Variable DF Estimate Error t Value Pr													
Intercept	1	13614	370.01294	15.65	<.0001								
RPM	1	0.08879	0.01391	6.38	<.0001								
CPRATIO	1	0.35190	29.55568	0.01	0.9905								
INLETTEMP	1	-9.20087	1.49920	-6.14	<.0001								
EXHTEMP	1	14.39385	3.46095	4.16	0.0001								
AIRFLOW	1	-0.84796	0.44211	-1.92	0.0598								

Figure 2: SAS output without intercept for Exercise 4.13

Exercise 4.24

- (a) Under the condition RPM=7500, CPRATIO=13.5, INLETTEMP=1000, EXHTEMP =525, AIRFLOW=10.0, y will appear in the interval (11599.6, 13665.5) with probability 95%.
- (b) Under the condition RPM=7500, CPRATIO=13.5, INLETTEMP=1000, EXHTEMP =525, AIRFLOW=10.0, E(y) will appear in the interval (12157.9, 13107.1) with probability 95%.
- (c) Yes. The confidence interval only considers variance of $X\beta$, but the prediction interval should consider the sum of two variance of $X\beta$ and residual.

Exercise 4.32

(a) The linear order model is:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 \beta_5 x_5 + \beta_6 x_2 x_5 + \beta_7 x_3 x_5$$

where RPM is x_1 , INLETTEMP is x_2 , EXHTEMP is x_3 , CPRA-TIO is x_4 , AIRFLOW is x_5 .

(b)

$$\hat{y} = 13646 - 0.04560x_1 - 12.6752x_2 + 23.0025x_3 - 3.0227x_4 + 1.2882x_5 + 0.0162x_2x_5 - 0.0414x_3x_5$$

(c)

$$H_0: \beta_6 = 0 \quad vs \quad H_1: \beta_6 \neq 0$$

The t-statistic for x_2x_5 is 4.40 and p-value is less than 0.0001. So inlet temperature and air flow rate interact is useful to explain heat rate.

(d)

 $H_0: \beta_7 = 0.$ vs $H_1: \beta_7 \neq 0$

The t-statistic for x_3x_5 is -3.77 and p-value is less than 0.0004. So exhaust temperature and air flow rate interact is useful to explain heat rate.

(e) part linear relationship between heat rate y and temperature (both inlet and exhaust) depends on air flow rate.

				The	SAS	Sys	tem					
The REG Procedure Model: MODEL1 Dependent Variable: HEATRATE												
		Nur	nbei	r of	Obser	vatio	ns Read	67	7			
		Nur	nbei	r of	Obser	vatio	ns Used	67	7			
Analysis of Variance												
SourceDFSum of SquaresMean SquarePr > F												
Mode	1		7	15	823440	6 22	2604915	1	38.02	<.0001		
Error												
Corrected Total 66 167897208												
	Root N	ISE			404.6	9286	R-Squ	are	0.94	24		
	Depen	den	nt Me	an	1	1066	Adj R-	Sq 0.935		56		
	Coeff \	/ar			3.6	5694						
			_			F						
					meter							
Vari	able	DI			neter mate	Sta	andard Error	t V	alue	Pr > t		
Inter	rcept		1		13646	1068	8.17448	12.77		<.0001		
RPM			1	0.0	04599	(0.01602		2.87	0.0057		
INLE	TTEMP		1	-12.0	67517	1	.54155	-	8.22	<.0001		
EXHTEMP 1 23			23.	00252	3	8.76778		6.11	<.0001			
CPR	ΑΤΙΟ	1 -3.		-3.	02265	26	6.41853	-	0.11	0.9093		
	IRFLOW 1 1.		1.3	28815	3	8.56266		0.36	0.7190			
AIRF	LOW					0.00367						
AIRF IA	LOW		1	0.0	01615	0	0.00367		4.40	<.0001		

Figure 3: SAS output without intercept for Exercise 4.32

Exercise 4.64

(a)

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2$$

where PRM is x_1 , CPR is x_2

- (b) $H_0: \beta_4 = \beta_5 = 0$ vs $H_1:$ at least one are unequal to zero.
- (c) Reduced:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Complete:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2$$

(d)

$$SSE_R = 25310639, SSE_C = 19370350, MSE_C = 317547$$

- (e) $F = \frac{(SSE_R SSE_C)/2}{SSE_C/61} = 9.3534$
- (f) $F^{-1}(0.9|2, 61) = 2.3917.$

Thus the rejection region was F > 2.3917.

(g) the curvature terms in the complete second-order model are useful.

The SAS System The REG Procedure Model: MODEL1 Dependent Variable: HEATRATE														
Number of Observations Read 67														
			Nun	nber	of	Obser	vat	tion	is Use	d	67			
Analysis of Variance														
Source DF Sum of Mean F Value Pr > F														
Model 3 142586570 47528857 118.30 <.000											<.0001			
Er	гог			63	2	53106	39		40175	6				
Co	orrec	ted To	otal	66	16	78972	08							
		Root M	ISE			633.8423			R-Sq	lua	re	0.8	492	2
		Depen	den	t Mea	an	an 1'		66	Adj l	R-Sq		0.8	421	
		Coeff	Var			5.7	72761							
				P	ага	mete	r Es	stin	nates					
	Var	iable	DF			neter mate	St		dard Error	t١	/al	ue	Pr	> t
	Inte	Intercept 1				2065	41	8.5	2997		28.	83	<.0	001
	RPI	M	1		6969		0.0	3467	4.8		89	<.0	001	
	CPI	RATIO	1	-14	6.0	6557	2	6.6	5913	-5.		48 <.0		001
	RC		1 -0.0			0.003		0312	312 -0.		78	0.4	401	

Figure 4: SAS output without intercept for Exercise 4.64

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: HEATRATE

Number of Observations Read67Number of Observations Used67

Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	5	148526859	29705372	93.55	<.0001						
Error	61	19370350	317547								
Corrected Total	66	167897208									

Root MSE	563.51284	R-Square	0.8846
Dependent Mean	11066	Adj R-Sq	0.8752
Coeff Var	5.09209		

	Parameter Estimates												
Variable	DF	Parameter Estimate	t Value	Pr > t									
Intercept	1	15583	1142.85985	13.63	<.0001								
RPM	1	0.07823	0.11044	0.71	0.4814								
CPRATIO	1	-523.13391	103.37571	-5.06	<.0001								
RPMSQ	1	-1.80598E-7	0.00000197	-0.09	0.9272								
CPRSQ	1	8.84007	2.16320	4.09	0.0001								
RC	1	0.00445	0.00558	0.80	0.4282								

Figure 5: SAS output without intercept for Exercise 4.64

- 8. Exercise 4.26
 - (a) F-value= 226.35 and p-value< 0.001, the overall model is useful.
 - (b) t-value is -3.09. Under $\alpha = 0.05$, this variable is significant.
 - (c) Given $x_2 = 1$, $\hat{y} = 0.044 + 0.269x_1$
 - (d) Given $x_2 = 7$, $\hat{y} = 0.308 0.673x_1$
 - (e) In part c, y is positive related to x. when x increase, y will increase. For part d, y is negative related to x.

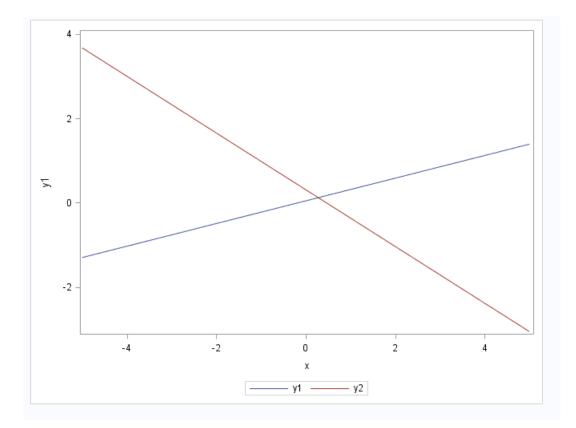


Figure 6: SAS output without intercept for Exercise 4.26

- 9. Exercise 4.37
 - (a) not exact linear relationship.
 - (b)

$$H_0: \beta_2 = 0.vs.H_1: \beta_2 \neq 0$$

t-value is 2.69 and p-value is 0.031.

Under $\alpha = 0.10$, the quadratic variable is significant.

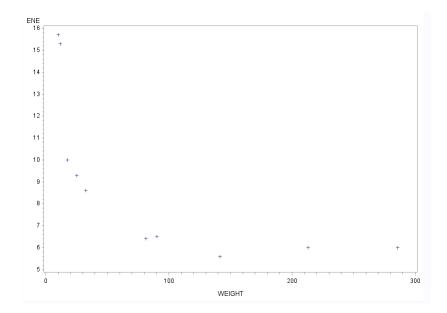


Figure 7: Scatter plot for Exercise 4.37

			Т	'ne	SAS	Sv	/s	tem				
			т	he Mo	REG I del: I	oroc MOD	;e)E	dure				
Number of Observations Read10Number of Observations Used10												
Sour	ce		DF		Sum quar		5	Mean Square	F١	Value	P	r > F
Mode	el		2	9	94.65852		47.32926		9.83		0.	0093
Error			7	3	3.7054	48	4	.81507				
Corre	ected T	otal	9	12	8.3640	00						
	Root I	MSE			2.194		3	R-Squa	are	0.737	74	
	Deper	nden	t Me	an	8.94	4000)	Adj R-S	Sq	0.662	24	
	Coeff	Var			24.54	4504	ł					
			Р	arai	meter	Est	in	nates				
Varia	able		neter nate	S	ta	ndard Error	t Value		Pr	> t		
Inter	Intercept 1			13.7	1274		1	.30625	10.50		<.0	001
WEI	WEIGHT 1			-0.1	0184		0	.02881	-3.53		0.0095	
WEI	WEIGHTSQ 1 0.000			002	7348	0.0	00	010160		2.69	0.0	310

Figure 8: SAS output without intercept for Exercise 4.37

10. Exercise 4.59

(a)

$$\hat{y} = 80.22 + 156.5x_1 + 272.84x_2 + 760.1x_1x_2 - 42.3x_1^2 + 47x_1^2x_2$$

(b)

$$H_0: \beta_1 = \ldots = \beta_5 = 0 \quad vs \quad H_1: \exists i, \beta_i \neq 0$$

F-value is 417.05, and p-value < 0.0001. So the overall model is useful.

(c) There is no enough evidence to indicate that y is curvilinearly related to x_1 . We should compare with a reduced model:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Exercise 4.69

- (a) In the null model, we consider the curvilinearly relationship in two ways: 1. x_1 is curvilinearly related to y directly; $2x_1$ is curvilinearly related to y based on x_2 .
- (b) $H_0: \beta_4 = \beta_5 = 0$ vs $H_1:$ at least one is not 0.
- (c) The curvilinearly variables of x_1 are useless.

(d)
$$F = \frac{(SSE_R - SSE_C)/2}{SSE_C/(n-6)} = \frac{(89171 - 88819)/2}{88819/30} = 0.0594$$

11. Exercise 4.88

(a)

$$\hat{y} = 10.6590 - 0.28161x_1 + 0.00267x_1^2$$

- (b) $R_a^2 = 0.8770(1 \text{ point})$ the percentage of variation of sample with penalty of degree can be explained by the model.
- (c) s = 4.5486, estimate σ , reflect the variation of y.
- (d)

$$H_0: \beta_1 = \beta_2 = 0.vs.H_1: \exists i, \beta_i \neq 0$$

F-value is 33.08 , and P -value is 0.0003. So the overall model is useful.

(e)

$$H_0:\beta_2=0.vs.H_1:\beta_2\neq 0$$

t-value is 2.13 and P-value is 0.0706 > 0.05. The evidence is not enough to conclude that the percentage improvement y increase more quickly for more costly fleet modifications than for less costly fleet modifications. (f)

$$H_0: \beta_3 = \dots = \beta_5 = 0.vs.H_1: \exists 3 \le i \le 5, \beta_i \ne 0$$
$$F = \frac{(SSE_R - SSE_C)/3}{SSE_C/(n-6)} = 0.3301, F^{-1}(0.95|3, 4) = 6.5914$$

The type of base x_2 is useless.

			D		The I Mo	REG I del: I	roc MOD	edure EL1 eR		ІТ				
	Number of Observations Read 10													
	Number of Observations Used									10)			
					Analy	ysis o	f Va	riance	•					
So	Source DF Sum of Mean Square F Value Pr > F												> F	
Мо	Model 2 13					1368.7750		684.38750			33	.08	0.00	003
Err	ог			7	14	4.8249	99	20.68	928					
Co	rrec	ted To	tal	9	151	3.6000	00							
		Root I	MSE			4.54	1855	R-So	quar	е	0.9	043]	
		Deper	ndei	nt M	ean	17.20	0000 Adj		R-So	9	0.8770			
		Coeff	Var			26.44	1504							
				F	^o arai	neter	Est	imate	5					
	Variable DF Esti					eter nate	Sta	ndard Error		/alı	alue Pr		> t	
	Intercept 1			10.65904		14.	14.55009		0.73		0.4876			
	СО	ST	1		-0.28	8161	0.	28088		-1.	00	0.3	494	
	COSTSQ 1 0.0			0.0	0267	0.00125			2.13 0.		0.0	706		

Figure 9: SAS output without intercept for Exercise 4.88

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: PERCENT

Number of Observations Read10Number of Observations Used10

	Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F							
Model	5	1397.51481	279.50296	9.63	0.0238							
Error	4	116.08519	29.02130									
Corrected Total	9	1513.60000										

Root MSE	5.38714	R-Square	0.9233
Dependent Mean	17.20000	Adj R-Sq	0.8274
Coeff Var	31.32059		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	2.03190	22.64502	0.09	0.9328		
COST	1	-0.10364	0.48513	-0.21	0.8413		
BASE	1	49.76686	52.36930	0.95	0.3958		
COSTSQ	1	0.00189	0.00234	0.81	0.4643		
СВ	1	-0.87476	0.93575	-0.93	0.4028		
COSTSQBASE	1	0.00353	0.00398	0.89	0.4246		

Figure 10: SAS output without intercept for Exercise 4.88