Solution for HW3, MATH3805

1. Exercise 5.7

- (a) (i) first-order;
 - (ii) third-order;
 - (iii) first-order;
 - (iv) second-order.
- (b) (i) $E(y) = \beta_0 + \beta_1 x$
 - (ii) $E(y) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
 - (iii) $E(y) = \beta_0 + \beta_1 x$
 - (iv) $E(y) = \beta_0 + \beta_1 x + \beta_2 x^2$
- (c) (i) $\beta_1 > 0$ (ii) $\beta_3 > 0$
 - (iii) $\beta_1 < 0$
 - (iv) $\beta_2 < 0$
- 2. Exercise 5.17
 - (a) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_4 + \beta_4 x_1 x_2 + \beta_5 x_1 x_4 + \beta_6 x_2 x_4 + \beta_7 x_1^2 + \beta_8 x_2^2 + \beta_9 x_4^2$
 - (b) $H_0: \beta_1 = \beta_2 = \ldots = \beta_9 = 0$ v.s. $H_1:$ at least one $\beta_i \neq 0$ F-test statistic is 613.27(SAS). P-value $< 0.0001 < \alpha$. so reject H_0 . we have enough evidence to conclude that the overall model is statistically useful for predicting y.
 - (c) compare a reduced model:

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_4 + \beta_4 x_1 x_4 + \beta_5 x_1 x_4 + \beta_6 x_2 x_4$$

$$H_0: \ \beta_7 = \beta_8 = \beta_9 = 0 \text{ v.s. } H_1: \text{ at least one } \beta_i \neq 0, i = 7, 8, 9$$

$$F = \frac{\left(\frac{\text{SSE}_r - \text{SSE}_c}{g}\right)}{\left(\frac{\text{SSE}_c}{n - (k+1)}\right)} = \frac{\left(\frac{3314.94919 - 146.12634}{3}\right)}{\left(\frac{146.12634}{25 - 10}\right)} = 108.4275$$

so reject H_0 . we have enough evidence to conclude that the curvilinear terms is statistically useful for predicting y.

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	E Value	Pr > F					
Model	9	53769	5974.36818	613.27	<.0001					
Error	15	146.12634	9.74176							
Corrected Total	24	53915								

Root MSE	3.12118	R-Square	0.9973
Dependent Mean	88.32000	Adj R-Sq	0.9957
Coeff Var	3.53394		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	10283	2335.56968	4.40	0.0005
REDSHIFT	1	276.75689	147.03327	1.88	0.0793
LINEFLUX	1	3325.18799	476.53498	6.98	<.0001
AB1450	1	1301.30580	115.21604	11.29	<.0001
RL	1	41.97757	14.32647	2.93	0.0103
RA	1	15.98078	4.23728	3.77	0.0018
LA	1	207.37869	11.82790	17.53	<.0001
REDSHIFTSQ	1	0.98954	4.30238	0.23	0.8212
LINEFLUXSQ	1	266.55556	24.84031	10.73	<.0001
AB1450SQ	1	40.21654	2.42805	16.56	<.0001

Figure 1: SAS output without intercept for Exercise 5.17

Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	6	50600	8433.41514	45.79	<.0001						
Error	18	3314.94919	184.16384								
Corrected Total	24	53915									

Root MSE	13.57070	R-Square	0.9385
Dependent Mean	88.32000	Adj R-Sq	0.9180
Coeff Var	15.36537		

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t					
Intercept	1	-5590.24207	4472.44114	-1.25	0.2273					
REDSHIFT	1	-826.71928	468.64057	-1.76	0.0947					
LINEFLUX	1	-216.24176	355.58876	-0.61	0.5507					
AB1450	1	625.47619	223.35634	2.80	0.0118					
RL	1	-83.23183	41.00448	-2.03	0.0574					
RA	1	-15.71527	13.16828	-1.19	0.2482					
LA	1	35.57030	17.14111	2.08	0.0526					

Figure 2: SAS output without intercept for Exercise 5.17

- (a) $\bar{x} = 33$, $s_x = 2.16025$. The coding system equation: u = (x - 33)/2.16025
- (b) x = [30, 31, 32, 33, 34, 35, 36] $\rightarrow u = [-1.38873, -0.92582, -0.46291, 0, 0.46291, 0.92582, 1.38873]$

(c)
$$\operatorname{cor}(x, x^2) = \frac{\operatorname{cov}(x, x^2)}{\sqrt{\operatorname{var}(x)\operatorname{var}(x^2)}} = 0.99966$$

(d) $\operatorname{cor}(u, u^2) = 0$

(e)
$$E(y) = 37.57143 - 0.46291u - 5.3333u^2$$

				Α	nal	ysis o	f V	ar	iance					
S	Source			DF	Sum (Square		of es	Mean Square		n re F	F Value		Pr > I	
M	Model		2	11	1.000	00	5	5.5000	0	4	4.40	0.001		
E	Error			4		5.000	00		1.2500	0				
С	Corrected Total			6	11	6.000	00							
	Root MSE				1.11803 R-Sq		uare	are 0.956		9				
		Deper	Iden	t Me	an	33.00000 4		Adj F	R-Sq 0).935	3		
		Coeff	Var			3.3879		8						
				P	ara	mete	r Es	tii	nates					
	Va	riable	DF	Pa	ram İstin	eter nate	St	an	dard Error	t V	alu	e P	r > t	
	Int	ercept	1	3	7.5	7143		0.6	64550	5	8.2	1 <.	0001	
	u		1		-0.46291		(0.4	5644		-1.01		3679	
	us	q	1		5.3	3333		0.56928		-	-9.37		0.0007	

Figure 3: SAS output without intercept for Exercise 5.20

- (a) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ where $x_1 = \begin{cases} 1, & \text{male }; \\ 0, & \text{female.} \end{cases}$ and $x_2 = \begin{cases} 1, & \text{expert testimont } = \text{ yes } \\ 0, & \text{otherwise} \end{cases}$ Interpretation of model parameters: $\beta_0 = u_{11}$ mean at gender = female and expert testimony = yes $\beta_1 = u_{2j} - u_{1j}$, for any level of expert testimony $\beta_2 = u_{i2} - u_{i1}$, for any level of gender (b) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$ Interpretation of model parameters: $\beta_0 = u_{11}$ mean at gender -female and expert testimony = yes $\beta_1 = u_{2j} - u_{1j}$, for any level of expert testimony $\beta_2 = u_{i2} - u_{i1}$, for any level of gender $\beta_3 = u_{22} - u_{i2} - u_{21} + u_{11}$,
- (c) Model in part (b).

when $x_1 = 0, x_2 = 1, E(y) = \beta_0 + \beta_2$ when $x_1 = 1, x_2 = 1, E(y) = \beta_0 + \beta_1 + \beta_2 + \beta_3$ when $x_1 = 0, x_2 = 0, E(y) = \beta_0$ when $x_1 = 1, x_2 = 0, E(y) = \beta_0 + \beta_1$ and we assume that

$$u_{12} > u_{22} \Rightarrow \beta_0 + \beta_2 > \beta_0 + \beta_1 + \beta_2 + \beta_3$$

$$u_{21} > u_{21} \Rightarrow \beta_0 < \beta_0 + \beta_1$$

Thus,

$$\beta_1 > 0$$

$$\beta_1 + \beta_3 < 0$$

5. Exercise 5.34

(a)

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_1 x_2 + \beta_6 x_1 x_3 + \beta_7 x_1 x_4 + \beta_8 x_2 x_3 + \beta_9 x_2 x_4 + \beta_{10} x_1^2 + \beta_{11} x_2^2$$

where x_1 is cycle speed, x_2 is cycle pressure ratio, take traditional level as base level.

 $x_3 = \begin{cases} 1, & \text{at advanced level;} \\ 0, & \text{not at advanced level.} \end{cases} \text{ and } x_4 = \begin{cases} 1, & \text{at aeroderivative level;} \\ 0, & \text{not at aeroderivative level.} \end{cases}$

(b) for traditional level, $x_3 = x_4 = 0$, model is

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_5 x_1 x_2 + \beta_{10} x_1^2 + \beta_{11} x_2^2$$

for advanced level, $x_3 = 1, x_4 = 0$, model is

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_5 x_1 x_2 + \beta_6 x_1 x_3 + \beta_8 x_2 x_3 + \beta_{10} x_1^2 + \beta_{11} x_2^2$$

for aeroderivative level, $x_3 = 0, x_4 = 1$, model is

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_4 x_4 + \beta_5 x_1 x_2 + \beta_7 x_1 x_4 + \beta_9 x_2 x_4 + \beta_{10} x_1^2 + \beta_{11} x_2^2$$

(c)

$$E(y) = 14485 + 0.11816x_1 - 370.44605x_2 - 2662.13217x_3 - 1763.69024x_4 + 0.00054906x_1x_2 + 0.17531x_1x_3 + 0.03417x_1x_4 + 96.17827x_2x_3 + 78.05405x_2x_4 - 2.05897\text{E}-7x_1^2 + 4.68457x_2^2$$

(d) $H_0: \beta_1 = \beta_2 = \ldots = \beta_{11}$ v.s. $H_1:$ at least one is not. F-value is 44.22, and p-value is less than 0.0001

we have enough evidence to conclude that the overall model is useful.

(e) $H_0:\beta_3 = \beta_4 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = 0$ v.s. $H_1:$ at least one is not. $F = \frac{\left(\frac{\text{SSE}_r - \text{SSE}_c}{g}\right)}{\left(\frac{\text{SSE}_c}{n - (k+1)}\right)} = \frac{\left(\frac{19370350 - 17056349}{6}\right)}{\left(\frac{17056349}{67 - 12}\right)} = 1.243623$

we do not have enough evidence to conclude that the surfaces are not identical.

				A	nal	lysis (of V	ari	ance					
s	ouro	e		DF	Sum Squar		of res	Mear Square		n e F V	F Value		Pr > F	
N	lode	l.		5	1485268		859	29	70537:	2	93.58		<.0001	
E	rror			61	193703		8 <mark>50</mark>		31754	7				
С	orre	cted T	otal	66	16	78972	208							
		Root	MSE			563.	512	84	R-Sq	uare	0.8	846		
	Dependent Mean				110		66	Adj R	∖dj R₋Sq		752			
	Coeff Var					5.092		09	09					
				P	ara	mete	er E	stin	nates					
	Vai	riable	DF	Par	ram stin	ieter nate	5	Standard Error		t Va	lue	Pr	> t	
	Inte	ercept	1		1	5583	11	42.8	85985	13	.63	<.(0001	
	X1		1		0.0	7823		0.1	11044	0	.71	0.4	814	
	X2		1	-52	23.1	3391	1	03.:	37571	-5	.06	<.(0001	
	X1)	(2	1		0.0	0445		0.0	00558	0	.80	0.4	282	
	X12	2	1	-1.8	059	8E-7	0.0	000	00197	-0	.09	0.9	272	
	X27	2	1		8.8	4007		2.1	16320	4	.09	0.0	0001	

Figure 4: SAS output for Exercise 5.34

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	11	150840860	13712805	44.22	<.0001				
Error	55	17056349	310115						
Corrected Total	66	167897208							

Root MSE	556.88009	R-Square	0.8984
Dependent Mean	11066	Adj R-Sq	0.8781
Coeff Var	5.03216		

		Paramete	r Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	14485	1897.87728	7.63	<.0001
X1	1	0.11816	0.14123	0.84	0.4064
X2	1	-370.44605	213.99588	-1.73	0.0890
Х3	1	-2662.13217	1458.64130	-1.83	0.0734
X4	1	-1763.69024	3249.94564	-0.54	0.5895
X1X2	1	0.00054906	0.00727	0.08	0.9400
X12	1	-2.05897E-7	0.00000267	-0.08	0.9388
X22	1	4.68457	6.37404	0.73	0.4655
X1X3	1	0.17531	0.09531	1.84	0.0713
X2X3	1	96.14827	84.09666	1.14	0.2579
X1X4	1	0.03417	0.07590	0.45	0.6543
X2X4	1	78.05405	161.90057	0.48	0.6316

Figure 5: SAS output for Exercise 5.34

- (a) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$
- (b) when $x_2 = 0$, $E(y) = \beta_0 + \beta_1 x_1$ when $x_2 = 1$, $E(y) = \beta_0 + \beta_2 + (\beta_1 + \beta_3) x_1$
- (c) when $x_2 = 1$, the change of y for every one foot increse in elevation for moss specimens is $\beta_1 + \beta_3$.
- (d) $E(y) = 2.38487 + 0.00181x_1 + 3.20146x_2 0.00133x_1x_2$ $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ v.s. $H_1:$ at least one is not. F-value is 0.26, and p-value is 0.8567 > 0.1we do not have enough evidence to conclude that the model is useful.
- (e) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2 + \beta_4 x_1 x_2$

	Analysis of Variance												
9	Sourc	e	1	DF		Sum o Square	of es	Mear Square	ı F	F Value		Pr > F	-
٨	lode	I		3	20.2386		4	6.74621	1	0.26		0.8567	1
E	Error			66	1738.0822		7	26.33458					
C	Corrected Total			69	17	58.3209	1						
	Root MSE				5.13172		R-Squa	are	0.0115				
	Dependent M			Me	an	6.839	994	Adj R-	Sq	-0.0334			
		Coeff Va	ar		75.025		582	2					
				P	Para	meter	Est	imates					
	Variable D		DF	: P	ara Est	meter timate	S	tandard Error	t V	t Value		Pr > t	
	Inte	rcept	1	1	2	38487		5.39314	0.44		0.6598		
	ELE	VATION	1		0	.00181		0.00214		0.84		0.4014	
	SLC)PE	1	1	3.	20146		7.66988		0.42 0).6777	

Figure 6: SAS output for Exercise 5.35

0.00303

-0.44 0.6629

-0.00133

1

ES

- (a) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- (b) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3$
- (c) For level AL, the slope of E(y) is β_1 For level 3A, the slope of E(y) is $\beta_1 + \beta_4$ For level FE, the slope of E(y) is $\beta_1 + \beta_5$
- (d) $H_0: \beta_4 = \beta_5 = 0$ v.s. $H_1:$ at least one is not. fit complete model and reduced model then use F test.

8. Exercise 5.45

(a)
$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

where $x_1 = \begin{cases} 1, & \text{boy}; \\ 0, & \text{girl.} \end{cases}$, $x_2 = \begin{cases} 1, & \text{youngest}; \\ 0, & \text{not.} \end{cases}$, $x_3 = \begin{cases} 1, & \text{middle} \\ 0, & \text{mnot.} \end{cases}$
(b) β_0 : mean at level: girl, oldest.
 β_1 : mean difference between girl and boy.
 β_2 : mean difference between middle and oldest.
 β_3 : mean difference between middle and oldest.
(c) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3$
(d) $\beta_0 = 0.21$
 $\beta_1 = 0.16 - 0.21 = -0.05$
 $\beta_2 = 0.27 - 0.21 = 0.06$
 $\beta_3 = 0.18 - 0.21 = -0.03$
 $\beta_4 = 0.33 - 0.27 - 0.16 + 0.21 = 0.11$
 $\beta_5 = 0.33 - 0.18 - 0.16 + 0.21 = 0.20$
(e) H_0 : $\beta_4 = \beta_5 = 0$ v.s. H_1 : at least one is not.
9. Exercise 5.46
(a) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
(b) β_0 : mean at level: female, 1880.
 β_1 : the slope for winning time.
 β_2 : the mean difference of male and female.

- (c) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_4 x_2$ for male: $E(y) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_1$ for female: $E(y) = \beta_0 + \beta_1 x_1$ (d) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \beta_3 x_1 x_3 + \beta_4 x_1^2 + \beta_5 x_3^2$ (e) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \beta_3 x_1 x_3 + \beta_4 x_1^2 + \beta_5 x_3^2 + \beta_6 x_2$ (f)

(f)

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \beta_3 x_1 x_3 + \beta_4 x_1^2 + \beta_5 x_3^2 + \beta_6 x_2 + \beta_7 x_1 x_2 + \beta_8 x_3 x_2 + \beta_9 x_1 x_3 x_2 + \beta_{10} x_1^2 x_2 + \beta_{11} x_3^2 x_2$$

(g) $E(y) = (\beta_0 + \beta_1 x_1 + \beta_4 x_1^2) + (\beta_2 + \beta_3 x_1) x_3 + \beta_5 x_3^2 + (\beta_6 + \beta_7 x_1 + \beta_{10} x_1^2) x_2 + (\beta_8 + \beta_9 x_1) x_2 x_3 + \beta_{11} x_3^2 x_2$

The interaction of x_2 and x_3 should be deleted. So $\beta_8 + \beta_9 x_1 = 0$, $\beta_{11} = 0$ and $\beta_6 + \beta_7 x_1 + \beta_{10} x_1^2 \neq 0$

(h)
$$\beta_8 + \beta_9 x_1 = 0, \beta_{11} = 0$$

(i) $\beta_8 + \beta_9 x_1 = 0, \beta_{11} = 0$ and $\beta_6 + \beta_7 x_1 + \beta_{10} x_1^2 = 0$

Exercise 5.47

- (a) $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$ where $x_1 = \begin{cases} 1, & \text{Pl}; \\ 0, & \text{P2} \end{cases}$, $x_2 = \begin{cases} 1, & \text{L1}; \\ 0, & \text{not.} \end{cases}$, $x_3 = \begin{cases} 1, & \text{L2}; \\ 0, & \text{not.} \end{cases}$, $x_4 = \begin{cases} 1, & \text{L4} \\ 0, & \text{not.} \end{cases}$
- (b) 8 parameters, $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_1 x_2 + \beta_6 x_1 x_3 + \beta_7 x_1 x_4$

(c)
$$H_0: \beta_5 = \beta_6 = \beta_7 = 0$$
 v.s. $H_1:$ at least one is not.
F-value = $\frac{(422.336-346.65)/3}{346.63/32} = 2.3297 < F_{(3,32)}^{-1}(0.95) = 2.9011$
We don't have enough evidence to state that for different location, type of packaging influence the total weekly sales.

11. Exercise 6.1

(a) F-Statistic is equivalent to T-Statistic for one variable case. So we compare the absolute value of T-Statistic $\left|\frac{\hat{\beta}}{S_{\beta}}\right|$ $|t(x_1)| = 3.81, |t(x_2)| = 90, |t(x_3)| = 2.98$ $|t(x_4)| = 1.21, |t(x_5)| = 6.03, |t(x_6)| = 0.86$ x_2 is the best candidate.

- (b) Yes. Reject region is |t(x)| > 2.0106. x_2 should be included in model.
- (c) (i) Fit all two-variable model as: $y = \beta_0 + \beta_1 x_2 + \beta_2 x_i$ where i = 1, 3, 4, 5, 6.
 - (ii) Check all fitted two-variable model with a reduced model: $y = \beta_0 + \beta_1 x_2$ compare F-value.
 - (iii) keep the two-variable model with largest F-value, check all included variable.

12. Exercise 6.10

take the Traditional level as base level, represent the variables engine as twovalued variable.

$$ADVANCED = \begin{cases} 1, & \text{at advanced level;} \\ 0, & \text{not at advanced level.} \end{cases}$$
$$AERODERIVATIVE = \begin{cases} 1, & \text{at aeroderivative level;} \\ 0, & \text{not at aeroderivative level.} \end{cases}$$