Solution for HW3, MATH3805

1. Exercise 5.7
(a) (i) first-order;
(ii) third-order;
(iii) first-order;
(iv) second-order.
(b) (i) $E(y)=\beta_{0}+\beta_{1} x$
(ii) $E(y)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}$
(iii) $E(y)=\beta_{0}+\beta_{1} x$
(iv) $E(y)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$
(c) (i) $\beta_{1}>0$
(ii) $\beta_{3}>0$
(iii) $\beta_{1}<0$
(iv) $\beta_{2}<0$
2. Exercise 5.17
(a) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{4}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{4}+\beta_{6} x_{2} x_{4}+\beta_{7} x_{1}^{2}+\beta_{8} x_{2}^{2}+\beta_{9} x_{4}^{2}$
(b) $H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{9}=0$ v.s. H_{1} : at least one $\beta_{i} \neq 0$

F-test statistic is 613.27 (SAS). P -value $<0.0001<\alpha$.
so reject H_{0}. we have enough evidence to conclude that the overall model is statistically useful for predicting y.
(c) compare a reduced model:
$E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{4}+\beta_{4} x_{1} x_{4}+\beta_{5} x_{1} x_{4}+\beta_{6} x_{2} x_{4}$
$H_{0}: \beta_{7}=\beta_{8}=\beta_{9}=0$ v.s. $H_{1}:$ at least one $\beta_{i} \neq 0, i=7,8,9$
$F=\frac{\left(\frac{\left(\text { SSE }_{r}-\text { SSE }_{c}\right.}{g}\right)}{\left(\frac{\operatorname{SSE}_{c}}{n-(k+1)}\right)}=\frac{\left(\frac{3314.94919-146.12634}{3}\right)}{\left(\frac{1466.12633}{25-10}\right)}=108.4275$
so reject H_{0}. we have enough evidence to conclude that the curvilinear terms is statistically useful for predicting y.

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	EValue	Pr 2
Model	9	53769	5974.36818	613.27	$<.0001$
Error	15	146.12634	9.74176		
Corrected Total	24	53915			

Root MSE	3.12118	R-Square	0.9973
Dependent Mean	88.32000	Adj R-Sq	0.9957
Coeff Var	3.53394		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	10283	2335.56968	4.40	0.0005		
REDSHIFT	1	276.75689	147.03327	1.88	0.0793		
LINEFLUX	1	3325.18799	476.53498	6.98	$<.0001$		
AB1450	1	1301.30580	115.21604	11.29	$<.0001$		
RL	1	41.97757	14.32647	2.93	0.0103		
RA	1	15.98078	4.23728	3.77	0.0018		
LA	1	207.37869	11.82790	17.53	$<.0001$		
REDSHIFTSQ	1	0.98954	4.30238	0.23	0.8212		
LINEFLUXSQ	1	266.55556	24.84031	10.73	$<.0001$		
AB1450SQ	1	40.21654	2.42805	16.56	$<.0001$		

Figure 1: SAS output without intercept for Exercise 5.17

Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F	$	$	Model	6	50600	8433.41514
:---	---:	---:	---:								
Error	18	3314.94919	184.16384								
Corrected Total	24	53915									

Root MSE	13.57070	R-Square	0.9385
Dependent Mean	88.32000	Adj R-Sq	0.9180
Coeff Var	15.36537		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	-5590.24207	4472.44114	-1.25	0.2273		
REDSHIFT	1	-826.71928	468.64057	-1.76	0.0947		
LINEFLUX	1	-216.24176	355.58876	-0.61	0.5507		
AB1450	1	625.47619	223.35634	2.80	0.0118		
RL	1	-83.23183	41.00448	-2.03	0.0574		
RA	1	-15.71527	13.16828	-1.19	0.2482		
LA	1	35.57030	17.14111	2.08	0.0526		

Figure 2: SAS output without intercept for Exercise 5.17
3. Exercise 5.20
(a) $\bar{x}=33, s_{x}=2.16025$.

The coding system equation: $u=(x-33) / 2.16025$
(b) $x=[30,31,32,33,34,35,36]$
$\rightarrow u=[-1.38873,-0.92582,-0.46291,0,0.46291,0.92582,1.38873]$
(c) $\operatorname{cor}\left(x, x^{2}\right)=\frac{\operatorname{cov}\left(x, x^{2}\right)}{\sqrt{\operatorname{var}(x) \operatorname{var}\left(x^{2}\right)}}=0.99966$
(d) $\operatorname{cor}\left(u, u^{2}\right)=0$
(e) $E(y)=37.57143-0.46291 u-5.3333 u^{2}$

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\operatorname{Pr}>$ F
Model	2	111.00000	55.50000	44.40	0.0019
Error	4	5.00000	1.25000		
Corrected Total	6	116.00000			

Root MSE	1.11803	R-Square	0.9569
Dependent Mean	33.00000	Adj R-Sq	0.9353
Coeff Var	3.38798		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	37.57143	0.64550	58.21	$<.0001$		
\mathbf{u}	1	-0.46291	0.45644	-1.01	0.3679		
usq	1	-5.33333	0.56928	-9.37	0.0007		

Figure 3: SAS output without intercept for Exercise 5.20

4. Exercise 5.24

(a) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
where $x_{1}=\left\{\begin{array}{ll}1, & \text { male ; } \\ 0, & \text { female. }\end{array}\right.$ and $x_{2}= \begin{cases}1, & \text { expert testimont }=\text { yes } \\ 0, & \text { otherwise }\end{cases}$
Interpretation of model parameters:
$\beta_{0}=u_{11}$ mean at gender $=$ female and expert testimony $=$ yes
$\beta_{1}=u_{2 j}-u_{1 j}$, for any level of expert testimony
$\beta_{2}=u_{i 2}-u_{i 1}$, for any level of gender
(b) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}$

Interpretation of model parameters:
$\beta_{0}=u_{11}$ mean at gender -female and expert testimony $=$ yes
$\beta_{1}=u_{2 j}-u_{1 j}$, for any level of expert testimony
$\beta_{2}=u_{i 2}-u_{i 1}$, for any level of gender
$\beta_{3}=u_{22}-u_{12}-u_{21}+u_{11}$,
(c) Model in part (b).
when $x_{1}=0, x_{2}=1, E(y)=\beta_{0}+\beta_{2}$
when $x_{1}=1, x_{2}=1, E(y)=\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}$
when $x_{1}=0, x_{2}=0, E(y)=\beta_{0}$
when $x_{1}=1, x_{2}=0, E(y)=\beta_{0}+\beta_{1}$
and we assume that

$$
\begin{aligned}
& u_{12}>u_{22} \Rightarrow \beta_{0}+\beta_{2}>\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3} \\
& u_{21}>u_{21} \Rightarrow \beta_{0}<\beta_{0}+\beta_{1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \beta_{1}>0 \\
& \beta_{1}+\beta_{3}<0
\end{aligned}
$$

5. Exercise 5.34
(a)

$$
\begin{aligned}
E(y)= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4} \\
& +\beta_{5} x_{1} x_{2}+\beta_{6} x_{1} x_{3}+\beta_{7} x_{1} x_{4}+\beta_{8} x_{2} x_{3}+\beta_{9} x_{2} x_{4} \\
& +\beta_{10} x_{1}^{2}+\beta_{11} x_{2}^{2}
\end{aligned}
$$

where x_{1} is cycle speed, x_{2} is cycle pressure ratio, take traditional level as base level.
$x_{3}=\left\{\begin{array}{ll}1, & \text { at advanced level; } \\ 0, & \text { not at advanced level. }\end{array}\right.$ and $x_{4}= \begin{cases}1, & \text { at aeroderivative level; } \\ 0, & \text { not at aeroderivative level. }\end{cases}$
(b) for traditional level, $x_{3}=x_{4}=0$, model is

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{5} x_{1} x_{2}+\beta_{10} x_{1}^{2}+\beta_{11} x_{2}^{2}
$$

for advanced level, $x_{3}=1, x_{4}=0$, model is

$$
\begin{aligned}
E(y)= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \\
& +\beta_{5} x_{1} x_{2}+\beta_{6} x_{1} x_{3}+\beta_{8} x_{2} x_{3} \\
& +\beta_{10} x_{1}^{2}+\beta_{11} x_{2}^{2}
\end{aligned}
$$

for aeroderivative level, $x_{3}=0, x_{4}=1$, model is

$$
\begin{aligned}
E(y)= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{4} x_{4} \\
& +\beta_{5} x_{1} x_{2}+\beta_{7} x_{1} x_{4}+\beta_{9} x_{2} x_{4} \\
& +\beta_{10} x_{1}^{2}+\beta_{11} x_{2}^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
E(y)= & 14485+0.11816 x_{1}-370.44605 x_{2}-2662.13217 x_{3}-1763.69024 x_{4} \\
& +0.00054906 x_{1} x_{2}+0.17531 x_{1} x_{3}+0.03417 x_{1} x_{4} \\
& +96.17827 x_{2} x_{3}+78.05405 x_{2} x_{4}-2.05897 \mathrm{E}-7 x_{1}^{2}+4.68457 x_{2}^{2}
\end{aligned}
$$

(d) $H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{11}$ v.s. H_{1} : at least one is not. F-value is 44.22 , and p -value is less than 0.0001
we have enough evidence to conclude that the overall model is useful.
(e) $H_{0}: \beta_{3}=\beta_{4}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0$ v.s. H_{1} : at least one is not. $F=\frac{\left(\frac{\left(\text { SSE }_{r}-\text { SSE }_{c}\right.}{g}\right)}{\left(\frac{\operatorname{SE} E_{c}}{n-(k+1)}\right)}=\frac{\left(\frac{19370350-17056349}{6}\right)}{\left(\frac{1756399}{67-12}\right)}=1.243623$
we do not have enough evidence to conclude that the surfaces are not identical.

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	148526859	29705372	93.55	$<.0001$
Error	61	19370350	317547		
Corrected Total	66	167897208			

Root MSE	563.51284	R-Square	0.8846
Dependent Mean	11066	Adj R-Sq	0.8752
Coeff Var	5.09209		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathrm{t}\|$	
Intercept	1	15583	1142.85985	13.63	$<.0001$	
X1	1	0.07823	0.11044	0.71	0.4814	
X2	1	-523.13391	103.37571	-5.06	$<.0001$	
X1X2	1	0.00445	0.00558	0.80	0.4282	
X12	1	$-1.80598 \mathrm{E}-7$	0.00000197	-0.09	0.9272	
X22	1	8.84007	2.16320	4.09	0.0001	

Figure 4: SAS output for Exercise 5.34

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	11	150840860	13712805	44.22	$<.0001$
Error	55	17056349	310115		
Corrected Total	66	167897208			

Root MSE	556.88009	R-Square	0.8984
Dependent Mean	11066	Adj R-Sq	0.8781
Coeff Var	5.03216		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$	
Intercept	1	14485	1897.87728	7.63	$<.0001$	
X1	1	0.11816	0.14123	0.84	0.4064	
X2	1	-370.44605	213.99588	-1.73	0.0890	
X3	1	-2662.13217	1458.64130	-1.83	0.0734	
X4	1	-1763.69024	3249.94564	-0.54	0.5895	
X1X2	1	0.00054906	0.00727	0.08	0.9400	
X12	1	$-2.05897 \mathrm{E}-7$	0.00000267	-0.08	0.9388	
X22	1	4.68457	6.37404	0.73	0.4655	
X1X3	1	0.17531	0.09531	1.84	0.0713	
X2X3	1	96.14827	84.09666	1.14	0.2579	
X1X4	1	0.03417	0.07590	0.45	0.6543	
X2X4	1	78.05405	161.90057	0.48	0.6316	

Figure 5: SAS output for Exercise 5.34

6. Exercise 5.35

(a) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}$
(b) when $x_{2}=0, E(y)=\beta_{0}+\beta_{1} x_{1}$
when $x_{2}=1, E(y)=\beta_{0}+\beta_{2}+\left(\beta_{1}+\beta_{3}\right) x_{1}$
(c) when $x_{2}=1$, the change of y for every one foot increse in elevation for moss specimens is $\beta_{1}+\beta_{3}$.
(d) $E(y)=2.38487+0.00181 x_{1}+3.20146 x_{2}-0.00133 x_{1} x_{2}$
$H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$ v.s. H_{1} : at least one is not.
F -value is 0.26 , and p -value is $0.8567>0.1$
we do not have enough evidence to conclude that the model is useful.
(e) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{2}+\beta_{4} x_{1} x_{2}$

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	20.23864	6.74621	0.26	0.8567
Error	66	1738.08227	26.33458		
Corrected Total	69	1758.32091			

Root MSE	5.13172	R-Square	0.0115
Dependent Mean	6.83994	Adj R-Sq	-0.0334
Coeff Var	75.02582		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	\mathbf{t} Value	$\operatorname{Pr}>\|\mathbf{t}\|$	
Intercept	1	2.38487	5.39314	0.44	0.6598	
ELEVATION	1	0.00181	0.00214	0.84	0.4014	
SLOPE	1	3.20146	7.66988	0.42	0.6777	
ES	1	-0.00133	0.00303	-0.44	0.6629	

Figure 6: SAS output for Exercise 5.35
7. Exercise 5.37
(a) $E(y)=\beta_{0}++\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
(b) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}$
(c) For level AL, the slope of $E(y)$ is β_{1}

For level 3A, the slope of $E(y)$ is $\beta_{1}+\beta_{4}$
For level FE, the slope of $E(y)$ is $\beta_{1}+\beta_{5}$
(d) $H_{0}: \beta_{4}=\beta_{5}=0$ v.s. H_{1} : at least one is not.
fit complete model and reduced model then use F test.
8. Exercise 5.45
(a) $\mathbb{E}(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
where $x_{1}=\left\{\begin{array}{ll}1, & \text { boy } ; \\ 0, & \text { girl. }\end{array}, x_{2}=\left\{\begin{array}{ll}1, & \text { ygungest } ; \\ 0, & \text { not. }\end{array}, x_{3}= \begin{cases}1, & \text { middle } \\ 0, & \text { mnot. }\end{cases}\right.\right.$
(b) $\beta_{0}:$ mean at level: girl, oldest.
β_{1} : mean difference between firl and boy.
β_{2} : mean difference between youngest and oldest.
β_{3} : mean difference between middle and oldest.
(c) $E(y)=\beta_{0}+\beta_{1} y_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}$
(d) $\beta_{0}=0.21$
$\beta_{1}=0.16-0.21=-0.05$
$\beta_{2}=0.27-0.21=0.06$
$\beta_{3}=0.18-0.21=-0.03$
$\beta_{4}=0.33-0.27-0.16+0.21=0.11$
$\beta_{5}=0.33-0.18-0.16+0.21=0.20$
(e) $H_{0}: \beta_{4}=\beta_{5}=0$ v.s. H_{1} : at least one is not.
9. Exercise 5.46
(a) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
(b) $\beta_{0}:$ mean at level: female, 1880.
β_{1} : the slope for winning time.
β_{2} : the mean difference of male and female.
(c) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x x_{2}+\beta_{3} x_{1} x_{2}$
for male: $E(y)=\left(\beta_{0} \not+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) x_{1}$
for female: $E(y)=\beta_{0}+\beta_{1} x_{1}$
(d) $E(y)=\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{3}+\beta_{3} x_{1} x_{3}+\beta_{4} x_{1}^{2}+\beta_{5} x_{3}^{2}$
$\begin{aligned} \text { (e) } E(y)= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{3}+\beta_{3} x_{1} x_{3}+\beta_{4} x_{1}^{2}+\beta_{5} x_{3}^{2}+\beta_{6} x_{2} \\ \text { (f) } & \\ & \begin{aligned} & \\ & E(y)=\begin{array}{l}\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{3}+\beta_{3} x_{1} x_{3}+\beta_{4} x_{1}^{2}+\beta_{5} x_{3}^{2}+\beta_{6} x_{2} \\ \\ \end{array} \beta_{7} x_{1} x_{2}+\beta_{8} x_{3} x_{2}+\beta_{9} x_{1} x_{3} x_{2}+\beta_{10} x_{1}^{2} x_{2}+\beta_{11} x_{3}^{2} x_{2}\end{aligned}\end{aligned}$
(g)

$$
\begin{aligned}
E(y)= & \left(\beta_{0}+\beta_{1} x_{1}+\beta_{4} x_{1}^{2}\right)+\left(\beta_{2}+\beta_{3} x_{1}\right) x_{3}+\beta_{5} x_{3}^{2} \\
& \left.+\left(\beta_{6}+\beta_{7} x\right)+\beta_{10} x_{1}^{2}\right) x_{2}+\left(\beta_{8}+\beta_{9} x_{1}\right) x_{2} x_{3}+\beta_{11} x_{3}^{2} x_{2}
\end{aligned}
$$

The interaction of x_{2} and x_{3} should be deleted. So $\beta_{8}+\beta_{9} x_{1}=0, \beta_{11}=0$ and $\beta_{6}+\beta_{7} x_{1}+\beta_{10} x_{1}^{2} \neq 0$
(h) $\beta_{8}+\beta_{9} x_{1}=0, \beta_{11}=0$
(i) $\beta_{8}+\beta_{9} x_{1}=0, \beta_{11}=0$ and $\beta_{6}+\beta_{7} x_{1}+\beta_{10} x_{1}^{2}=0$

IV. Exercise 5.47

(a) $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}$
where $x_{1}=\left\{\begin{array}{ll}1, & \mathrm{Pl} ; \\ 0, & \mathrm{P} 2\end{array}, x_{2}=\left\{\begin{array}{ll}1, & \mathrm{~L} 1 ; \\ 0, & \text { not. }\end{array} \quad, x_{3}=\left\{\begin{array}{ll}1, & \mathrm{~L} 2 ; \\ 0, & \text { not. }\end{array}, x_{4}=\left\{\begin{array}{cc}1, & \mathrm{~L} 4 \\ 0, & \text { not. }\end{array}\right.\right.\right.\right.$
(b) 8 parameters, $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\beta_{5} x_{1} x_{2}+\beta_{6} x_{1} x_{3}+$ $\beta_{7} x_{1} x_{4}$
(c) $H_{0}: \beta_{5}=\beta_{6}=\beta_{7}=0$ v.s. H_{1} : at least one is not.

F -value $=\frac{(422.336-346.65) / 3}{346.63 / 32}=2.3297<F_{(3,32)}^{-1}(0.95)=2.9011$
We don't have enough evidence to state that for different location, type of packaging influence the total weekly sales.
11. Exercise 6.1
(a) F-Statistic is equivalent to T-Statistic for one variable case. So we compare the absolute value of T-Statistic $\left|\frac{\hat{\beta}}{S_{\beta}}\right|$
$\left|t\left(x_{1}\right)\right|=3.81,\left|t\left(x_{2}\right)\right|=90,\left|t\left(x_{3}\right)\right|=2.98$
$\left|t\left(x_{4}\right)\right|=1.21,\left|t\left(x_{5}\right)\right|=6.03,|t(x)|=0.86$
x_{2} is the best candidate.

(b) Yes. Reject region is $|t(x)|>2.0106 . x_{2}$ should be included in model.
(c) (i) Fit all two- ariable model as: $y=\beta_{0}+\beta_{1} x_{2}+\beta_{2} x^{2}$ where $i=$ $1,3,4,5,6$.
(ii) Check all fitted two-variable model with a reduced model: $y=80+$ $\beta_{1} x / 2$ compare F -value.
(iii) keep the two-variable model with largest F-value, check all included variable.
12. Exercise 6.10
take the Traditional level as base level, represent the variables engine as twovalued variable.

$$
\begin{gathered}
\text { ADVANCED }= \begin{cases}1, & \text { at advanced level; } \\
0, & \text { not at advanced level. }\end{cases} \\
\text { AERODERIVATIVE }= \begin{cases}1, & \text { at aeroderivative level; } \\
0, & \text { not at aeroderivative level. }\end{cases}
\end{gathered}
$$

