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P5. Result 5.1. Proof: Let a∗ = a/‖a‖, then
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Similar Let a∗ = a/‖a‖ with aTei = 0, i = 1, . . . , k
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I Result 5.1 continuous.

Var(Yi ) = Var(eTi X ) = eTi Var(X )ei = eTi Σei

= eTi (λiei ) = λie
T
i ei = λi , i = 1, . . . , p.

Cov(Yi ,Yk) = Cov(eTi X , eTk X ) = eTi Cov(X )ek

= eTi Σek = eTi (λkek) = λke
T
i ek = 0, i 6= k.

P5. Result 5.2.

σ11 + · · ·+ σpp =

p∑
i=1

Var(Xi ) = Trace(Σ) = Trace(PΛPT )

= Trace(ΛPTP) = Trace(Λ) = λ1 + · · ·+ λp.

Proportion of total population variance due to kth principle
component is
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=
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P6. Result 5.3. Let aTk = [0, . . . , 0, 1, 0, . . . , 0] so that Xk = aTk X and then

Cov(Xk ,Yi ) = Cov(aTk X , eTi X ) = aTk (λiei ) = λia
T
k ei = λieik

Hence
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I Example 5.1.
λ1 = 5.83, eT1 = [.383,−.924, 0]

λ2 = 2.00, eT2 = [0, 0, 1]

λ3 = 0.17, eT3 = [.924, .383, 0]

Therefore, the principal components are

Y1 = eT1 X = .383X1 − .924X2

Y2 = eT2 X = X3

Y3 = eT3 X = .924X1 + .383X2

Var(Y1) = (.383)2Var(X1) + (−.924)2Var(X2) + 2(.383)(−.924)Cov(X1,X2)

= .147(1) + .854(5)− .708(−2) = 5.83 = λ1



I Example 5.1 continuous.

Cov(Y1,Y2) = Cov(.383X1 − .924X2,X3)

= .383Cov(X1,X3)− .924Cov(X2,X3) = 0

σ11 + σ22 + σ33 = 1 + 5 + 2 = λ1 + λ2 + λ3 = 5.83 + 2.00 + .17
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P9. Result 5.4. The result from the above result with Z1, . . . ,Zp in place of
X1, . . . and ρ in place of Σ.

I Proportion of (standardized) population variance due to kth principle

component is λk
p
, k = 1, . . . , p where the λ′ks are the eigenvalue of ρ.



P10. Example 5.2. The eigenvalue-eigenvector pairs from Σ are

λ1 = 100.16, eT1 = [.040, .999]

λ2 = .84, eT2 = [.999,−.040]

λ1

λ1 + λ2
=

100.16

101
= .992

The respective principal components based on Σ are

Y1 = .040X1 + .999X2,Y2 = .999X1 − .040X2.

Similarly, the eigenvalue-eigenvector pairs from ρ are

λ1 = 1 + ρ = 1.4, eT1 = [.707, .707]

λ2 = 1− ρ = .6, eT2 = [.707,−.707]

Then the respective principal component based on ρ are

Y1 = .707Z1 + .707Z2 = .707
X1 − µ1

1
+ 0707

X2 − µ2

10
= .707(X1 − µ1) + .0707(X2 − µ2)

Y2 = .707Z1 − .707Z2 = .707
X1 − µ1

1
− 0707

X2 − µ2

10
= .707(X1 − µ1)− .0707(X2 − µ2)

λ1

p
=

1.4

2
= .7



P10. (1) For the diagonal covariance or correlation matrix, (σii , ei ) is the ith
eigenvalue-eigenvector pair with eTi X = Xi or eTi = [0, . . . , 1, . . . , 0].
Hence the set of principle components is just the original set of
uncorrelated random variables.

I (2) It is not difficult to show (as excercise)that the p eigenvalues of the
correlation matrix can be divided into two groups. When ρ is positive, the
largest is

λ1 = 1 + (p − 1)ρ

with associate eigenvector

eT1 =

[
1
√
p
,

1
√
p
· · · , 1

√
p

]
The remaining p − 1 eigenvalues are

λ2 = λ3 = · · · = λp = 1− ρ



I Continuous: and their eigenvectors are
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The first principal component
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explaining a proportion
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of the total population variation.



P16. Example 5.4. The natural logarithms of the dimension of 24 male turtles
have sample mean vector x̄T = [4.725, 4.478, 3.703] and covariance matri

S = 10−3

 11.072 8.019 8.160
8.019 6.417 6.005
8.160 6.005 6.773


The first principal component

ŷ1 = .683 ln(length) + .510 ln(width) + .523 ln(height)

which explains 96% of the total variance.



P23. Example 5.5. Let x1, x2, . . . , x5 denote the observed weekly rates of return
for JP Morgan, Citibank, Well Fargo, Royal Dutch Shell, and
ExxonMobil, respectively. Then

x̄T = [.0011, .0007, .0016, .0040, .0040]

and

R =


1.000 .632 .511 .115 .155
.632 1.000 .574 .322 .213
.511 .574 1.000 .183 .146
.115 .322 .183 1.000 .683
.155 .213 .146 .683 1.000


We note that R is the covariance matrix of the standardized observations

z1 =
x1 − x̄1√

s11
, z2 =

x2 − x̄2√
s22

, . . . , z1 =
x5 − x̄5√

s55



I Example 5.5. Continuous. The eigenvalues and corresponding normalized
eigenvectors of R, determined by a computer, are

λ̂1 = 2.437, êT1 = [.469, .532, .465, .387, .361]

λ̂2 = 1.407, êT2 = [−.368,−.236,−.315, .585, .606]

λ̂3 = .501, êT3 = [−.604,−.136, .772, .093,−.109]

λ̂4 = .400, êT4 = [.363,−.629, .289,−.381, .493]

λ̂5 = .255, êT5 = [.384,−.496, .071, .595,−.498]

Under the standardized variables, we obtain the first two sample principal
components:

ŷ1 = eT1 z = .469z1 + .532z2 + .465z3 + .387z4 + .361z5

ŷ2 = eT2 z = −.368z1 − .236z2 − .315z3 + .585z4 + .606z5

I These components, which account for(
λ̂1 + λ̂2

p

)
100% =

(
2.437 + 1.407

5

)
100% = 77%

I The first principle component: a general stock-market component, The

second principle component: an industry component.



P24. Example 5.6. The eigenvalues of the covariance matrix are

λ̂1 = 3.085, λ̂2 = .383, λ̂3 = .342, λ̂4 = .217

We note that the first eigenvalue is nearly equal to

1 + (p − 1)r̄ = 1 + (4− 1)(.6854) = 3.056

where r̄ is the arithmetic average of the off-diagonal elements of R.
I The remaining eigenvalues are small and about equal, though λ̂4 is

somewhat smaller than λ̂2 and λ̂3. So there is some evidence that the
corresponding population correlation matrix ρ may be of the
“equal-correlation” form.

I The first component

ŷ1 = ê1z = .49z1 + .52z2 + .49z3 + .50z4

accounts for
100(λ̂1/p)% = 100(3.058)/4% = 76%

of the total variance.

*** Comment: Although “large” eigenvalues and the corresponding

eigenvectors are important in a principle component analysis, eigenvalues

very close to zero should not be routinely ignored. The eigenvectors

associated with these latter eigenvalues may point out linear

dependencies in the data set that can cause interpretive and

computational problems in a subsequent analysis.



P27.

E(X − µ)(X − µ)T = E(LF + ε)(LF + ε)T

= ELF(LF)T + Eε(LF)T + ELFεT + EεεT

= LE(FFT )LT + E(εFT )LT + LE(FεT ) + EεεT

= LLT + Ψ

I Communality:

h2i = `2i1 + `2i2 + · · ·+ `2im

Specific variance: ψi



P27. Example 5.7.

Σ =


19 30 2 12
30 57 5 23
2 5 38 47

12 23 47 68

 =


4 1
7 2
−1 6
1 8

+


2 0 0 0
0 4 0 0
0 0 1 0
0 0 0 3

 = LLT+Ψ

The Communality of X1 is

h21 = `211 + `212 = 42 + 12 = 17

The special variance is ψ1 = 2. Hence

19 = 42 + 12 + 2 = 17 + 2



P28. Example 5.8. If Σ can be factored by a factor analysis model with
m = 1, then

X1 − µ1 = `11F1 + ε1

X2 − µ2 = `21F1 + ε2

X3 − µ3 = `31F1 + ε3

or
1 = `211 + ψ1, .90 = `11`21, .70 = `11`31

1 = `221 + ψ2, .40 = `21`31, 1 = `231 + ψ3

The pair of equations

.70 = `11`31, .40 = `21`31

implies that

`21 =

(
.40

.70

)
`11

Substituting this result for `21 in the equation .90 = `11`21, yields

`211 = 1.575

or `11 = ±1.255.



I Example 5.8. Continuous.
Since Var(F1) = 1 by assumption and Var(X1) = 1,
`11 = Cov(X1,F1) = Corr(X1,F1) which cannot be greater than
unity. So from this point of view |`11| = 1.225 is too large. Also,
the equation

1 = `211 + ψ1

gives
ψ1 = 1− 1.575 = −.575

which is unsatisfactory, since it gives a negative value for
Var(ε) = ψ1. So the solution is not consistent, and is not a proper
solution.



P29. if λ̂1, . . . , λ̂m are relative large compared to λ̂m+1, . . . , λ̂p

L̃L̃T = λ̂1ê1ê
T
1 + · · ·+ λ̂mêmê

T
m ≈ S

ψ̃i = sii −
m∑
j=1

˜̀2
ij

P30.

˜̀2
11 + ˜̀2

21 + · · ·+ ˜̀2
p1 = (

√
λ̂1ê1)T (

√
λ̂1ê1) = λ̂1.

P31 Example 5.9.

L̃L̃T + Ψ̃ =


.56 .82
.78 −.53
.65 .75
.94 −.10
.80 −.54


[
.56 .78 .65 .94 .80
.82 −.53 .75 −.10 −.54

]

+


.02 0 0 0 0
0 .12 0 0 0
0 0 .02 0 0
0 0 0 .11 0
0 0 0 0 .07

 =


1 .01 .97 .44 .00

1 .11 .79 .91
1 .53 .11

1 .81
1





P33. Example 5.10.

R− L̃L̃T − Ψ̃ =


0 −.099 −.185 −.025 .056

−.099 0 −.134 .014 −.054
−.185 −.134 0 .003 .006
−.025 .014 .003 0 −.156
.056 −.054 .006 −.156 0


P35. Corrected:

L̂z = V̂−1/2L̂, Ψ̂z = V̂−1/2Ψ̂V̂−1/2

Or given the estimated loadings L̂z and specific variance Ψ̂z

obtained from R, the resulting maximum likelihood estimates for a
factor analysis of the covariance matrix [(n − 1)/n]S are

L̂ = V̂1/2L̂z , Ψ̂ = V̂1/2Ψ̂z V̂
1/2

or
ˆ̀
ij = ˆ̀

z,ij

√
σ̂ij and ψ̂i = ψ̂z,i σ̂ii



P33. Example 5.11.

R− L̃L̃T − Ψ̃ =


0 .001 −.002 .000 .052
.001 0 .002 .000 −.033
−.002 .002 0 .000 .001
.000 .000 .000 0 .000
.052 −.033 .001 .000 0


Factor 1, market factor, Factor 2, banking factor

P40. Example 5.13. Factor 1: General Intelligence, Factor 2: bipolar
factor . After Rotation, Factor 1: mathematical ability , Factor 2:
verbal ability

P43. Example 5.14. After rotation, Factor 1: nutritional factor, Factor 2:
taste factor

P45. Example 5.15. After rotation, Factor 1: Unique economic forces
that cause bank stocks to move together, Factor 2: economic
conditions affecting oil stocks.



P46. Example 5.12 and 5.16. principle component estimate: Factor 1:
general athletic ability, Factor 2, running endurance factor, The
remaining factors cannot be easily interpreted to our minds.

Maximum likelihood estimate: Before rotation: Factor 1: General
athletic ability , Factor 2, strength ability , Factor 3, running
endurance ability, Factor 4, Jumping ability or leg ability ???

After rotation, Factor 1: explosive arm strength, Factor 2: explosive
leg ability. Factor 3, running speed, Factor 4, running endurance



P50. The joint distribution of (X − µ) and F is

Σ∗ =

[
Σ = LLT + Ψ L

LT I

]
Then

E(F|x) = LTΣ−1(x− µ) = LT (LLT + Ψ)−1(x− µ)

and

Cov(F|x) = I− LTΣ−1L = I− LTΣ−1L = I− LT (LLT + Ψ)−1L

I If rotated loadings L̂∗ = L̂T are used in place of the original
loadings, the subsequent factor scores f̂∗j are related to f̂j by

f̂∗j = Tf̂j , j = 1, 2, . . . , n.



P51. Example 5.16.

L̂∗
z =


.763 .024
.821 .227
.669 .104
.118 .993
.113 .675

 and Ψ̂z =


.42 0 0 0 0
0 .27 0 0 0
0 0 .54 0 0
0 0 0 .00 0
0 0 0 0 .53


The vector of standardized observations,

zT = [.50,−1.40,−.20,−.70, 1.40]

Yield the following scores on factor 1 and factor 2

f̂ = (L̂∗T
z Ψ̂−1

z L̂∗
z )−1L̂∗T

z Ψ̂−1
z z =

[
−.61
−.61

]


