
3. The Multivariate Normal Distribution

3.1 Introduction

• A generalization of the familiar bell shaped normal density to several
dimensions plays a fundamental role in multivariate analysis

• While real data are never exactly multivariate normal, the normal density
is often a useful approximation to the “true” population distribution because
of a central limit effect.

• One advantage of the multivariate normal distribution stems from the fact
that it is mathematically tractable and “nice” results can be obtained.
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To summarize, many real-world problems fall naturally within the framework
of normal theory. The importance of the normal distribution rests on its dual
role as both population model for certain natural phenomena and approximate
sampling distribution for many statistics.
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3.2 The Multivariate Normal density and Its Properties

• Recall that the univariate normal distribution, with mean µ and variance σ2,
has the probability density function

f(x) =
1√

2πσ2
e−[(x−µ)/σ]2/2 −∞ < x <∞

• The term (
x− µ
σ

)2

= (x− µ)(σ2)−1(x− µ)

• This can be generalized for p× 1 vector x of observations on serval variables
as

(x− µ)′Σ−1(x− µ)

The p × 1 vector µ represents the expected value of the random vector X,
and the p× p matrix Σ is the variance-covariance matrix of X.
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• A p-dimensional normal density for the random vector X ′ = [X1, X2, . . . , Xp]
has the form

f(x) =
1

(2π)p/2|Σ|1/2
e−(x−µ)′Σ−1(x−µ)/2

where −∞ < xi < ∞, i = 1, 2, . . . , p. We should denote this p-dimensional
normal density by Np(µ,Σ).
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Example 3.1 (Bivariate normal density) Let us evaluate the p = 2 variate
normal density in terms of the individual parameters µ1 = E(X1), µ2 =
E(X2), σ11 = Var(X1), σ22 = Var(X2), and ρ12 = σ12/(

√
σ11
√
σ22) =

Corr(X1, X2).

Result 3.1 If Σ is positive definite, so that Σ−1 exists, then

Σe = λe implies Σ−1e =
1

λ
e

so (λ, e) is an eigenvalue-eigenvector pair for Σ corresponding to the pair
(1/λ, e) for Σ−1. Also Σ−1 is positive definite.
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Constant probability density contour

= { all x such that (x− µ)′Σ−1(x− µ) = c2}

= surface of an ellipsoid centered at µ.

Contours of constant density for the p-dimensional normal distribution are
ellipsoids defined by x such the that

(x− µ)′Σ−1(x− µ) = c2

These ellipsoids are centered at µ and have axes ±c
√
λiei, where Σei = λi for

i = 1, 2, . . . , p.
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Example 4.2 (Contours of the bivariate normal density) Obtain the axes
of constant probability density contours for a bivariate normal distribution when
σ11 = σ22

8



The solid ellipsoid of x values satisfying

(x− µ)′Σ−1(x− µ) ≤ χ2
p(α)

has probability 1−α where χ2
p(α) is the upper (100α)th percentile of a chi-square

distribution with p degrees of freedom.
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Additional Properties of the Multivariate Normal
Distribution

The following are true for a normal vector X having a multivariate normal
distribution:

1. Linear combination of the components of X are normally distributed.

2. All subsets of the components of X have a (multivariate) normal distribution.

3. Zero covariance implies that the corresponding components are independently
distributed.

4. The conditional distributions of the components are normal.
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Result 3.2 If X is distributed as Np(µ,Σ), then any linear combination of
variables a′X = a1X1 +a2X2 + · · ·+apXp is distributed as N(a′µ, a′Σa). Also
if a′X is distributed as N(a′µ, a′Σa) for every a, then X must be Np(µ,Σ).

Example 3.3 (The distribution of a linear combination of the component
of a normal random vector) Consider the linear combination a′X of a
multivariate normal random vector determined by the choice a′ = [1, 0, . . . , 0].

Result 3.3 If X is distributed as Np(µ,Σ), the q linear combinations

A(q×p)Xp×1 =


a11X1 + · · ·+ a1pXp

a21X1 + · · ·+ a2pXp
...

aq1X1 + · · ·+ aqpXp


are distributed as Nq(Aµ,AΣA′). Also Xp×1 + dp×1, where d is a vector of
constants, is distributed as Np(µ+ d,Σ).
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Example 3.4 (The distribution of two linear combinations of the
components of a normal random vector) For X distributed as N3(µ,Σ),
find the distribution of

[
X1 −X2

X2 −X3

]
=

[
1 −1 0
0 1 −1

] X1

X2

X3

 = AX
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Result 3.4 All subsets of X are normally distributed. If we respectively partition
X, its mean vector µ, and its covariance matrix Σ as

X(p×1) =


X1

(q × 1)
· · · · · ·
X2

(p− q)× 1

 µ(p×1) =


µ1

(q × 1)
· · · · · ·
µ2

(p− q)× 1


and

Σ(p×p) =


Σ11 Σ12

(q × 1) (q × (p− q))
· · · · · · · · · · · ·
Σ21 Σ22

((p− q)× q) ((p− q)× (p− q))


then X1 is distributed as Nq(µ1,Σ11).

Example 3.5 (The distribution of a subset of a normal random vector)
If X is distributed as N5(µ,Σ), find the distribution of [X2, X4]′.
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Result 3.5

(a) If X1 and X2 are independent, then Cov(X1,X2) = 0, a q1 × q2 matrix of
zeros, where X1 is q1 × 1 random vector and X2 is q2 × 1. random vector

(b) If

[
X1

X2

]
is Nq1+q2

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, then X1 and X2 are

independent if and only if Σ12 = Σ21 = 0.

(c) If X1 and X2 are independent and are distributed as Nq1(µ1,Σ11)

and Nq2(µ2,Σ22), respectively, then

[
X1

X2

]
has the multivariate normal

distribution

Nq1+q2

([
µ1

µ2

]
,

[
Σ11 0
0 Σ22

])

14



Example 3.6 (The equivalence of zero covariance and independence for
normal variables) Let X3×1 be N3(µ,Σ) with

Σ =

 4 1 0
1 3 0
0 0 2


Are X1 and X2 independent ? What about (X1, X2) and X3 ?

Result 3.6 Let X =

[
X1

X2

]
be distributed as Np(µ,Σ) with

[
µ1

µ2

]
, Σ =[

Σ11 Σ12

Σ21 Σ22

]
, and |Σ22| > 0. Then the conditional distribution of X1, given

that X2 = x2 is normal and has

Mean = µ1 + Σ12Σ−1
22 (x2 − µ2)

and Covariance = Σ11 − Σ12Σ−1
22 Σ21

Note that the covariance does not depend on the value x2 of the conditioning
variable.
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Example 3.7 (The conditional density of a bivariate normal distribution)
Obtain the conditional density of X1, give that X2 = x2 for any bivariate
distribution.

Result 3.7 Let X be distributed as Np(µ,Σ) with |Σ| > 0. Then

(a) (X − µ)′Σ−1(X − µ) is distributed as χ2
p, where χ2

p denotes the chi-square
distribution with p degrees of freedom.

(b) The Np(µ,Σ)distribution assign probability 1 − α to the solid ellipsoid
{x : (x−µ)′Σ−1(x−µ) ≤ χ2

p(α)}, where χ2
p(α) denote the upper (100α)th

percentile of the χ2
p distribution.
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Result 3.8 Let X1,X2, . . . ,Xn be mutually independent with Xj distributed
as Np(µj,Σ). (Note that each Xj has the same covariance matrix Σ.) Then

V1 = c1X1 + c2X2 + · · ·+ cnXn

is distributed as Np

(
n∑
j=1

cjµj, (
n∑
j=1

c2j)Σ

)
. Moreover, V1 and V2 = b1X1 +

b2X2 + · · ·+ bnXn are jointly multivariate normal with covariance matrix (
n∑
j=1

c2j)Σ b′cΣ

b′cΣ21 (
n∑
j=1

b2j)Σ



Consequently, V1 and V2 are independent if b′c =
n∑
j=1

cjbj = 0.
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Example 3.8 (Linear combinations of random vectors) Let X1,X2,X3

and X4 be independent and identically distributed 3× 1 random vectors with

µ =

 3
−1
1

 and Σ =

 3 −1 1
−1 1 0
1 0 2


(a) find the mean and variance of the linear combination a′X1 of the three

components of X1 where a = [a1 a2 a3]′.

(b) Consider two linear combinations of random vectors

1

2
X1 +

1

2
X2 +

1

2
X3 +

1

2
X4

and
X1 +X2 +X3 − 3X4.

Find the mean vector and covariance matrix for each linear combination of
vectors and also the covariance between them.
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3.3 Sampling from a Multivariate Normal Distribution and
Maximum Likelihood Estimation

The Multivariate Normal Likelihood

• Joint density function of all p× 1 observed random vectors X1,X2, . . . ,Xn{
Joint density

of X1,X2, . . . ,Xn

}
=

n∏
j=1

{
1

(2π)p/2|Σ|1/2
e−(xj−µ)′Σ−1(xj−µ)/2

}

=
1

(2π)np/2|Σ|n/2
e
−

n∑
j=1

(xj−µ)′Σ−1(xj−µ)/2

=
1

(2π)np/2|Σ|n/2
e
−tr

[
Σ−1

(
n∑
j=1

(xj−x̄)(xj−x̄)′+n(x̄−µ)(x̄−µ)′
)]/

2
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• Likelihood
When the numerical values of the observations become available, they may
be substituted for the xj in the equation above. The resulting expression,
now considered as a function of µ and Σ for the fixed set of observations
x1, x2, . . . , xn, is called the likelihood.

• Maximum likelihood estimation
One meaning of best is to select the parameter values that maximize
the joint density evaluated at the observations. This technique is called
maximum likelihood estimation, and the maximizing parameter values are
called maximum likelihood estimates.

Result 3.9 Let A be a k × k symmetric matrix and x be a k × 1 vector. Then

(a) x′Ax = tr(x′Ax) = tr(Axx′)

(b) tr(A) =
n∑
i=1

λi, where the λi are the eigenvalues of A.
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Maximum Likelihood Estimate of µ and Σ

Result 3.10 Given a p × p symmetric positive definite matrix B and a scalar
b > 0, it follows that

1

|Σ|b
e−tr(Σ−1B)/2 ≤ 1

|B|b
(2b)pbe−bp

for all positive definite Σp×p, with equality holding only for Σ = (1/2b)B.

Result 3.11 LetX1,X2, . . . ,Xn be a random sample from a normal population
with mean µ and covariance Σ. Then

µ̂ = X̄ and Σ̂ =
1

n

n∑
j=1

(Xj − X̄)(Xj − X̄)′ =
n− 1

n
S

are the maximum likelihood estimators of µ and Σ, respectively. Their

observed value x̄ and (1/n)
n∑
j=1

(xj − x̄)(xj − x̄)′, are called the maximum

likelihood estimates of µ and Σ. 21



Invariance Property of Maximum likelihood estimators

Let θ̂ be the maximum likelihood estimator of θ, and consider the parameter
h(θ), which is a function of θ. Then the maximum likelihood estimate of

h(θ) is given by h(θ̂).

For example

1. The maximum likelihood estimator of µ′Σ−1µ is µ̂Σ̂−1µ̂, where µ̂ = X̄ and
Σ̂ = n−1

n S are the maximum likelihood estimators of µ and Σ respectively.

2. The maximum likelihood estimator of
√
σii is

√
σ̂ii, where

σ̂ii =
1

n

n∑
j=1

(Xij − X̄i)
2

is the maximum likelihood estimator of σii = Var(Xi).
22



Sufficient Statistics

Let X1,X2, . . . ,Xn be a random sample from a multivariate normal
population with mean µ and covariance Σ. Then

X̄ and S =
1

n− 1

n∑
j=1

(Xj − X̄)(Xj − X̄)′ are sufficient statistics

• The importance of sufficient statistics for normal populations is that all of
the information about µ and Σ in the data matrix X is contained in X̄ and
S, regardless of the sample size n.

• This generally is not true for nonnormal populations.

• Since many multivariate techniques begin with sample means and covariances,
it is prudent to check on the adequacy of the multivariate normal assumption.

• If the data cannot be regarded as multivariate normal, techniques that depend
solely on X̄ and S may be ignoring other useful sample information.
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3.4 The Sampling Distribution of X̄ and S

• The univariate case (p = 1)

– X̄ is normal with mean µ =(population mean) and variance

1

n
σ2 =

population variance

sample size

– For the sample variance, recall that (n−1)s2 =
n∑
j=1

(Xj−X̄)2 is distributed

as σ2 times a chi-square variable having n− 1 degrees of freedom (d.f.).
– The chi-square is the distribution of a sum squares of independent standard

normal random variables. That is, (n − 1)s2 is distributed as σ2(Z2
1 +

· · · + Z2
n−1) = (σZ1)2 + · · · + (σZn−1)2. The individual terms σZi are

independently distributed as N(0, σ2).
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• Wishart distribution

Wm(·|Σ) = Wishart distribution with m d.f.

= distribution of
n∑
j=1

ZjZ
′
j

where Zj are each independently distributed as Np(0,Σ).

• Properties of the Wishart Distribution

1. If A1 is distributed as Wm1(A1|Σ) independently of A2, which is
distributed as Wm2(A2|Σ), then A1 +A2 is distributed as Wm1+m2(A1 +
A2|Σ). That is, the the degree of freedom add.

2. If A is distributed as Wm(A|Σ), then CAC′ is distributed as
Wm(CAC′|CΣC′).
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• The Sampling Distribution of X̄ and S

Let X1,X2, . . . ,Xn be a random sample size n from a p-variate normal
distribution with mean µ and covariance matrix Σ. Then

1. X̄ is distributed as Np(µ,
1
nΣ).

2. (n− 1)S is distributed as a Wishart random matrix with n− 1 d.f.
3. X̄ and S are independent.
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4.5 Large-Sample Behavior of X̄ and S

Result 3.12 (Law of Large numbers) Let Y1, Y2, . . . , Yn be independent
observations from a population with mean E(Yi) = µ, then

Ȳ =
Y1 + Y2 + · · ·+ Yn

n

converges in probability to µ as n increases without bound. That is, for any
prescribed accuracy ε > 0, P [−ε < Ȳ − µ < ε] approaches unity as n→∞.

Result 3.13 (The central limit theorem) LetX1,X2, . . . ,Xn be independent
observations from any population with mean µ and finite covariance Σ. Then

√
n(X̄ − µ) has an approximate Np(0,Σ)distribution

for large sample sizes. Here n should also be large relative to p.
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Large-Sample Behavior of X̄ and S

Let X1,X2, . . . ,Xn be independent observations from a population with mean
µ and finite (nonsingular) covariance Σ. Then

√
n(X̄ − µ)is approximately Np(0,Σ)

and
n(X̄ − µ)′S−1(X̄ − µ) is approximately χ2

p

for n− p large.
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3.6 Assessing the Assumption of Normality

• Most of the statistical techniques discussed assume that each vector
observation Xj comes from a multivariate normal distribution.

• In situations where the sample size is large and the techniques dependent
solely on the behavior of X̄, or distances involve X̄ of the form n(X̄ −
µ)′S(X̄ − µ), the assumption of normality for the individual observations is
less crucial.

• But to some degree, the quality of inferences made by these methods
depends on how closely the true parent population resembles the multivariate
normal form.
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Therefore, we address these questions:

1. Do the marginal distributions of the elements of X appear to be normal ?
What about a few linear combinations of the components Xj ?

2. Do the scatter plots of observations on different characteristics give the
elliptical appearance expected from normal population ?

3. Are there any “wild” observations that should be checked for accuracy ?
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Evaluating the Normality of the Univariate Marginal
Distributions

• Dot diagrams for smaller n and histogram for n > 25 or so help reveal
situations where one tail of a univariate distribution is much longer than
other.

• If the histogram for a variable Xi appears reasonably symmetric , we can
check further by counting the number of observations in certain interval, for
examples
A univariate normal distribution assigns probability 0.683 to the interval

(µi −
√
σii, µi +

√
σii)

and probability 0.954 to the interval

(µi − 2
√
σii, µi + 2

√
σii)

Consequently, with a large same size n, the observed proportion p̂i1 of the
observations lying in the interval (x̄i −

√
sii, x̄i +

√
sii) to be about 0.683,

and the interval (x̄i − 2
√
sii, x̄i + 2

√
sii) to be about 0.954
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Using the normal approximating to the sampling of p̂i, observe that either

|p̂i1 − 0.683| > 3

√
(0.683)(0.317)

n
=

1.396√
n

or

|p̂i2 − 0.954| > 3

√
(0.954)(0.046)

n
=

0.628√
n

would indicate departures from an assumed normal distribution for the ith
characteristic.
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• Plots are always useful devices in any data analysis. Special plots called
Q−Q plots can be used to assess the assumption of normality.

Let x(1) ≤ x(2) ≤ · · · ≤ x(n) represent these observations after they are
ordered according to magnitude. For a standard normal distribution, the
quantiles q(j) are defined by the relation

P [Z ≤ q(j)] =

∫ q(j)

−∞

1√
2π
e−z

2/2dz = p(j) =
j − 1

2

n

Here p(j) is the probability of getting a value less than or equal to q(j) in a
single drawing from a standard normal population.

• The idea is to look at the pairs of quantiles (q(j), x(j)) with the same
associated cumulative probability (j − 1

2)/n. If the data arise from a normal
population, the pairs (q(j), x(j)) will be approximately linear related, since
σq(j) + µ is nearly expected sample quantile.
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Example 3.9 (Constructing a Q-Q plot) A sample of n = 10 observation
gives the values in the following table:

The steps leading to a Q-Q plot are as follows:

1. Order the original observations to get x(1), x(2), . . . , x(n) and their
corresponding probability values (1− 1

2)/n, (2− 1
2)/n, . . . , (n− 1

2)/n;

2. Calculate the standard quantiles q(1), q(2), . . . , q(n) and

3. Plot the pairs of observations (q(1), x(1)), (q(2), x(2)), . . . , (q(n), x(n)), and
examine the “straightness” of the outcome.
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Example 4.10 (A Q-Q plot for radiation data) The quality -control
department of a manufacturer of microwave ovens is required by the federal
government to monitor the amount of radiation emitted when the doors of the
ovens are closed. Observations of the radiation emitted through closed doors of
n = 42 randomly selected ovens were made. The data are listed in the following
table.
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The straightness of the Q-Q plot can be measured ba calculating the
correlation coefficient of the points in the plot. The correlation coefficient for
the Q-Q plot is defined by

rQ =

n∑
j=1

(x(j) − x̄)(q(j) − q̄)√
n∑
j=1

(x(j) − x̄)2

√
n∑
j=1

(q(j) − q̄)2

and a powerful test of normality can be based on it. Formally we reject the
hypothesis of normality at level of significance α if rQ fall below the appropriate
value in the following table
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Example 3.11 (A correlation coefficient test for normality) Let us calculate
the correlation coefficient rQ from Q-Q plot of Example 3.9 and test for
normality.
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Linear combinations of more than one characteristic can be investigated.
Many statistician suggest plotting

ê′1xj where Sê1 = λ̂1ê1

in which λ̂1 is the largest eigenvalue of S. Here x′j = [xj1, xj2, . . . , xjp] is
the jth observation on p variables X1, X2, . . . , Xp. The linear combination
êpxj corresponding to the smallest eigenvalue is also frequently singled out for
inspection
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Evaluating Bivariate Normality

• By Result 3.7, the set of bivariate outcomes x such that

(x− µ)′Σ−1(x− µ) ≤ χ2
2(0.5)

has probability 0.5.

• Thus we should expect roughly the same percentage, 50%, of sample
observations lie in the ellipse given by

{all x such that (x− x̂)′S−1(x− x̂) ≤ χ2
2(0.5)}

where µ is replaced by x̂and Σ−1 by its estimate S−1. If not, the normality
assumption is suspect.

Example 3.12 (Checking bivariate normality) Although not a random sample,
data consisting of the pairs of observations (x1 = sales, x2 = profits) for the 10
largest companies in the world are listed in the following table. Check if (x1, x2)
follows bivariate normal distribution.
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• A somewhat more formal method for judging normality of a data set is based
on the squared generalized distances

d2
j = (xj − x̄)′S−1(xj − x̄)

• When the parent population is multivariate normal and both n and n − p
are greater than 25 or 30, each of the squared distance d2

1, d
2
2, . . . , d

2
n should

behave like a chi-square random variable.

• Although these distances are not independent or exactly chi-square
distributed, it is helpful to plot them as if they were. The resulting
plot is called a chi-square plot or gamma plot, because the chi-square
distribution is a special case of the more general gamma distribution. To
construct the chi-square plot

1. Order the square distance in the equation above from smallest to largest
as d2

(1) ≤ d
2
(2) ≤ · · · ≤ d

2
(n).

2. Graph the pairs (qc,p((j− 1
2)/n), d2

(j)), where qc,p((j− 1
2)/n) is the 100(j−

1
2)/n quantile of the chi-square distribution with p degrees of freedom.
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Example 3.13 (Constructing a chi-square plot) Let us construct a chi-square
plot of the generalized distances given in Example 3.12. The order distance and
the corresponding chi-square percentile for p = 2 and n = 10 are listed in the
following table:
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Example 3.14 (Evaluating multivariate normality for a four-variable data
set) The data in Table 4.3 were obtained by taking four different measures of
stiffness, x1, x2, x3, and x4, of each of n = 30 boards. the first measurement
involving sending a shock wave down the board, the second measurement
is determined while vibrating the board, and the last two measurements are
obtained from static tests. The squared distances dj = (xj− x̄)′S−1(xj− x̄) are
also presented in the table
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3.7 Detecting Outliers and Cleaning Data

• Outliers are best detected visually whenever this is possible

• For a single random variable, the problem is one dimensional, and we look
for observations that are far from the others.

• In the bivariate case, the situation is more complicated. Figure 4.10 shows a
situation with two unusual observations.

• In higher dimensions, there can be outliers that cannot be detected from
the univariate plots or even the bivariate scatter plots. Here a large value
of (xj − x̄)′S−1(xj − x̄) will suggest an unusual observation. even though it
cannot be seen visually.
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Steps for Detecting Outliers

1. Math a dot plot for each variable.

2. Make a scatter plot for each pair of variables.

3. Calculate the standardize variable zjk = (xjk − x̄k)/
√
skk for j = 1, 2, . . . , n

and each column k = 1, 2, . . . , p. Examine these standardized values for large
or small values.

4. Calculate the generalized squared distance (xj − x̄)′S−1(xj − x̄). Examine
these distances for unusually values. In a chi-square plot, these would be the
points farthest from the origin.
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Example 3.15 (Detecting outliers in the data on lumber) Table 4.4 contains
the data in Table 4.3, along with the standardized observations. These data
consist of four different measurements of stiffness x1, x2, x3 and x4, on each
n = 30 boards. Detect outliers in these data.
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3.8 Transformations to Near Normality

If normality is not a viable assumption, what is the next step ?

• Ignore the findings of a normality check and proceed as if the data were
normality distributed. ( Not recommend)

• Make nonnormal data more “normal looking” by considering
transformations of data. Normal-theory analyses can then be carried
out with the suitably transformed data.

Appropriate transformations are suggested by

1. theoretical consideration

2. the data themselves.
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• Helpful Transformations To Near Normality
Original Scale Transformed Scale
1. Counts, y

√
y

2. Proportions, p̂ logit = 1
2 log

(
p̂

1−p̂

)
3. Correlations, r Fisher’s z(r) = 1

2 log
(

1+r
1−r

)
• Box and Cox transformation

x(λ) =

{
xλ−1
λ λ 6= 0

lnx λ = 0
or y

(λ)
j =

xλj − 1

λ

[(
n∏
i=1

xi

)1/n
]λ−1

, j = 1, . . . , n

Given the observations x1, x2, . . . , xn, the Box-Cox transformation for the
choice of an appropriate power λ is the solution that maximizes the express

`(λ) = −n
2

ln

1

n

n∑
j=1

(x
(λ)
j − ¯x(λ))2

+ (λ− 1)

n∑
j=1

lnxj

where ¯x(λ) = 1
n

n∑
j=1

(
xλj−1

λ

)
.
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Example 3.16 (Determining a power transformation for univariate data)
We gave readings of microwave radiation emitted through the closed doors of
n = 42 ovens in Example 3.10. The Q-Q plot of these data in Figure 4.6
indicates that the observations deviate from what would be expected if they
were normally distributed. Since all the positive observations are positive, let
us perform a power transformation of the data which, we hope, will produce
results that are more nearly normal. We must find that value of λ maximize the
function `(λ).
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Transforming Multivariate Observations

• With multivariate observations, a power transformation must be selected for
each of the variables.

• Let λ1, λ2, . . . , λp be the power transformations for the p measured
characteristics. Each λk can be selected by maximizing

`(λ) = −n
2

ln

1

n

n∑
j=1

(x
(λk)
jk − x

(λk)
k )2

+ (λk − 1)

n∑
j=1

lnxjk

where x1k, x2k, . . . , xnk are n observations on the kth variable, k =
1, 2, . . . , p. Here

x
(λk)
k =

1

n

n∑
j=1

(
x
λk
jk − 1

λk

)
• Let λ̂1, λ̂2, . . . , λ̂p be the values that individually maximize the equation

above. Then the jth transformed multivariate observation is

x
(λ̂)
j =

xλ̂1
j1 − 1

λ̂1

,
xλ̂2
j2 − 1

λ̂2

, · · · ,
x
λ̂p
jp − 1

λ̂p

′
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• The procedure just described is equivalent to making each marginal
distribution approximately normal. Although normal marginals are not
sufficient to ensure that the joint distribution is normal, in practical
applications this may be good enough.

• If not, the value λ̂1, λ̂2, . . . , λ̂p can be obtained from the preceding
transformations and iterate toward the set of values λ′ = [λ1, λ2, . . . , λp],
which collectively maximizes

`(λ1, λ2, . . . , λp) = −n
2

ln |S(λ)| + (λ1 − 1)

n∑
j=1

lnxj1 + (λ2 − 1)

n∑
j=1

lnxj2

+ · · ·+ (λp − 1)

n∑
j=1

lnxjp

where S(λ) is the sample covariance matrix computed from

x
(λ)
j =

[
xλ1
j1 − 1

λ1
,
xλ2
j2 − 1

λ2
, · · · ,

x
λp
jp − 1

λp

]′
, j = 1, 2, . . . , n
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Example 3.17 (Determining power transformations for bivariate data)
Radiation measurements were also recorded though the open doors of the
n = 42 micowave ovens introduced in Example 3.10. The amount of radiation
emitted through the open doors of these ovens is list Table 4.5. Denote the
door-close data x11, x21, . . . , x42,1 and the door-open data x12, x22, . . . , x42,2.
Consider the joint distribution of x1 and x2, Choosing a power transformation
for (x1, x2) to make the joint distribution of (x1, x2) approximately bivariate
normal.
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If the data includes some large negative values and have a single long tail, a
more general transformation should be applied.

x(λ) =


{(x+ 1)λ − 1}/λ x ≥ 0, λ 6= 0
ln(x+ 1) x ≥ 0, λ = 0
−{(−x+ 1)2−λ − 1}/(2− λ) x < 0, λ 6= 2
− ln(−x+ 1) x < 0, λ = 2
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