3. The Multivariate Normal Distribution

3.1 Introduction

e A generalization of the familiar bell shaped normal density to several
dimensions plays a fundamental role in multivariate analysis

e While real data are never exactly multivariate normal, the normal density
is often a useful approximation to the “true” population distribution because
of a central limit effect.

e One advantage of the multivariate normal distribution stems from the fact
that it is mathematically tractable and “nice” results can be obtained.



To summarize, many real-world problems fall naturally within the framework
of normal theory. The importance of the normal distribution rests on its dual
role as both population model for certain natural phenomena and approximate
sampling distribution for many statistics.



3.2 The Multivariate Normal density and Its Properties

Recall that the univariate normal distribution, with mean & and variance o2,

has the probability density function

fl2) = —_e=la=m/ol2 oo <y < o

VvV 2mo?

The term

(228) = miet)

o

This can be generalized for p x 1 vector x of observations on serval variables
as

(x = )7 (x — )
The p x 1 vector u represents the expected value of the random vector X,
and the p X p matrix X is the variance-covariance matrix of X.



e A p-dimensional normal density for the random vector X' = [X1, X5, ..., X,
has the form

1
I = Grprm

o~ (X—p)'STH(X—p) /2

where —oco < x; < 00,7 = 1,2,...,p. We should denote this p-dimensional
normal density by N,(u,%).

Figure 4.1 A normal density
with mean p and variance g2
and selected arcas under the
curve.




Example 3.1 (Bivariate normal density) Let us evaluate the p = 2 variate
normal density in terms of the individual parameters pu; = E(X1),us =
E(XQ),O'H = Var(Xl),agg = Var(Xg), and P12 — 0'12/(\/0'11\/0'22) =
COI’F(Xl,XQ).

Result 3.1 If ¥ is positive definite, so that X! exists, then
L _q 1
Ye=)e implies X "e= Xe

so (A,e) is an eigenvalue-eigenvector pair for 3 corresponding to the pair
(1/X,e) for X1 Also X1 is positive definite.
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Figure 4.2 Two bivariate normal distributions. (a) oy, = o3, and py, = 0.
(b)oyy = oppand p; = 75,



Constant probability density contour
= { all x such that (x — p)’S 7 1(x — p) = ¢}
= surface of an ellipsoid centered at pu.

Contours of constant density for the p-dimensional normal distribution are
ellipsoids defined by x such the that

(x— /S (x—p) =

These ellipsoids are centered at p and have axes £cv/\;e;, where Ye; = \; for
1=1,2,...,p.



Example 4.2 (Contours of the bivariate normal density) Obtain the axes
of constant probability density contours for a bivariate normal distribution when

011 = 0922
)
A
C \;O_“ — 02
! | _ - .
i Figure 4.3 A constant-density
contour for a brvariate normal
) . ) )
| . distribution with ¢;; = &5, and
> A

i Jd1» = O (Ol'p]z = 0)



The solid ellipsoid of x values satisfying

(x = )T (x — p) < x(e)

has probability 1—o where x2(«) is the upper (100a)th percentile of a chi-square
distribution with p degrees of freedom.
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Figure 4.4 The 50% and 90% contours for the bivariate normal
distributions in Figure 4.2.



Additional Properties of the Multivariate Normal
Distribution

The following are true for a normal vector X having a multivariate normal
distribution:

1. Linear combination of the components of X are normally distributed.
2. All subsets of the components of X have a (multivariate) normal distribution.

3. Zero covariance implies that the corresponding components are independently
distributed.

4. The conditional distributions of the components are normal.
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Result 3.2 If X is distributed as N,(p,%), then any linear combination of
variables a’ X = a1 X1 +ax X2+ --+a, X, is distributed as N(a'p,a’3a). Also
if a’ X is distributed as N(a'p,a’Xa) for every a, then X must be N,(u, X).

Example 3.3 (The distribution of a linear combination of the component
of a normal random vector) Consider the linear combination a’X of a
multivariate normal random vector determined by the choice a’ = [1,0,...,0].

Result 3.3 If X is distributed as N,(u, %), the ¢ linear combinations

a1 X1+ -+ apXy

A(qxp)prl _ CL21X1 —+ - -+ a,ngp

i CquXl + -+ CLqup
are distributed as N,(Ap, AXA’). Also X,x1 + d,x1, where d is a vector of
constants, is distributed as N,(p +d, %).

11



Example 3.4 (The distribution of two linear combinations of the
components of a normal random vector) For X distributed as N3(u, ),

find the distribution of

X1 — Xo
Xo — X3

|-

1
0

=AX
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Result 3.4 All subsets of X are normally distributed. If we respectively partition
X, its mean vector u, and its covariance matrix X as

X1 Hq
(g 1) (g x 1)
Xpxy=| - By = |
X9 Foo
| (p—q) x1 C(p—q¢) x1
and } i
211 212
(g x 1) (g < (p—q))
Sipxp) = | e e
221 2129
(p—a)xq) (P—q) x(P—q)

then X, is distributed as N,(pq,211).

Example 3.5 (The distribution of a subset of a normal random vector)
If X is distributed as N5(u,Y), find the distribution of [ X5, X4|’.
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Result 3.5

(a) If X1 and X5 are independent, then Cov(X1, X2) =0, a g1 X g2 matrix of
zeros, where X1 is ¢; X 1 random vector and X5 is g3 X 1. random vector

(b) If [i;] is Nq1+@<[ Z; ] , [ g; g;; ]) then X; and X, are

independent if and only if X195 = X9 = 0.

(c) If X, and X are independent and are distributed as N (pq,211)

1 ] has the multivariate normal
X

y 211 0
Mo (| ][ 0" s ))

and Ng,(po, Xo2), respectively, then [ A
distribution

14



Example 3.6 (The equivalence of zero covariance and independence for
normal variables) Let X 3,7 be N3(u,>) with

]
I
O =
o W
o O O

Are X7 and X5 independent ? What about (X7, X5) and X3 ?

Result 3.6 Let X = [ X1 ] be distributed as N, (u, ) with [ 1 ] Y =
X2 Mo
X1 22 , and |X92| > 0. Then the conditional distribution of X1, given
221 222

that X5 = x5 is normal and has

Mean = p; + $12%5, (X2 — )
and Covariance = X171 — 21222_21221

Note that the covariance does not depend on the value x5 of the conditioning

variable.
15



Example 3.7 (The conditional density of a bivariate normal distribution)
Obtain the conditional density of X, give that Xy = x5 for any bivariate
distribution.

Result 3.7 Let X be distributed as N,(p, X) with |X| > 0. Then

a) (X — p)'271(X — p) is distributed as x2, where x2? denotes the chi-square
p p
distribution with p degrees of freedom.

(b) The N,(p,X)distribution assign probability 1 — a to the solid ellipsoid

{x:(x—p)S"(x—p) < x2(a)}, where x2(cr) denote the upper (100a)th
percentile of the x? distribution.

16



Result 3.8 Let X, X»,..., X, be mutually independent with X ; distributed
as Np(p;,%). (Note that each X ; has the same covariance matrix ¥.) Then

Vi=c X1 +cXo+ -+ Xy

is distributed as N, cjtj, (D ¢7)X ). Moreover, Vi and Vy =01 X +

J

J
bo Xo + - -+ b,X,, are jointly multivariate normal with covariance matrix

n mn

1 j=1

(> )X blex
J=1
b/0221 (Z b?)Z
: g=1 _

Consequently, V4 and V5 are independent if b'’c = > ¢,;b; = 0.

J=1
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Example 3.8 (Linear combinations of random vectors) Let X, X5, X3
and X4 be independent and identically distributed 3 X 1 random vectors with

pw= 1| —1 and X = | —1

(a) find the mean and variance of the linear combination a’X; of the three
components of X1 where a = [a; as as)”.

(b) Consider two linear combinations of random vectors

1 1 1 1
CX 4+ X0+ X2+ -X
g A1 T A2 oA T oA

and
X1+ X9+ X3 —3X4.

Find the mean vector and covariance matrix for each linear combination of
vectors and also the covariance between them.

18



3.3 Sampling from a Multivariate Normal Distribution and
Maximum Likelihood Estimation

The Multivariate Normal Likelihood

e Joint density function of all p x 1 observed random vectors X1, Xo,..., X,
Joint density
of Xl,XQ,...,Xn
- 11 L o~ (X =) =L~ 1) /2
LI Gmppreps)is
7=1

1 =3 (X)X 1) /2
(27-‘-)np/2|2|n/26

J=1

=

1 —tr |21

(xj—>‘<><xj—>‘<>’+n<>‘<—u><>‘<—u>’)] / 2
(27-‘-)np/2|2|n/26

g=1
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e Likelihood
When the numerical values of the observations become available, they may
be substituted for the x; in the equation above. The resulting expression,
now considered as a function of p and X for the fixed set of observations
X1, X9, ..., Xn, IS called the likelihood.

e Maximum likelihood estimation
One meaning of best is to select the parameter values that maximize
the joint density evaluated at the observations. This technique is called
maximum likelihood estimation, and the maximizing parameter values are
called maximum likelihood estimates.

Result 3.9 Let A be a k£ x k symmetric matrix and x be a k x 1 vector. Then
(a) xX’Ax = tr(x’Ax) = tr(Axx’)

(b) tr(A) = > \;, where the \; are the eigenvalues of A.
i=1
20



Maximum Likelihood Estimate of 1 and X

Result 3.10 Given a p x p symmetric positive definite matrix B and a scalar
b > 0, it follows that

I _trs=—1B)/2 1 b —b
We ( )/ SW(Qb)p e bp

for all positive definite X,,,, with equality holding only for ¥ = (1/2b)B.

Result 3.11 Let X1, X5, ..., X,, be arandom sample from a normal population
with mean @ and covariance .. Then

p=X and L=-) (X;-X)(X;-X) = S

g=1

are the maximum likelihood estimators of p and X, respectively. Their

observed value x and (1/n) > (x; — X)(x; — X)/, are called the maximum
j=1
likelihood estimates of p and X.. 21



Invariance Property of Maximum likelihood estimators

Let O be the maximum likelihood estimator of 8, and consider the parameter
h(@), which is a function of 8. Then the maximum likelihood estimate of

h(8) is given by h(8).

For example

1. The maximum likelihood estimator of '3~ p is 3>~ 1f, where i = X and
> = =18 are the maximum likelihood estimators of p and ¥ respectively.

n

2. The maximum likelihood estimator of \/c;; is \/&;;, where

j=1

is the maximum likelihood estimator of o;; = Var(X;).
22



Sufficient Statistics

Let X1, X5o,...,X,, be a random sample from a multivariate normal
population with mean p and covariance . Then

n

Z(Xj — X)(X,; — X)) are sufficient statistics

J=1

X and S = !

n—1

e The importance of sufficient statistics for normal populations is that all of
the information about p and X in the data matrix X is contained in X and
S, regardless of the sample size n.

e This generally is not true for nonnormal populations.

e Since many multivariate techniques begin with sample means and covariances,
it is prudent to check on the adequacy of the multivariate normal assumption.

e |f the data cannot be regarded as multivariate normal, techniques that depend
solely on X and S may be ignoring other useful sample information.
23



3.4 The Sampling Distribution of X and S

e The univariate case (p = 1)

— X is normal with mean p =(population mean) and variance

102 __ population variance
n sample size

n

— For the sample variance, recall that (n—1)s? = > (X;— X)? is distributed

7=1
as o2 times a chi-square variable having n — 1 degrees of freedom (d.f.).
— The chi-square is the distribution of a sum squares of independent standard
normal random variables. That is, (n — 1)s? is distributed as 0%(Z% +
o+ Z2 )= (0Z1)*+ -+ (6Z,_1)%. The individual terms oZ; are
independently distributed as N (0, 0?).

24



e Wishart distribution

Wi (-[2) = Wishart distribution with m d.f.

— distribution of ZZJZ;’

j=1
where Z; are each independently distributed as N,(0,%).

e Properties of the Wishart Distribution

1. If Ay is distributed as W,, (A1]|¥) independently of Aj, which is
distributed as W,,,(A2|X), then Ay 4 A, is distributed as Wi, 4-m, (A1 +
A5|Y). That is, the the degree of freedom add.

2. If A is distributed as W,,(A|X), then CAC’ is distributed as
W.,(CAC'|CZC).

25



e The Sampling Distribution of X and S

Let X1, X5,...,X,, be a random sample size n from a p-variate normal
distribution with mean @ and covariance matrix X. Then

X is distributed as N,(p,1).
(n — 1)S is distributed as a Wishart random matrix with n — 1 d.f.

1.
2.
3. X and S are independent.

26



4.5 Large-Sample Behavior of X and S

Result 3.12 (Law of Large numbers) Let Y7,Y5,...,Y,, be independent
observations from a population with mean E(Y;) = p, then

Yi+Yo+--+Y,
n

Y =

converges in probability to p as n increases without bound. That is, for any
prescribed accuracy € > 0, P|—e <Y — pu < €] approaches unity as n — oc.

Result 3.13 (The central limit theorem) Let X1, X5, ..., X, be independent
observations from any population with mean @ and finite covariance X.. Then

vn(X — p) has an approximate N, (0, X)distribution

for large sample sizes. Here n should also be large relative to p.

27



Large-Sample Behavior of X and S

Let X1, Xo,..., X, beindependent observations from a population with mean
p and finite (nonsingular) covariance X. Then

vn(X — p)is approximately N,(0,X)

and

n(X — p)’'S™H(X — ) is approximately x>

for n — p large.

28



3.6 Assessing the Assumption of Normality

e Most of the statistical techniques discussed assume that each vector
observation X ; comes from a multivariate normal distribution.

e In situations where the sample size is large and the techniques dependent
solely on the behavior of X, or distances involve X of the form n(X —
1)'S(X — p), the assumption of normality for the individual observations is
less crucial.

e But to some degree, the quality of inferences made by these methods

depends on how closely the true parent population resembles the multivariate
normal form.

29



Therefore, we address these questions:

. Do the marginal distributions of the elements of X appear to be normal ?
What about a few linear combinations of the components X ?

. Do the scatter plots of observations on different characteristics give the
elliptical appearance expected from normal population ?

. Are there any “wild” observations that should be checked for accuracy ?

30



Evaluating the Normality of the Univariate Marginal
Distributions

e Dot diagrams for smaller n and histogram for n > 25 or so help reveal
situations where one tail of a univariate distribution is much longer than
other.

e |f the histogram for a variable X, appears reasonably symmetric , we can
check further by counting the number of observations in certain interval, for
examples
A univariate normal distribution assigns probability 0.683 to the interval

(i — /Ty i + \/0ii)

and probability 0.954 to the interval

(i — 24/ 044, i + 2/ 045)
Consequently, with a large same size n, the observed proportion p;; of the
observations lying in the interval (Z; — \/Si;, T; + 1/Si;) to be about 0.683,
and the interval (Z; — 2./s4, Z; + 24/54;) to be about 0.954

31



Using the normal approximating to the sampling of p;, observe that either

Pit — 0.683] > 3\/(0.683)(0.317) 1396
(2 . - \/ﬁ

or

Pis — 0.954] > 3\/(0.954)(0.046) _0.628
1 . - \/ﬁ

would indicate departures from an assumed normal distribution for the ith
characteristic.

32



e Plots are always useful devices in any data analysis. Special plots called
() — () plots can be used to assess the assumption of normality.

Let (1) < z(9) < -+ < () represent these observations after they are
ordered according to magnitude. For a standard normal distribution, the
quantiles q(;) are defined by the relation

a(4) 1

N

2 J—
R PG =

Pl\Z < g/ =
[ = q(])] o \/59; n

Here p(;) is the probability of getting a value less than or equal to g(;) in a
single drawing from a standard normal population.

e The idea is to look at the pairs of quantiles (g(;),x(;)) with the same
associated cumulative probability (j — 3)/n. If the data arise from a normal
population, the pairs (q( ), x(;)) will be approximately linear related, since
oq;y + 1 1s nearly expected sample quantile.

33



Example 3.9 (Constructing a Q-Q plot) A sample of n = 10 observation
gives the values in the following table:

X )
Ordered . f
observations Probablhﬁy levels Standard normal i
Xij) (/ - 5)/11 quantlles qi) 2T o
™
-1.00 .05 —1.645 14+ ®
—.10 15 —-1.036 o
16 25 —.674 °
41 .35 —.385 — i ) . O
62 45 —125 PSR 2T ! ' >
.80 55 125 -
1.26 .65 .385 L]
1.54 75 674 T
1.71 .85 1.036 .
2130 95 1.645 Flgure 4.5 A Q—Q plOt for the

data in Example 4.9.

The steps leading to a Q-Q plot are as follows:

1. Order the original observations to get xz(1),x(2),...,Z(,) and their
corresponding probability values (1 —3)/n, (2 —3)/n,...,(n —3)/n;

2. Calculate the standard quantiles g(1), q(2), - - -, qn) and

3. Plot the pairs of observations (Q(l), x(l)), (Q(g), ZE(Q)), Ce e (Q(n), x(n)), and
examine the “straightness” of the outcome.

34



Example 4.10 (A Q-Q plot for radiation data) The quality -control
department of a manufacturer of microwave ovens is required by the federal
government to monitor the amount of radiation emitted when the doors of the
ovens are closed. Observations of the radiation emitted through closed doors of
n = 42 randomly selected ovens were made. The data are listed in the following

table.

Table 4.1 Radiation Data (Door Closed)
Oven Oven
no. Radiation no.

1 15 16
2 .09 17
3 18 18
4 10 19
5 .05 20
6 12 21
7 .08 22
8 .05 23
9 .08 24
10 .10 25
11 .07 26
12 .02 27
13 .01 28
14 10 29
15 10 30

Source: Data courtesy of J. . Cryer.
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Figure 4.6 A O-Q plot of
the radiation data (door
closed) from Example 4.10.
(The integers in the plot
indicate the number of
points occupying the Bme
location.)



The straightness of the Q-Q plot can be measured ba calculating the
correlation coefficient of the points in the plot. The correlation coefficient for
the Q-Q plot is defined by

X ()~ 2)(agy ~ )

¢2xm:w¢iwmm

and a powerful test of normality can be based on it. Formally we reject the

hypothesis of normality at level of significance « if r¢ fall below the appropriate
value in the following table

36



Table 4.2 Critical Points for the Q—Q Plot
Correlation Coetficient Test for Normality |

: Significance levels «
Sample size g 4

) 01 05 .10

5 8299 8788 .9032
10 8801  .9198 9351
15 9126 9389 9503
20 9269 9508 9604
25 9410 9591 9665
30 9479 9652 9715
35 9538 L9682 9740
40 9599 9726 9771
45 9632 9749 9792
50 9671 9768 L9809
55 9695 9787 OK22
60 9720 9801 9836
75 9771 9838 9866
100 9822 9873 L9895
150 O879 9913 9928
200 9905 9931 .9942
300 0935 9953 .9960)

Example 3.11 (A correlation coefficient test for normality) Let us calculate
the correlation coefficient rg from Q-Q plot of Example 3.9 and test for

normality.

37



Linear combinations of more than one characteristic can be investigated.
Many statistician suggest plotting

N A N
€ X, where Selz)\lel

in which A; is the largest eigenvalue of S. Here X; = [Tj1,Tj2,...,Tjp] is
the jth observation on p variables X, Xo,...,X,. The linear combination
e,x; corresponding to the smallest eigenvalue is also frequently singled out for

inspection

38



Evaluating Bivariate Normality

e By Result 3.7, the set of bivariate outcomes x such that

(x = )27 (x — p) < x3(0.5)
has probability 0.5. ?
e Thus we should expect roughly the same percentage, 50%, of sample
observations lie in the ellipse given by

{all x such that (x — x)’'S™(x — %) < x3(0.5)}

where p is replaced by xand X! by its estimate S™!. If not, the normality
assumption Is suspect.

Example 3.12 (Checking bivariate normality) Although not a random sample,
data consisting of the pairs of observations (x; = sales, x5 = profits) for the 10
largest companies in the world are listed in the following table. Check if (z1,z2)

follows bivariate normal distribution.
39



The World’s 10 Largest Companies’

x; = sales X, = profits X3 = assets
Company (billions) (billions) (billions)
Citigroup 108.28 17.05 1,484.10
General Electric 152.36 16.59 750.33
American Intl Group 95.04 1091 766.42
Bank of America 65.45 14.14 1,110.46
HSBC Group 62.97 9.52 1,031.29
ExxonMobil 263.99 2533 195.26
Royal Dutch/Shell 265.19 18.54 193.83
BP 285.06 15.73 191.11
ING Group 92.01 8.10 1,175.16
Toyota Motor 165.68 1113 211,15

'From www.Forbes.com partially based on Forbes The Forbes Global 2000,

April 18, 2005.

40



e A somewhat more formal method for judging normality of a data set is based
on the squared generalized distances

_ -1 _
d? = (x; —x)'S7!(x; — )
e \When the parent population is multivariate normal and both n and n — p

are greater than 25 or 30, each of the squared distance d%,d5, ..., d? should
behave like a chi-square random variable.

e Although these distances are not independent or exactly chi-square
distributed, it is helpful to plot them as if they were. The resulting
plot is called a chi-square plot or gamma plot, because the chi-square
distribution is a special case of the more general gamma distribution. To
construct the chi-square plot

1. Order the square distance in the equation above from smallest to largest

2 2 2
as diy) S dg) < - < diyy.

2. Graph the pairs (g.,((j —%)/n), d%ﬁ), where g ,((j —3)/n) is the 100(j —
%)/n quantile of the chi-square distribution with p degrees of freedom.

41



Example 3.13 (Constructing a chi-square plot) Let us construct a chi-square
plot of the generalized distances given in Example 3.12. The order distance and
the corresponding chi-square percentile for p = 2 and n = 10 are listed in the
following table:

1 30 10
2 62 33
3 1.16 38
4 1.30 86
5 L6l 1.20
6 1.64 1.60
7 1.71 2.10
3 1.79 2.77
9 3.53 3.79
10 4.38 5.99
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Figure 4.7 A chi-square plot of the ordered distances in Example 4.13.
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Figure 4.8 Chi-square plots for two simulated four-variate normal data sets with 7 = 30.
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Example 3.14 (Evaluating multivariate normality for a four-variable data

set) The data in Table 4.3 were obtained by taking four different measures of

stiffness, x1,x9,xr3, and x4, of each of n = 30 boards. the first measurement
involving sending a shock wave down the board, the second measurement
is determined while vibrating the board, and the last two measurements are
obtained from static tests. The squared distances d; = (x; —X)'S™!(x; — x) are

also presented in the table

Table 4.3 Four Measurements of Stiffness

Source: Data courtesy of William Galligan.

Observation Observation B
no. X4 X X3 Xy d* no. X X X3 Xy d?
T .
1 1889 1651 1561 1778 .60 16 1954 2149 1180 1281 1683
2 2403 2048 2087 2197 5.48 17 1325 1170 1002 1176 3350
3 2119 1700 1815 2222 7.62 18 1419 1371 1252 1308 399
4 1645 1627 1110 1533 5.21 19 1828 1634 1602 1755 136
5 1976 1916 1614 1883 1.40 20 1725 1594 1313 1646 146
6 1712 1712 1439 1546 2.22 21 2276 2189 1547 2111 9%
7 1943 1685 1271 1671 4.99 22 1899 1614 1422 1477 506
8 2104 1820 1717 1874 1.49 23 1633 1513 1290 1516 80
9 2983 2794 2412 2581 12.26 24 2061 1867 1646 2037 254
10 1745 1600 1384 1508 .77 25 1856 1493 1356 1533 458
11 1710 1591 1518 1667 1.93 26 1727 1412 1238 1469 340
12 2046 1907 1627 1898 46 27 2168 1896 1701 1834 238
13 1840 1841 1595 1741 2.70 28 1655 1675 1414 1597 3.00
14 1867 1685 1493 1678 .13 29 2326 2301 2065 2234 628
15 1859 1649 1389 1714 1.08 30 1490 1382 1214 1284 258
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Figure 4.9 A chi-square plot for the data in Example 4.14.
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3.7 Detecting Outliers and Cleaning Data

Outliers are best detected visually whenever this is possible

For a single random variable, the problem is one dimensional, and we look
for observations that are far from the others.

In the bivariate case, the situation is more complicated. Figure 4.10 shows a
situation with two unusual observations.

In higher dimensions, there can be outliers that cannot be detected from
the univariate plots or even the bivariate scatter plots. Here a large value
of (x; —z)'S™!(x; — &) will suggest an unusual observation. even though it
cannot be seen visually.
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Figure 4.10 Two outliers; one univariate and one bivariate.
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Steps for Detecting Outliers

Math a dot plot for each variable.
Make a scatter plot for each pair of variables.

Calculate the standardize variable z;, = (xjx — Zr)/\/Skk for j =1,2,....n
and each column k£ =1,2,...,p. Examine these standardized values for large

or small values.

Calculate the generalized squared distance (x; — x)’S™!(x; — x). Examine
these distances for unusually values. In a chi-square plot, these would be the
points farthest from the origin.

X1 X> X3 Xy X3 4| 22 <3 24 <3
1631 1528 1452 1559 1602 06 —.15 05 28 —12
1770 1677 1707 1738 1785 64 43 107 94 60
1376 1190 723 1285 2791 —1.01 147 -287 73
1705 1577 1332 1703 1664 37 04 —-43 81 13
1642 1535 1510 1494 1582 11 12 28 04 —20
1567 1510 1301 1405 1553 -21 =22 =56 -28 -3l
1528 1591 1714 1685 1698 ~.38 10 11075 26
1803 1826 1748 2746 1764 78 1.01 1.23 52
1587 1554 1352 1554 1551 -13  —-05 =35 26 -32
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Example 3.15 (Detecting outliers in the data on lumber) Table 4.4 contains
the data in Table 4.3, along with the standardized observations. These data
consist of four different measurements of stiffness x1, x5, x3 and x4, on each
n = 30 boards. Detect outliers in these data.

Table 4.4 Four Measurements of Stiffness with Standardized Values
X X X3 Xy Observation no. 7y by 23
1889 1651 1561 1778 1 —.1 -3 2 2
2403 2048 2087 2197 2 1.5 9 1.9 1.5
2119 1700 1815 2222 3 i -2 1.0 1.5
1645 1627 1110 1533 4 -8 -4 -1.3 -6
1976 1916 1614 1883 5 2 5 3 5
1712 1712 1439 1546 6 ) -1 -2 -6
1943 1685 1271 1671 7 1 -2 -8 -2
2104 1820 1717 1874 8 .6 2 7 3
2983 2794 2412 2581 9 3.3 33 3.0 2.7
1745 1600 1384 1508 10 -5 -5 -4 =7
1710 1391 1518 1667 11 —.6 -5 .0 -2
2046 1907 1627 1898 12 4 5 4
1840 1841 1595 1741 13 -2 3 3 )
1867 1685 1493 1678 14 -1 -2 -1 —.1
1859 1649 1389 1714 15 —.1 -3 -4 —.0
1954 2149 1180 1281 16 1 1.3 -1.1 -1.4
1325 1170 1002 1176 17 -1.8 -1.8 —1.7 —-1.7
1419 1371 1252 1308 18 -1.5 —-1.2 -8 —-1.3
1828 1634 1602 1755 19 -2 -4 3 N
1725 1394 1313 1646 20 -6 -5 -6 -2
2276 2189 1547 2111 21 1.1 1.4 N 1.2
1899 1614 1422 1477 22 -0 —4 -3 —-.
1633 1513 1290 1516 23 -8 -7 -7 —.6
2061 1867 1646 2037 24 5 4 .5 1.0
1856 1493 13356 1533 25 -2 -8 -5 )
1727 1412 1238 1469 26 —.6 —-1.1 -9 -
2168 1896 1701 1834 27 8 5 6
1655 1675 1414 1597 28 -8 -2 -3 -4
2326 2301 2065 2234 29 1.3 1.7 1.8 1.6
1490 1382 1214 1284 30 -13 —-1.2 -1.0 —1.4
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3.8 Transformations to Near Normality

If normality is not a viable assumption, what is the next step ?

lgnore the findings of a normality check and proceed as if the data were
normality distributed. ( Not recommend)

Make nonnormal data more “normal looking” by considering
transformations of data. Normal-theory analyses can then be carried
out with the suitably transformed data.

Appropriate transformations are suggested by

. theoretical consideration

. the data themselves.

51



e Helpful Transformations To Near Normality
Original Scale Transformed Scale

1. Counts, y VY
2. Proportions, p  logit = %log (1fﬁ)

3. Correlations, r  Fisher's z(r) = Zlog G“_LZ:)

e Box and Cox transformation

o —1 Qj>‘ —1
(A) — X AF#0 (A) _ J =1
(6
i=1
Given the observations x1,xs,...,x,, the Box-Cox transformation for the

choice of an appropriate power X is the solution that maximizes the express

n

1 B mn
/() = —gln EZ(@?) —2™2l £ (-1 gy
j=1

j=1

2 n ) —1
where (M) =1 J .
n — A 59
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Example 3.16 (Determining a power transformation for univariate data)
We gave readings of microwave radiation emitted through the closed doors of
n = 42 ovens in Example 3.10. The Q-Q plot of these data in Figure 4.6
indicates that the observations deviate from what would be expected if they
were normally distributed. Since all the positive observations are positive, let
us perform a power transformation of the data which, we hope, will produce
results that are more nearly normal. We must find that value of A\ maximize the
function £( ).

A £(A) A £(A)
~1.00 70.52

-.90 75.65 40 106.20
— .80 80.46 50 105.50
~.70 84.94 60 104.43
—.60 89.06 70 103.03
~.50 92.79 80 101.33
—.40 96.10 90 99.34
~ .30 98.97 1.00 97.10
~.20 101.39 1.10 94.64
—.10 103.35 1.20 91.96

00 104.83 1.30 89.10

10 105.84 1.40 86.07

20 106.39 1.50 82.88

(30 106.51)
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Figure 4.12 Plot of £(A) versus A for radiation data (door closed).
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Figure 4.13 A Q-Q plot of the transformed radiation data (door closed).
(The integers in the plot indicate the number of points occupying the same
location.)
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Transforming Multivariate Observations

e \With multivariate observations, a power transformation must be selected for
each of the variables.

o Let A, No,...,\, be the power transformations for the p measured
characteristics. Each A; can be selected by maximizing

n 1, (x ) g
() = —5n 52(935.;) — M2+ (= 1)) Inay,
=1 ] j=1
where xig,Xok,...,Tpr are n observations on the kth variable, k£ =
1,2,...,p. Here
Ow) _ 1 Tik —
Uk - n Z >\k:
71=1
o Let 5\1,5\2,...,5\p be the values that individually maximize the equation

above. Then the jth transformed multivariate observation is

— -/

A~

Al A2 . Ap .
) - 2 9 2 9 9 A
’ A1 A2 A 55




e The procedure just described is equivalent to making each marginal
distribution approximately normal. Although normal marginals are not
sufficient to ensure that the joint distribution is normal, in practical
applications this may be good enough.

A

e If not, the value 5\1,3\2,...,)\1, can be obtained from the preceding
transformations and iterate toward the set of values A" = [Aq, A2, ..., A,
which collectively maximizes

n - ~
(A Az hp) = =5 [S)| + (u= 1)) Iajn+ (A2 —1) Y Inays
=1 =1
+ ---—l—()\p—l)zmxjp
j=1

where S(A) is the sample covariance matrix computed from

A1 A2 Ap !
xy—1 x75—1 S |
x(.)\) — J1 J2 JP ]: 1,2,...,77/

j , s " Ty ,
N e "
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Example 3.17 (Determining power transformations for bivariate data)
Radiation measurements were also recorded though the open doors of the
n = 42 micowave ovens introduced in Example 3.10. The amount of radiation
emitted through the open doors of these ovens is list Table 4.5. Denote the

door-close data 11,221, ..

.,Z42,1 and the door-open data w2, x29, ..

-y L422.

Consider the joint distribution of x1 and x5, Choosing a power transformation
for (x1,x2) to make the joint distribution of (z1,x2) approximately bivariate

normal.
Table 4.5 Radiation Data (Door Open) R
—
Oven Oven Oven
no. Radiation no. Radiation no. Radiation
| 30 16 20 31 a0
2 .09 17 04 32 10
3 .30 18 10 33 10
4 10 19 01 34 30
5 10 20 .60 35 A2
6 12 21 12 36 25
7 .09 22 10 37 20
8 10 23 .05 38 40
9 .09 24 05 39 33
10 10 25 A5 40 32
11 07 26 .30 41 12
12 05 27 15 42 12
13 01 28 09
14 45 29 .09
15 A2 30 28
Source: Data courtesy ot J. D. Cryer.
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If the data includes some large negative values and have a single long tail, a
more general transformation should be applied.

2N — )

2

\

{(x + 1) —1}/)

In(x + 1)

—{(—z+ 1) =1}/ (2= N)
—In(—z + 1)

x>0,A#0
xr>0A=0
x < 0,\+#2
r<0,A=2
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