4. Inferences about a Mean Vector

4.1 The Plausibility of 1y as a Value for a Normal
Population Mean

e The univariate theory for determining whether a specific value of g is a
plausible value for the population mean .

— Test of the competing hypotheses

Hy:p=py vs Hy:pz# g

Here Hy is the null hypothesis and H; is the (two-side) alternative
hypothesis.



— Rejecting Hy when |¢| is large is equivalent to rejecting Hy in favor of Hi,
at significance level « if

= (Xs;/ZO)Q = n(X — po)(s*) (X — po) > t5_1(/2)

— If Hy is not rejected, we conclude that g is a plausible value for the
normal population mean. From the well-known correspondence between

acceptance region for test of Hy : u = ug versus Hy : pu # po and
confidence interval for u we have

T — [o

s/

< trala/2)}

{Do not reject Hy : u = o at level a or

is equivalent to

{,uo lies in the 100(1 — )% confidence interval * £ tn_l(a/Q)%}
n



e A natural generalization of the squared distance above is its multivariate
analog

T = (X i) (38) (X ) = (X — )87 (X — )

The statistics 7 is called Hotelling's T=.

e If the observed statistical distance T2 is too large— that is, if x is “too far”
from po—the hypothesis Hy : pp = p is rejected.

(n—1p
n—p
where F), ,,_, denotes a random variable with an F-distribution with p and

n — p degree of freedom.

T? is distributed as

Fp,n—p



To summarize, we have the following:

Let X1, X5,...,X,, be arandom sample from an N,(u, ) population. Then

with X =+ > X, and S = -1 Z( X)(X;-X),
j=1 j=1
i —1)p
_ plres F._
« > n—p P p()

= Pn(X - pySUE —p) > (Z__l;p

whatever the true g and . Here F, ,,_,() is the upper (100ca)th percentile
of the F), ,,_, distribution.



Example 4.1(Evaluating T?) Let the data matrix for a random sample of size
n = 3 from a bivariate normal population be

6
X =1 10
8

w O O

Evaluate the observed T for uj, = [9,5]. What is the sampling distribution of
T? in this case ?

Example 4.2 (Testing a multivariate mean vector with 72) Perspiration
from 20 healthy females was analyzed. Three components, X; =sweat rate,
X9 =sodium content, and X3 =potassium content, were measured, and the
results, which we call the sweat data, are presented in Table 5.1.

Test the hypothesis Hy : p' = [4,50,10] against Hy : p’ # [4,50,10] at
level of significance o = .10.



Table 5.1 Sweat Data

X, X5 X5
Individual (Sweat rate) (Sodium) (Potassium)

1 3.7 48.5 93
2 5.7 65.1 8.0
3 3.8 47.2 10.9
4 3.2 53.2 12.0
5 3.1 55.5 9.7
6 4.6 36.1 7.9
7 2.4 24.8 14.0
& 7.2 33.1 7.6
9 6.7 47.4 8.5
10 5.4 54.1 11.3
11 3.9 36.9 12.7
12 4.5 58.8 12.3
13 3.5 27.8 9.8
14 4.5 40.2 8.4
15 1.5 13.5 10.1
16 8.5 56.4 7.1
17 4.5 71.6 8.2
18 6.5 52.8 10.9
19 4.1 44.1 11.2
20 5.5 40.9 9.4

Source: Courtesy of Dr. Gerald Bargman.




4.2 Confidence Regions and Simultaneous Comparisons of
Component Means

e The region R(X) is said to be a 100(1 — «)% confidence region if, before
the sample is selected,

P[(X) will cover the true 0] =1 — «

This probability is calculated under the true, but unknown value of 6.

e The confidence region for the mean u of a p-dimension normal population is
available. Before the sample is selected,

v IQ—1/v _ (n—l)p
P n(X —p)'S™ (X u)é(n_p)

Fonpla)| =1-a

whatever the values of the unknown @ and . In words, X will be within
[(n — D)pF, n_p(a)/(n — p)]/? of u, with probability 1 — «, provided that
distance is defined in terms of nS—1. 7



e For P > 4,we cannot graph the joint confidence region for ;. However we
can calculate the axes of the confidence ellipsoid and their relative lengths.

e These are determined from the eigenvalues \; and eigenvectors e; of S. The
direction and lengths of the axes of
p(n —1)

(%= p)/ST - < = PR, (o)

are determined by going

VAV = VAP = 1) Fpn- (@) /(n — p)

units along the eigenvectors e;. Beginning at the center X, the axes of the
confidence ellipsoid are

— 1
:|:\/ \/ PR p n— p(Oé)eZ‘ where Sez- = )\iei,z’ = 1, 2, ey P

The ratio of the A;'s will help identify relative amount of elongation along
pair of axes




Example 4.3 (Constructing a confidence ellipse for ©) Data for radiation
from microwave oven were introduced in Example 3.10 and 3.17. Let

INTE

x1 = (measured ration with door closed)

and
. . 1
x5 = (measured ration with door open)?

Construct the confidence ellipse for g = [u1, po].
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Figure 5.1 A 95% confidence
0.50 0.55 0.60 ellipse for u based on microwave-
| radiation data.




Simultaneous Confidence Statements

e While the confidence region n(x — u)’'S™1(x — ) < ¢, for ¢ a constant,
correctly assesses the joint knowledge concerning plausible value of u, any

summary of conclusions ordinarily includes confidence statement about the
individual component means.

e In so doing, we adopt the attitude that all of the separate confidence
statements should hold simultaneously with specified high probability.

e |t is the guarantee of a specified probability against any statement being
incorrect that motivates the term simultaneous confidence intervals
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e Let X have an N,(u, ) distribution and form the linear combination
Z:a1X1+a2X2+---+apo:a’X

Hence
ny =E(Z)=a'p and o3 = Var(Z)=a'Xa

e Moreover, by Result 3.2, Z has an N(a'u,a’>a) distribution. If a random
sample X1, Xo,..., X, from the N,(p,¥) and Z;, =a’X,;,7=1,2,...,n.
Then the sample mean and variance of the observed values z1, 29, ..., z,, are

Z=a'x and s> =a'Sa
where x and S are the sample mean vector and covariance matrix of the x;’s
respectively.

e For a fixed and 0% unknown, a 100(1 — )% confidence interval for 7z = a’p
is based on student’s t-ratio
L _E k7 _ vn(@'x—a'u)

B Sz/V/n B va’'Sa
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e and leads to the statement

or . va’'Sa . va'Sa

where t,_1(a/2) is the upper 100(a/2)th percentile of a t-distribution with
n—1d.f.

e Clearly, we could make serval confidence statements about the components
of u, each with associated confidence coefficient 1 — «, by choosing different
coefficient vector a. However, the confidence associated with all of the
statements taken together is not 1 — «.

e Intuitively, it would be desirable to associate a “collective” confidence
coefficient of 1 — o« with the confidence intervals that can be generated
by all choices of a. However, a price must be paid for the convenience of a
large simultaneous confidence coefficient: intervals that are wider than the

interval for a specific choice of a. 1o



e Given a data set xq,X9,...,X, and a particular a, the confidence interval is
that set of a’u values for which

‘ vn(a'x —a'p)
va'Sa

1] = \ < tor(af2)

e A simultaneous confidence region is given by the set a’p values such that t?
is relatively small for all choice of a. It seems reasonable to expect that the
constant t%(a/2) will be replaced by a large value ¢?, when statements are
developed for many choices of a.

e Considering the values of a for which t? < ¢?, we are naturally led to the
determination of

g 2
max t?> = max n(a (x 'uj)>

a a a’Sa

=n(X—p)STH(X—p)=T1"

with the maximum occurring for a proportional to S™1(x — ).
13



Result 4.3. Let X1, X5,...,X,, be a random sample from an N,(u,%)
population with X positive definite. Then simultaneously for all a, the interval

'Y p(n—l) a)a’Sa a’ X p(n—l) o)a’Sa
a'X \/n(np)Fp’n_p( )a’Sa, X+\/n(np)Fp,n_p( )a’S

will contain @’ with probability 1 — .

Example 4.4 (Simultaneous confidence intervals as shadows of the
confidence ellipsoid In Example 4.3, we obtain the 95% confidence ellipse
for the means of the four roots of the door-closed and door-open microwave
radiation measurements. Obtain the 95% simultaneous T intervals for the two
component means.

Example 4.5 (Constructing simultaneous confidence intervals and ellipse)
The scores obtained by n = 87 college students on the College Level Examination
Program (CLEP) subtest X7, and the College Qualification Test (CQT) subtests
Xs and X3 are given in Table 5.3 for X; =social science and history, Xy =verbal,
and X3 =science. Construct simultaneous confidence intervals for uq, o and

H3- 14
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Figure 5.2 Simultancous 7 %-intervals for the component means as shadows of the
confidence ellipse on the axes-—microwave radiation data.
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Fable 5.2 College Test Data

(Social (Social
science and science and
Individual  history)  (Verbal) (Science) Individual  history)  (Verbal) (Science)
1 468 41 26 45 494 41 24
2 428 39 26 46 541 47 25
3 514 53 21 47 362 36 17
4 547 67 33 48 - 408 28 17
5 614 61 27 49 594 68 23
6 501 67 29 50 501 25 26
7 421 46 22 51 687 75 33
8 527 50 23 52 633 52 31
9 527 55 19 53 647 67 29
10 620 72 32 54 647 65 34
11 587 63 31 55 614 59 25
12 541 59 19 56 633 65 28
13 561 53 26 57 448 55 24
14 468 62 20 58 408 51 19
15 614 65 28 59 441 35 2
16 527 48 21 60 435 60 20
17 507 32 27 61 501 54 21
18 580 64 21 62 507 42 24
19 507 59 21 63 620 71 36
20 521 54 23 64 415 52 20
21 574 52 25 65 554 69 30
22 587 64 31 66 348 28 18
23 488 51 27 67 468 49 25
24 488 62 18 68 507 54 26
25 587 56 26 69 527 47 31
26 421 38 16 70 527 47 26
27 481 52 26 71 435 50 28
28 428 40 19 72 660 70 25
29 640 65 25 73 733 73 33
30 574 61 28 74 507 45 28
31 547 64 27 75 527 62 29
32 580 64 28 76 428 37 19
33 494 53 26 77 481 48 23
34 554 51 21 78 507 61 19
35 647 58 23 79 527 66 23
36 507 65 23 80 488 41 28
37 454 52 28 81 607 69 28
38 427 57 21 82 561 59 34
39 521 66 26 &3 614 70
40 468 57 14 84 527 49
41 587 55 30 85 474 41
42 507 61 3] 86 441 47
43 574 54 31 87 607 67
44 507 53 23
Source: Data courtesy of Richard W. Johnson.




4.4 Large Sample Inference about a Population Mean
Vector

Result 4.4. Let X, X5,..., X,, be a random sample from a population with
mean u and positive definite covariance matrix >. When n — p is large, the
hypothesis Hy : p = p is rejected in favor of Hy : p # py, at a level of
significance approximately «, if the observed

n(x — Ho)/s_l(’_( — o) > X;%(O‘)

Here x2(a) is the upper (100a)th percentile of a chi-square distribution with
p.d.f.

Result 4.5. Let X1, Xo,...,X,, be a random sample from a population with
mean p and positive definite covariance matrix X. If n — p is large,

_ 'Sa
'X £\ /x2(a)y/ 2
a X2 () -

will contain a’u, for every a, with probability approximately 1 — . 17




Example 4.6 (Constructing large sample simultaneous confidence
intervals) A music educator tested thousands of Finnish students on their
native musical ability in order to set national norms in Finland. Summary
statistics for part of the data set are given in Table 5.5. These statistics are
based on a sample of n = 96 Finnish 12th graders. Construct 90% simultaneous

confidence intervals for individual mean components p;,2 =1,2,...,7.
Table 5.5 Musical Aptitude Profile Means and Standard Deviations for 96
12th-Grade Finnish Students Participating in a Standardization Program |

Raw score

Variable Mean (X;) Standard deviation (Vi) |
X1 = melody 28.1 5.76
X, = harmony 26.6 5.85
X5 = tempo 35.4 3.82
X, = meter 34.2 5.12
X5 = phrasing 23.6 3.76
X¢ = balance 22.0 3.93
X, = style 22.7 4.03 =
Source: Data courtesy of V. Sell. =5
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4.5 Paired Comparisons

Paired Comparisons

In the single response (univariate) case, let X 1 denote the response to treatment
1, and let X ;2 denote the response to treatment 2 for the jth trial. That is,
(X1, Xj2) are measurements recorded on the jth unit or jth pair of like units.
By design, the n differences

Dj :le—XjQ,j: 1,2,...,72,
Should reflect only the differences D, represent independent observations from
an N(§,02) distribution. the variable
D6
Sd/\/ﬁ
where D =1 3" Djand 55 = 15 Y
j=1 j=1
d.f.

t

(Dj — D)? has a t-distribution with n — 1

19



e An «-level test of
H025:O VS H157é0

may be conducted by comparing |t| with ¢,,_1(«/2)-the upper 100(a/2)th
percentile of a t-distribution with n-1 d.f.

e A 100(1— )% confidence interval for the mean difference § = E(X;; — Xj2)
is provided the statement

D tn_1<a/2>% <5< D+ tn_1<a/z>%

e Multivariate extension of the paired-comparison procedure to distinguish
between p response,two treatments, and n experimental units. The p paired-
difference random variables become

Dj1 = Xij1 — Xoj
Djo = Xijo— Xojo

. — . ) 20
DJP — lep X2Jp



Let D, = [Dj1, Djo, ..., Djpl, and assume for j = 1,2,...,n that
E(D;) =6 = [01,02,--,0,)" and Cov(D;) =X,

If, in addition, D1, Ds,..., D, are independent N,(J,%;) random vectors,
inference about the vector of mean differences § can based upon a 72 statistics

T2 = n(D — 6)'S;H(D — &)

where D=1 %" D; and Sy = - > (D; — D)(D; — D)".
j=1 j=1

Result 4.6 Let the differences Dy, Ds, ..., D, be a random sample from
N,(6,%,) population. Then

T2 = n(D — 6)'S;H(D — &)

is distributed as an [(n —p)p/(n —p)Fp.n—p| random variable, whatever the true
d and Zd.

21



Given the observed differences D, = [Dj1, Dja, ..., Djp],j =1,2,...,n,
e an a-level test of
Hy:0=0 wversus H{:0=0
for an N,(d,%,) population rejects Hy if the observed
(n —p)p
n—p
where F, ,,_,() is the upper (100c)%th percentile of an F-distribution with
pand n —p d.f.

T? = nD/SC?lD >

Fp7n_p(a)

e A 100(1 — )% confidence region for § consists of all § such that

N osVe—-1/1 (n—p)p
(D—-46)'S; (D 5)>n(n_p)

Also 100(1 — )% simultaneous confidence intervals for the individual mean
differences 9, are given by

_ 1 $3
52' . Dz + \/(n >pr,n_p(Oé) Di

(n —p) n

F

p,n—p

where D; is the ith element of D and s%i is the ith diagonal element of S72



Example 4.7 (Checking for a mean difference with paired observations)
Muicipal wasterwater treatment plants are required by law to monitor their
discharges into rivers and streams on a regular basis. Concern about the
reliability of data from one of these self-monitoring programs led to a study in
which samples of effluent were divided and sent to two laboratories for testing.
One-half was sent to a private commercial laboratory routinely used in the
monitoring program. Measurements of biochemical oxygen demand (BOD) and
suspended solid (SS) were obtained, for n = 11 sample splits, from the two
laboratories . The data are displayed in Table 6.1.

Do the two laboratories’'s chemical analyses agree ? If differences exist, what
is their nature?

Table 6.1 Effluent Data
Commercial lab State lab of hygiene
Samplej X]j[ (BOD) lez (SS) ijl (BOD) X?_jz (SS)
1 6 27 25 15
2 6 23 28 13
3 18 64 36 22
4 8 44 35 29
5 11 30 15 31
6 34 75 44 64
7 28 26 42 30
3 71 124 54 64
9 43 54 34 56
10 33 30 29 20
11 20 14 39 21
Source: Data courtesy of S. Weber. 23




4.6 Comparing Mean Vectors from Two Populations

Sample Summary statistics
Y
(Population 1)
e e
_ S iy /
X11,X12, -5 X1y X1 = 5= >0 X1 S1= =5 >~ (X1 — X1) (X1 — X1)
(Population 2)
1 3 1
_ = S /
X21,X22,...,X2pn2 X2 = "y Z X2 So = ng—1 Z (x2j - x2)(x2j o x2)

Assumptions Concerning the Structure of the Data

1. The sample X1, X12,...,X1,, is @ random sample of size n; from a
p-variate population with mean g, and covariance matrix ;.

2. The sample X1, X92,..., X9, is a random sample of size n; from a
p-variate population with mean p, and covariance matrix .

3. AISO, X11, X12, ce 7X1n1 are independent of X21, XQQ, ce ,X2n2.
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Ho:py=p,=0 vs Hi:py—py#0
Further Assumption When n; and ny, Are Small

1. Both populations are multivariate normal.

2. Also, X1 = X5 (same covariance matrix)

Set the estimate of X as

ni n2
> (X1 = X1)(X15 — X1)" + > (%25 — X2)(x2; — X2)’

S _ =l j=1

pooled N1+ Ny — 9
ny — 1 no — 1
= S S
ny+ ng — 2 1+n1—|—n2—22
Then
_ _ 1 1 1 1
COV(X1 — XQ) = COV(Xl) + COV(XQ) = —> + —2 = (— + —)Z

ni D) ni no

Hence (i N i) 5
n1 no

is an estimator of Cov(X; — X>). 2



Result 4.7 If X;1,X42,...,X1pn, Is @ random sample of size n; from
Np(pq1,2) and Xo1, Xo9,..., X9y, is an independent random sample size
ny from N, (4, %), then

T2 = [X1— Xo— (g — py))’ Ki + i) Spoozed] h [ X1 — X2 — (kg — )]

nq n2

Is distributed as
(n1 +ngo—2)p

p,ni+ng—p—1
n1 —|— ng —p — 1

Consequently,
PT*<c*)=1-a

where

(n1+mn2—2)p
¢’ = ni+ng —p— 1 p.ny+na—p—1(C).
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Example 4.8 (Constructing a confidence region for the difference of two
mean vectors) Fifty bars of soap are manufactured in each of two ways. Two
characteristics, X; =lather and X5 =mildness, are measured. The summary
statistics for bars produced by method 1 and 2 are

x1 = [8.3 4.1, x2 = [10.2 3.9]’

2 1 2 1
sl 1a] sl
Obtain a 95% confidence region for p; — .
My -ty

A

20

f, | [ = My =y
—2.0 -1.0 1.0

~1.0 - Figure 6.1 95% confidence ellipse
for py — mo.
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Simultaneous Confidence Intervals
Result 4.8 Let ¢ = [(ny +n2—2)p/(n1+n2 —p— D] Fy nytny—p—1(a). With

probability 1 — a.
o _ 1 1
a'(x; —X2) xcy/a’ | —+ — ) Spooieda
ny N2

will cover a’(p; — po) for all a. In particular p1; — po; will be covered by

_ _ 1 1 .
(Xli - XQZ) =+ C\/( + _> Sii,pooled for ¢ = 1727 Y %

nq n2

28



The Two-Sample Situation When > # 35

Result 4.9 Let the sample sizes be such that n; —p and ny — p are large. Then,
an approximate 100(1 — «)% confidence ellipsoid for p; — - is given by all

, — Mo satisfying

1 1

T? = [X1— Xy (1t — piy)] [(n— T n—) s] R Xa— (-] < 12

where x2(a) is the upper (100a)th percentile of a chi-square distribution
with p d.f. Also 100(1 — «)% simultaneous confidence interval for all linear
combinations a’(p; — ) are provided by

a'(p; — py) belongs to  a'(x; — x2) £ 1 /x3(a \/ —S; + Sg)
n1

29



4.7 Testing for Equality of Covariance Matrics

With g populations, the null hypothesis is
H0:21:22:---:Zg:§]

where 3J; is the covariance matrix for the [th population, [ =1,2,...,¢g, and X
is the presumed common covariance matrix. The alternative hypothesis is that
at least two of the covariance matrices are not equal.
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e Assuming multivariate normal populations, a likelihood ratio statistic for
testing above is given by

S| (n;—1)/2
' =
H (|Spooled‘)

Here n; is the sample size for the [th group, S; is the [th group sample
covariance matrix and S, Is the pooled sample covariance matrix given by

S~

1
Spool — Z(nl — 1){(

l

ny — 1)81 + (n2 — 1)S2 + -4+ (ng — 1)89}

e Box's test is based on his y? approximation to the sampling distribution of
—21InT'. Setting —2InT" = M (Box's M statistics) gives

M = [Z(nl - 1)] In [Spooteal — Y _[(ni — 1) In|Sy].

l l
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Box’s Test for Equailty of Covariance Matrices

Set

) 1 1 2p* + 3p — 1
U= zl:(nl_n S(ng—1) [6(p+1)(9—1)]

!

where p is the number of variables and ¢ is the number of groups. Then

C

(1—uw)M = (1 —u) { [Z(m — 1)] In [Spooteal — Y [(ni — 1) In sl]}

l l

has an approximate x? distribution with

1

v=g-pp+1) - %p(p +1) = %p(p +1)(g — 1)

degrees of freedom. At significance level o, reject Hy if C' > X12?(p—|—1)(g—1)/2(a)'
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Example 4.9 (Testing equality of covariance matrices—nursing homes)
The Wisconsin Department of Health and Social Services reimburse nursing
homes in the state for the services provided. The department develops a set of
formulas for the rates for each facility, based on factors such as level of care,
mean wage rate, and average wage rate in the state.

Nursing homes can be classified on the basis of ownership (private party,
nonprofit organization, and government) and certification (skilled nursing facility,
intermediate care facility, or combination of the two).

One purpose of a recent study was to investigate the effects of ownership
or certification (or both) on cost.s. Four costs, computed on a per-patient-day
basis and measured in hours per patient day, were selected for analysis X; =
cost of nursing labor, X5 =cost dietary labor, X3 =cost of plant operation and
maintenance labor, and X4 =cost of housekeeping and laundry labor. A total of
n = 516 observations on each of the p = 4 cost variables were initially separated
according to ownership. Summary statistics for each of the g = 3 groups are
given in the following table.
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Group Number of observations Sample mean vectors

[ =1 (private) ny = 271 X1 = [2.066 .40 .082 .360]'
[ = 2 (nonprofit) no = 138 Xo = [2.167 .596 .124 .418]’
| = 3(government) n3 = 107 X3 = [2.273 .521 .125 .283]’

Sample covariance matrices

291 [ 561
g —.001 .011 g —.011 .025
L= .002 .000 .001 227 L 001 .004 .005
| .010 .003 .000 .010 | .037 .007 .002 .019
261 |
S, — —.030 .017 ;

003 —.000 .004
- .018 .006 .001 .013

Assuming multivariate normal data, test hypothesis Hy : X1 = Yo = i3 = X,




