5. Multivariate Methods by Projection

5.1 Principal Component Analysis

A principle component analysis is concerned with explaining the variance-
covariance structure of a set of variables through a few linear combinations of
these variables. |t general objectives are

(1) data reduction
Although p components are required to reproduce the total system variability,
often much of this variability can be accounted for by a small number £ of
the principle components.

(2) interpretation
An analysis of principle components often reveals relationships that were
not previously suspected and thereby allows interpretations that would not
ordinarily results.



5.1.1 Population Principle Components

e Algebraically, principal components are particular linear combinations of the
p random variables X1, Xo, ..., X,,.

e Geometrically, these linear combination represent the selection of a
new coordinate system obtained by rotating the original system with
X1, X9,...,X, as the coordinate axes. The new axes represents the
directions with maximum variability and provide a simpler and more
parsimonious description of the covariance structure.

e Principal components depend solely on the covariance matrix 3 (or the
correlation matrix p) of X1, Xo,..., X,. Their development does not require
a multivariate normal assumption. On the other hand, principal components
derived for multivariate normal populations have useful interpretations in
terms of the constant density ellipsoids.



let the random vector X' =

| X1, Xo,...,X,] have the covariance matrix X
with eigenvalues A\ > \g > --- > A, 2 0.

Consider the linear combinations

Yl = a/1X = CL11X1 -+ CL12X2 + e+ CLlep
Yo = a,X =an X1+ anXs+- -+ aX,
Yp = a;X = CLple -+ angQ + -0+ CLprp
Then
Var(V;) = aXa; i=1,2,....p

COV(E/Z',Y]{) — aQEak i,kfIl,Q,...,p



Define

First principle component

Second principle component

At the ith step,

1th principle component

linear combination a} X that maximizes
Var(a} X)) subject to aja; =1

linear combination a5 X that maximizes
Var(a,X) subject to ajas = 1 and
Cov(ajX,a,X) =0

linear combination a; X that maximizes
Var(a, X)) subject to ala; = 1 and
Cov(a;X,a, X)=0 for k<1



Results 5.1 Let X be the covariance matrix associated with the random
vector X' = [X1,Xo,...,X,]. Let ¥ have the eigenvalue-eigenvector pair
(Al,el),(kg,eg),. ..,()\p,ep) where )\1 > )\2 > e 2 )\p > 0. Then the ith

principal component is given by
Vi=eX =enXi+epXo+ - -+epXp,i=1,2,...,p
With these choices,
Var(Y;) = eXe, =)\,i=1,2,...,p
Cov(Y;,Yi) = eXe,=0,1#k

If some \; are equal, the choices of corresponding coefficients vectors, e;, and
hence Y, are not unique.

Results 5.2 Let X' = [X;,Xy,...,X,] have covariance matrix X, with
eigenvalue-eigenvector pairs (A1,e1), (A2, €2),...,(Ap,€y) where Ay > Ay >
> A 2 0. Let V7 = e1X,Y> = e,X,...,Y, = ¢ X be the principal
components. Then
p p
o1+ 02+ o= Var(X;) =AM+ XA+ + A=) Var(V))
i=1

=1 5



Results 5.3 If V7 = e/ X,Y> = e X,...,Y, = e, X are the principal
components obtained from the covariance matrix X2, then

eik\/ri
vV Okk

PY; X, — 7i7k:1727"°7p

are the correlation coefficients between the components Y; and the variables

Xi. Here (M\1,e1), (A2, €2),...,(Ap,€,) are the eigenvalue-eigenvector pair for
3.
Example 5.1 Suppose the random variables X7, X5 and X3 have the covariance
matrix ) _
1 -2 0
=] -2 5 0
0 0 2

Calculating the population principal components



Figure 8.1 The constant density
ellipse x'E'x = ¢? and the principal
components y;, y, for a bivariate
normal random vector X having
mean 0.




Suppose X is distributed as N,(u,3). We know that the density of X is
constant on the u centered ellipsoids

(x— )= (x—p) =
which have axes v/ \;e;,7 = 1,2,...,p, where the ()\;, e;) are the eigenvalue-

eigenvector pairs of 3. Assume p = 0, the equation above can be rewritten
as

1

1
2 rs—1 1N 2 1 \2 N2
c© = x2 x=—(ex)'+—(ex)"+---+ —(e x
()" (e 4k (el
1 5 15 1
— s
)\191 )\292 T )\pyp
where e]x, e5x, ..., e x are recognized as the principal components of x. The
equation above defines in a coordinate system with axes y1,y2,...,yp lying in

the direction eq, eq,. .., e,, respectively.



Principal Components Obtained from Standardized
Variables

Principal components may also be obtained from the standardized variables

Xi— i .
Z; = 'u,z:l,Q,...,p
T
Or in matrix notation Z = (VY/?)=1(X — p). Clearly E(Z) = 0 and Cov(Z) =
(V) IVl

Results 5.4 The ith principal component of the standardized variables Z' =
21, Za, ..., Zy] with Cov(Z) = p, is given by

Vi=€eZ=e,(VV) N (X —p),i=1,2,...,p

Z Var(Y, Z Var(Z

Moveover,

and
PY;, 7z, — €ik Aiaiak:]wQ?"')p

In this case (A1,e1),(A2,€2),...,(Ap,€e,) are the eigenvalue-eigenvector pairs
for p, with Ay > Ao > --- A\, > 0. 9



Example 5.2 Consider the covariance matrix

1 4 1 4
2_[4 100] and p‘[.4 1]

Obtain the principle components by the covariance matrix ¥ and correlation
matrix p.

Principal Components for Covariance Matrices with Special Structures

1. i i
oy 0 - 0
5 _ 0 0-.22 ()
I 0 0 Upp_
2.
I 022 p(f; paz' 1 p p
N P o p=x-|" 1 P
po?  po” o’ PP 1] w




Summarizing Sample Variation by Principle Components

Suppose the data xi,Xs,..., X, represent n independent drawings from some
p-dimensional population withe mean vector p and covariance matrix 3. These
data yield the sample mean vector X, the sample covariance matrix S, and the
sample correlation matrix R.

If S = s;. be p X p sample covariance matrix with eigenvalue-eigenvector
pairs (5\1, e ), (5\2, e),..., (S\p, €,), the ith sample principal component is given
by
ex = éﬂxl +éz-23:2+ —Féipibp,i = 1,2,...,])
where 5\1 > 5\2 > e > 5\p > 0 and x is any observation on the variables
Xl,Xz,. . ,Xp. Also

Sample variance(g, = My k=1,2,....p
Sample covariance(¥;,yx) = 0,i# k
n
Total sample variance = Z Sii = A1+ Aa+ -+ Ay
i=1

EirV g
rgiaxk \/%

i, k=1,2,...,p. 1



Example 5.3 (Summarizing sample variability with two sample principal
components) A census provided information, by tract, on five socioeconomic
variables for Madison, Wisconsin, area. The data from 61 tracts are list in Table

8.5. These data produced the following summary statistics

x' = [4.47, 3.96, 71.42, 26.91, 1.64]
total professional employed government median
population degree age over 16 employment home value
(thousands)  (percent) (percent) (percent) $100,000
and
3.397 —1.102 4.306 —2.078  0.027
—1.102 9.673 —1.513  10.953 1.203
S = 4.306 —1.513 55.626 —28.937 —0.044
—2.078 10.953 —28.937 89.067  0.957
| 0.027  1.203  —0.044 0.957 0.319

Can the sample variation be summarized by one or two principal components ?

12



Coefticients for the Principal Components
(Correlation Coefficients in Parentheses)

. -~ ~ A A ———\——\
Variable e (75, v,) € (r5,.4,) e €, e
T TT——
Total population —0.039(—.22) 0.071(.24) 0.188 0977  —-0.058
Profession 0.105(.35) 0.130(.26) —0.961 0.171  —-0.139
Employment (%) —0.492(—.68) 0.864(.73) 0.046 —0.091 0.005
Government
employment (%) 0.863(.95) 0.480(.32) 0.153 —0.030 0.007
Medium home
value 0.009(.16) 0.015(.17) —0.125 0.082 (0.989
Variance (A;): 107.02 39.67 8.37 2.87 0.15
Cumulative
percentage of
total variance 67.7 92.8 98.1 99.9 1.000

13



The number of Principal Components

There is always the question of how many components to retain. There is no
definitive answer to this question. Things to consider include

e the amount of total sample variance explained,
e the relative sizes of the eigenvalues (the variances of the sample components, )
e the subject-matter interpretation of the components.

e In addition, a component associated with an eigenvalue near zero and, hence
deemed unimportant, may indicate an unsuspected linear dependency in the
data.

A useful visual aid to determining an appropriate number of principal components
is a scree plot. With the eigenvalues ordered from largest to smallest, a scree
plot is a plot of A\; versus i—the magnitude of an eigenvalue versus its number.

14



3.0

1.0

Figure 8.2 A scree plot.
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Example 5.4 (Summarizing sample variability with one sample principal
component) In a study of size and shape relationships for painted turtles,
Jolicoeur and Mosimann measured carapace length, width, and height. Their
data, reproduced in Table 6.9 suggest an analysis in term s of logarithms
(Jolicoeur generally suggests a logarithmic transformation in studies of size-and-
shape relationships). Perform a principal component analysis.

A, X 103
1\

20+

0 l >~ ; Figure 8.3 A scree plot for the
I 2 3 turtle data.
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Coefficients for the Principal Components
(Correlation Coefficients in Parentheses)

Variable e (15, v,) e, e;

In (length) 683 (.99) —.159 —.713
In (width) 510 (.97) —.594 622
In (height) 523 (.97) 788 324
Variance (A,): 2330 X 1073 60 X 1073 36 x 107
Cumulative

percentage of total

variance 96.1 98.5 100

17



PANEL 8.1 SAS ANALYSIS FOR EXAMPLE 8.4 USING PROC PRINCOMP.

title 'Principal Component Analysis’;

data turtle;

infile 'E8-4.dat’;

input length width height;

x1 = log(length); x2 =log(width); x3 =log(height);
proc princomp cov data = turtle out = result;

var x1 x2 x3;

PROGRAM COMMANDS

24 Observations

Principal Components Analysis

3 Variables
Simple Statistics
X1 X2 X3
Mean 4725443647 4.477573765 3.703185794
SiD 0.105223590 0.080104466 0.082296771
Covariance-Matrix
X1 X2 X3
X1 - 0.0110720040.|  0.0080191419 0.0081596480
X2 -0.0080191419. . 0.0064167255 0.0060052707
X3 0.0081596480 " * 0:0060052707 0.0067727585 .
Total Variance = 0.024261488
' Eigenvalues of the Covariance Matrix
mm.‘@‘m:(m_wcm.‘ : Difference Proportion
PRIN{ ©.0.023303 0.022705 0.960508
PRIN2 © . 0.000598 0.000238 0.024661
PRIN3 | .0.,000360" 0.014832

- Eigenvectors.

OUTPUT

Cumulative
© 0.96057
0.98517

1.00000"

PRINT- - . PRIN2.

i _PRIN3
X1 0.683102 - -—.159479 ~.712697
X2 0.510220 - - —.594012.° ° 0.621953

X3 10522539 - 0.788490 . 0.324401

18



Interpretation the Sample Principal Components

The sample principal components have serval interpretations

e Suppose the underlying distribution of X is nearly N,(p, %), Then the sample
principal components 7; = &;(x — X) are realizations of population principal
components Y; = e;(X — p), which have an N,(0,A) distribution. The
diagonal matrix A has entries A\i, Aa,..., A, and ()\;, e;) are the eigenvalue-
eigenvector pairs of XJ.

e From the sample value x;, we can approximate p by x and 3 by S. If S is
positive definite, the contour consisting of all p X 1 vector x satisfying

(x —%x)'S7Hx —x) = ¢

estimates the constant density contour (x — p)’S "' (x — p) = ¢ of the
underlying normal density.

e Even when the normal assumption is suspect and the scatter plot may depart
somewhat from an elliptical pattern, we can still extract eigenvalues from S

and obtain the sample principal components.
19



A (x—X)S ' (x—-%x)=?

(x —XyS I (x-%)=c?

(a) Ay > A,
Figure 8.4 Sample principal components and ellipses of constant distance.
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Standardizing the Sample Principal Components

e Sample principal components are, in general, not invariant with respect to
changes in scale.

e Variables measured on different scales or on a common scale with widely
differing ranges are often standardized. For example, standardization is
accomplished by constructing

Lj1 — 3_31 Xj2 — 3_32 i1 — Q_Zp

=D Y2%(x; — %) =

j =

i=1,2,....n

21



If z1,25,...,2, are standardized observations with covariance matrix R, the
1th sample principal component is

A ~/ N ~ ~ .
Y = €,Z = €121 +€i222+ —|—eipzp,z = 1,2,...,])
where (\;, &;) is the ith eigenvalue-eigenvector pair of R with

Sample variance(y;) = N, i=1,2.....p
Sample covariance(y;, Jr) = 0,1 # k

In addition,

A

Total(standardized) sample variance = tr(R) = p= A + Ao + - - - + A,

Tz — ézk \/ Aiaiak — 1727 Y 2

and

22



Example 5.5 (Sample principal components from standardized data) The
weekly rates return for five stocks (JP Morgen, Citibank, Wells Fargo, Royal
Dutch Shell, and ExxonMobil) list on the New York Stock Exchange were
determined for the period January 2004 through December 2005. The weekly
rates of return are defined as (current week closing price-previous week closing
price)/(previous week closing price), adjusted for stock splits and dividends,
The data are listed in Table 8.4. The observations in 103 successive weeks
appear to be independently distributed, but the rates of return across stocks are
correlated, because as one expects, stocks tend to move together in response
to general economic conditions. Standardizing this data set and find sample
principal components data set after standardized.

23



Example 5.6 (Components from a correlation matrix with a special
structure) Geneticists are often concerned with the inheritance of characteristics
that can be measured several times during an animal’s lifetime. Body weight
(in grams) for n = 150 female mice were obtained immediately after the birth
of their first four litters. The sample mean vector and sample correlation matrix

were, respectively,
x = 139.88,45.08,48.11, 49.95]

and _ i
1.000 .7501 .6329 .6363
7501 1.000 .6925 7386
6329 .6925 1.000 .6625

| .6363 .7386 .6625 1.000 |

Find sample principal components by R.

R =

24



5.2 Factor Analysis and Inference for Structured Covariance
Matrices

e The essential purpose of factor analysis is to describe, if possible, the
covariance relationships among many variables in terms of a few underlying,
but unobservable, random quantities called factors

e Factor analysis can be considered an extension of principal component
analysis. Both can be viewed as attempts to approximate the covariance
matrix 2. However, the approximation based on the factor analysis model is
more elaborate.

e The primary question in factor analysis is whether the data are consistent
with a prescribed structure.

25



5.2.1 The Orthogonal Factor Model

e The observable random vector X, with p components, has mean u and
covariance matrix XI.

e The factor model postulates that X is linearly dependent upon a few

unobservable random variables F, F5, ..., F,, called common factors, and p
additional sources of variation €1, €2, . .., €y, called errors, sometimes, specific
factors.

e |n particular, the factor analysis model is

Xi1—pw = P+l + -+ 0+ a1
Xo—po = Ll Fy +VloxFo+ -+ lonFry + 1
Xp—,up = €p1F1+£p2F2+"'—|—€mem—|—€p

or In matrix notation
X —pu=LF+e

The coefficient ¢;; is called the loading of the ¢th variable on the jth factor,
so the matrix L is the matrix of factor loadings. 26



e The unobservable random vectors F and & satisfy the following conditions:

F and ¢ are independent
E(F) =0,Cov(F) =1
E(e) = 0,Cov(e) = W, where ¥ is diagonal matrix.

e Covariance structure for the Orthogonal Factor Model
1. Cov(X)=LL + ¥ or

Var(Xy) = G-+ G+ i=hi + 4
Cov(X;, X)) = Lilpr + -+ Lilim

2. Cov(X,F)=Lor
COV(XZ', Fj) = &j

Example 5.7 Consider the covariance matrix

19 30 2 12 ]
5 _ 30 57 5 23
2 5 38 47
12 23 47 68 |

Verifying the relation 3 = LL’" + ¥ for two factors 7



Unfortunately, for the factor analyst, most covariance matrices cannot be
factored as LL' + W, where the number of factors m is much less than p.

Example 5.8 Let p = 3 and m = 1, and suppose the random variables X7, X5
and X3 have the positive definite covariance matrix

1 .9 .7
»=|.9 1 4
741

Show 3J can not be factored by a factor analysis model with m = 1.

Factor loadings L are determined only up to an orthogonal matrix T. Thus,
the loadings
L*"=LT and L

both give the same representation. The communalities, given by the diagonal
elements of L'L = (L*)(L")" are also unaffected by the choice of T.

X - p=LF+e=LTTF+e=LF +¢

S =Ll + ¥ =LTTL + ¥ = (L) (L") + ¥ 2



Methods of Estimation

The Principal Component Solution of the Factor Model
The principal component analysis of the sample covariance
matrix S is specified in terms of its eigenvalue-eigenvector pairs
(5\1,é1),(5\2,é2),...,(Xp,ép), where 5\1 > 3\2 > e 2> S\p. Let m < p be
the number of common factors. Then the matrix of estimate factor loading
{l;;} is give by
[ = [ /A\léli 5\2@25 R j\mém]

The estimate specific variances are provided by the diagonal elements of the
_ ~ ~/
matrix S — LL , so

_1;1 0 -+ 0 ]
v = O %2 O with &z = Sjj _Zgij
: : " . k e
0 0 - 1,

Communalities are estimated as
hi =0+ 0+ + 05,

The principal component factor analysis of the sample correlation matrix g
obtained by starting with R in place of S.



For the principal component solution, the estimated loading for a given factor
do not changes as the number of factors is increased.

The choice of m can be based on the estimated eigenvalues in much the
same manner as with principal components.

Analytically, we have

Sum of squareed entries of (S — (LL + ¥)) < 5\,,2n+1 + -+ )\12)

~ ~/

|deally, the contributions of the first few factors to the sample variance of

the variables should be large.

Proportion of total
sample variance =
due to jth factor

A

Aj

$11+S822-+ - +Spp
Aj

p

for a factor analysis of S

for a factor analysis of R

30



Example 5.9 In a consumer-preference study, a random sample of customers
were asked to rate several attributions of a new product. The response, on a
7-point semantic differential scale, were tabulated and the attribute correlation
matrix constructed. The correlation matrix is presented next:

Auribute (Variable) 1 2 3 4 5

Taste 100 .02 42 017
Good buy for money 02 100 3 71

1
2
Flavor 3 96 13 1.00 .50 .11
4
5

4 71 50 1.00 @

01 8 11 79 1.00

Suitable for snack

Provides lots of energy

do factor analysis for this consumer-preference data

31



Table 9.1

Estimated factor

~ loadmg:s Specific
€= \//\7,-5”- Communalities variances
Variable F s ’Ef- ,Ji =1- ii?
1. Taste .56 82 98 02
2. Good buy
for money 78 -.53 88 12
3. Flavor .65 75 98 02
4. Suitable
for snack .94 —.10 89 A1
5. Provides
lots of energy .80 —.54 93 07
Eigenvalues 2.85 1.81
Cumulative
proportion
of total
(standardized)
sample variance 571 .932
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Example 5.10 Stock-price data consisting of n = 103 weekly rates of return on
p = 5 stocks were introduced in Example 5.5. Do factor analysis for this data.

Table 9.2
One-factor solution Two-factor solution
Estimated factor Specific Estimated factor Specific
loadings variances loadings variances
Variable F, =1 — h? F, o) i=1—h}
1. J P Morgan 132 46 132 —.437 27
2. Citibank 831 31 831 —.280 23
3. Wells Fargo 726 A7 726 -.374 33
4. Royal Dutch Shell 605 .63 605 .694 15
@onMobil 563 .68 563 719 17
Cumulative
proportion of total
(standardized)
Sample variance
€xplained 487 487 769

33



The Maximum Likelihood Method

Results 5.5 Let X, Xo,...,X,, be a random sample from N,(u,X), where
> = LL' + ¥ is the covariance matrix for the m common factor model. The
maximum likelihood estimator L and ¥ and ft = X maximize the likelihood

function of X; —u=LF;+¢;,7=1,2,...,n

- —%tr[2 (i (xj—x)(xj—xy+n(x—u)(x—u)’>]
L(p,3) = (2m)" 2 |X[ ze =t

/\/\—

subject to LW L be diagonal.

The maximum likelihood estimates of the communalities are
hi =105+ 0+ -+ 0 fori=1,2....p

SO

Proportion of total sample \  #1; +45; + -+ £,
variance due to jth factor | s;3 + S99+ -+ + 5y, "



Although the likelihood in Results 5.5 is appropriate for S, not R, surprisingly,

this practice is equivalent to obtaining the maximum likelihood estimate L and
< _ _ A A—1/2 84 A —1/2
W based on the sample covariance matrix S, setting L, = / VAV / .

~—1/2
Here V / is the diagonal matrix with reciprocal of the sample standard
deviation (computed with the divisor y/n) on the main diagonal, and Z is the
standardized observation with sample mean 0 and sample standard deviation 1.

Example 5.11 Using the maximum likelihood method do factor analysis for the
stock-price data.

Table 9.3 ]
Maximum likelihood Principal components
Estimated factor Specitic Estimated factor Specific
loadings variances loadings variances
Variable ol F, g =1 — i A B =12
1. J P Morgan A15 755 42 732 —.A437 27
2. Citibank 322 788 27 831 —.280 23
3. Wells Fargo 182 652 54 726 —.374 33
4. Royal Dutch Shell [1.000 —.000 .00 605 694 15
5. Texaco 683 —.032 53 563 719 A7
Cumulative
proportion of total
(standardized)
sample variance
explained 323 .647 487 769 35




Example 5.12 (Factor analysis of Olympic decathlon data) Linden originally
conducted a factor analytic study of Olympic decathlon results for all 160
complete starts from the end of World War Il until the mid-seventies . Following
his approach we examine the n = 280 complete starts from 1960 through 2004.
The recorded values for each event were standardized and the signs of the timed
events changed so that large scores are good for all events. We, too, analyze
the correlation matrix, which based on all 280 cases, is

R =
1.000  .6386 4752 3227 5520 3262 3509 4008 (1821 —.0352
6386 1.0000 4953 5668 4706 3520 3998 5167 3102 1012
4752 4953 1.0000 4357 2539 2812 7926 4728 4682 —.0120
3227 5668 4357 1.0000 3449 3503 3657  .6040 2344 2380
5520 4706 2539 3449 1.0000 1546 2100 4213 2116 4125
3262 .3520 2812 3503 1546 1.0000 2553 4163 1712 0002
3509 3998 7926 3657 2100 2553 1.0000 4036 4179 0109
4008 5167 4728 6040 4213 4163 4036 1.0000 3151 2395
1821 3102 4682 2344 2116 1712 4179 3151  1.0000 0983

—.0352 1012 —.0120 2380 4125 .0002  .0109 2395  .0983  1.0000
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Table 9.4

Principal component

Maximum likelihood

Estimated factor Specific Estimated factor Specific
loadings variances loadings variances
Variable F P Fy F, b= 1 — i F I F, F, g, =1 — i?
1. 100-m run 696 022 —468 —.4l6 A2 993 —.069 —.021 002 01
2. Long jump 793 075 =255 115 29 665 252 239 220 39
3. Shot put J71 —.434 197 =112 A7 530 77 -.141 =079 .09
4. High jump J11 181 005 367 33 363 A28 421 424 33
5. 400-m run 605 549 —.045 —397 17 571 019 620 =305 20
6. 100 m
hurdles SI13 —083  —372 561 28 343 189 090 323 73
7. Discus 690 —.456 289 —.078 23 402 18 —.102 —.095 30
8. Polc vault 761 162 018 304 30 440 407 390 263 42
9. Javelin Sl =252 S19 0 =074 .39 218 461 084 —.085 73
10. 1500-m run 220 746 493 085 A5 —.016 091 609 —145 60
Cumulative
proportion of
total variance
explained 42 .56 67 76 27 45 57 62
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Principal component

R-LL -V =

] 0 —.082 —.006 —.021
—.082 0 —.046  .033
—.006 —.046 0 .006
—021 033 006 0

—.068 —.107 —-.010 —.038
031 —.078 —.014 —.204
—.016 —.048 —-.003 -.015
003 —.059 —-.013 —.078
039 042 =151 —.064
062 006 055 —.086

Maximum likelihood:

R-LL - ¥ =

- 0 .000 000 .—.000
000 0 —.002  .023
000 —.002 0 .004

—000  .023  .004 0

—.000 005 —.001 —.002
000 —.017 —.009 —.030
—.000 —.003 000 -.004
000 —.030 —-.001 -—.006
—.001 047 —.001 —.042
000 —.024 000 010

—.068
—.107
—.010
—.038

096
025
—.006
030
—.074

—.000
005
—.000
—.002
0
—.002
.001
001
001
—.001

031
—.078
—.014
—.204

096

015
—.124
119
085

.000
017
—.009
—.030
—.002
0

022
069
029
—.019

—.016
—.048
—.003
—.015
025
015

—.029
—.210
064

—.000
—.003
000
—.004
001
022

0
—.000
—.000
.000

003
—.059
—.013
—.078
—.006
—.124
—.029

—.026
—.084

.000
—.030
—.001
—.006

001

069
—.000

0

021

011

039
042
—.151
—.064
030
119
—.210
—.026

—.078

—.001
047
—.001
—.042
000
029
—.000
021

0
—.003

062
006
055
—.086
—.074
085
064
—.084
—.078

000
—.024
000
010
~.001
—.019
.000
011
—.003
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Factor Rotation

If L is the p X m matrix of estimated factor loadings obtained by any method
(principal component,maximum likelihood,and so forth) then

L" = LT,where TT = T'T =1

iIs a p X m matrix of “rotated” loadings. Moreover, the estimated covariance
(or correlation) matrix remains unchanged, since

/

I+ 0 =LTTL + ¥ =L"L" + ¥
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Example 5.13 (A first look at factor rotation) Lawley and Maxwell present
the sample correlation matrix of examination scores in p = 6 subject areas for
n = 220 male students. The correlation matrix is

Gaelic English History Arithmetic Algebra Geometry

1.0 439 410 288 329 248
1.0 351 354 320 329
R = 1.0 164 190 181
1.0 595 470
1.0 464
i 1.0

and a maximum likelihood solution for m = 2 common factors vyields the
estimates in Table 9.5

Table 9.5
Estimated
factor loadings Communalities

Variable F 5 h;
1. Gaelic 553 429 490
2. English 568 288 406
3. History 392 450 356
4. Arithmetic 740 —.273 623
5. Algebra 724 —.211 569
6. Geometry 595 —.132 372
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Table 9.6
Estimated rotated
factor loadings Communalities
Variable Fi F3 h* = ki

1. Gaelic 369 594 490

2. English 433 467 406

3. History 211 558 356

4. Arithmetic 189 .001 623

5. Algebra 752 054 568

6. Geometry 604 083 372
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Varimax(or normal varimax) criterion

Define ij = é,j‘j/ﬁz to be the rotated coefficients scaled by the square
root of the communalities . Then the (normal) varimax procedure selects the
orthogonal transformation T that makes
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|
()=

l
~
SIS

= | —t
.
I
f—t
&
I
—t
~
I
—

as large as possible.

Scaling the rotated coefficient E has the effect of giving variables with small
communalities relatively more Welght in the determination of simple structure.
After the transformation T is determined, the loadings Ejj are multiplied by h;
so that the original communalities are preserved.
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Example 5.14 (Rotated Loading for the consumer-preference data)

Table 9.7
Estimated Rotated
factor estimated factor
loadings loadings Communalities
Variable F F Fi r h?
1. Taste 56 82 02 98
2. Good buy for money 78 -.52 —.01 88
3. Flavor 65 75 13 98
4. Suitable for snack .94 —.10 84 43 89
5. Provides lots of energy .80 —.54 .97 —.02 93
Cumulative proportion
of total (standardized)
sample variance explained S71 932 507 932
Fy Fi
A A
/ol
/ o3
/
/
5 /
/
/
/
/
0 | | -
~ 5 e 1.0
~ - 4
—_ 5 — ~ .\.
2%2~ }
Y Figure 9.2 Factor rotation for

FY hypothetical marketing data.
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PANEL 9.1 (continued)

Rotation Method: Varimax ’
: il

L Rotated Factor Pattern‘

FACTOR1'© FACTOR2 *
TASTE 0.01970/"  0.98948
MONEY 0.93744 '* -0.01123
FLAVOR 0.12856 0.97947
SNACK 0.84244 0.42805
ENERGY 0.96539 - -0.01563

Variance explained by each factor

FACTOR1 FACTOR2
2.537396 2.122027

Example 5.15 ( Rotated loading for the stock-price data)

Table 9.8
Maximum likelihood ]
estimates of factor Rotated estimated Specific
loadings factor loadings variances
Variable F] F2 F] le ll[[z = 1 2 hlz
J P Morgan 115 755 763 024 42
Citibank 322 788 821 227 27
Wells Fargo 182 652 669 104 54
Royal Dutch Sheli 1.000 —-.000 118 .993 .00
ExxonMobil .083 032 113 675 53
Cumulative
proportion
of total
sample variance
explained 323 647 346 .647 )/J ‘




Example 5.15 (Rotated loadings for the Olympic decathlon data)

Table 9.9
Principal component Maximum likelihood
Estimated Estimated
rotated Specific rotated Specific

factor loadings, ¢;; variances factor loadings, ¢;; variances
Variable Fi Fy Fy Fy |ghi=1-W| Fi F F; Fild=1-p
100-m
run 182 205 —.139 12 204 296 —.005 01
Long |
jump 291 [.664] 14291 .055 29 .280 451 155 39
Shot
put 302 252 —.097 17 278 228 —.045 .09
High
jump 267 221 293 33 254 057 242 33
400-m
run .086 068 17 142 151 20
10-m
hurdles 048 108 —.161 28 A36 14650 173 —.033 73
Discus 185 204 —.076 23 220 133 —.009 30
Pole
vault 324 278 293 .30 314 169 279 42
Javelin 024 054 188 39 14771 160 041 139 73
1500-m
run =.002 .019 .075 15 001 110 —.070 .60
Cumulative
proportion
of total
sample
variance
explained 2243 62 76 20 37 S1 .62
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Factor 2
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Figure 9.3 Rotated maximum likelihood loadings for factor pairs (1,2) and (1, 3)—

decathlon data. (The numbers in the figures correspond to variables.)
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Factor Scores

e The estimate values of the common factors, called factor scores may also
required. These quantities are often used for diagnostic purposes, as well as
inputs to a subsequent analysis.

e Factor scores are not estimates of unknown parameters in the usual sense.
Rather, they are estimates of values for the unobserved random factor vectors
F;,7=1,2,...,n. Thatis, factor scores

A

f; = estimate of the values f; attained by F; (jth case)

e Normally the factor score approaches have two elements in common:

1. They treat the estimate factor loadings fij and specific variance 122 as if
they were true values.

2. They involve linear transformations of the original data, perhaps centered
or standardized. Typically, the estimated rotated loadings, rather than
the original estimated loadings, are used to compute factor scores. 48



Factor Scores Obtained by Weighted Least Squares from the Maximum
Likelihood Estimates

fi = (LW

/

where z; = D~V/2(x; —x) and p=L.L, + ¥..

e |f rotated loadings L = I:T are used in place of the orlgmal Ioadlngs the

subsequent factor scores, ;o are related to f by f = T’fj,] =1,2,.
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e |f the factor loadings are estimated by the principal component method, it
is customary to generate factor scores using an unweighted (ordinary) least
squares procedure. Implicitly, this amount to assuming that the ; are equal

or nearly equal. The factor scores are then
fi= (L0 (- @) or f=(LL) "Lz

for standardized data.

Factor Scores Obtained by Regression

50

where z; = D™1/2(x; — X) and p = LL + W,



Example 5.16 (Computing factor scores) Compute factor scores by the least
squares and regression methods using the stock-price data discussed in 5.11.
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Factor |

Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price data
(maximum likelihood estimates of the factor loadings).
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Perspectives and a Stragegy for Factor Analysis

At the present time, factor analysis still maintains the flavor of an art, and no
single strategy should yet be “ chiseled into stone”. We suggest and illustrate
one reasonable option:

1. Perform a principal component factor analysis. This method is
particularly appropriate for a first pass through the data. (It is not required
that R or S be nonsingular)

(a) Look for suspicious observations by plotting the factor scores. Also,
calculate standardized scores for each observation and squared distances.
(b) Try a varimax rotation.

2. Perform a maximum likelihood factor analysis, including a
varimax rotation.
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3. Compare the solution obtained from the two factor analysis.

(a) Do the loadings group in the same manner ?
(b) Plot factor scores obtained for principal components against scores from
the maximum likelihood analysis.

4. Repeat the first three steps for other numbers of common factors
m. Do extra factors necessarily contribute to the understanding and
interpretation of the data ?

5. For large data sets, split them in half and perform a factor
analysis on each part. Compare the two results with each other and
with that obtained from the complete data set to check the stability of the
solution.
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