6-1. Canonical Correlation Analysis

e Canonical Correlatin analysis focuses on the correlation between a linear
combination of the variable in one set and a [linear combination of the
variables in another set.

e Canonical variables, Canonical correlation.

e Examples: Arithmetic speed and arithmetic power to reading speed and
reading power, Governmental policy variables with economic goal variables,
College “performance” variables with precollege “achievement” variables.



Canonical Variates and Canonical Correlation

Let XV be a p X 1 random vector, X @ be 3 q X 1 random vector with
p < g, and

EXW)=p®;  Cov(XM) =3
E(X®) = 1@, Cov(X?) = %y:
Cov(XW X =%, =%/,.
Set
U=aXxW, v=bXx®

Then we shall seek coefficient vectors a and b such that

a’Zlgb
\/ a’Zna \V b,ZQQb

Corr(U,V) =

is as large as possible.



e The first pair of canonical variables, or first canonical variate pair
the pair linear combination U; and V; having unit variances, which maximize
the correlation Corr(U,V);

e The second pair of canonical variables, or second canonical variate pair
the pair of linear combinations Us and V5 having unit variances , which
maximize the correlation Corr(U, V') among all choices that are uncorrelated
with the first pair of canonical variables.

e The kth pair of canonical variables, or kth canonical variate pair
the pair of linear combinations Uy, Vi having unit variances, which maximize
the correlation Corr(U, V') among all choices uncorrelated with the previous
k — 1 canonical variable pares

The correlation between the kth pair of canonical variable s is called the kth
canonical correlation



Result 6-1.1: Suppose p < ¢q and let the p-dimensional random vectors
X 1) and ¢ dimensional X® have Cov(XW) = 21, Cov(XW) = =45, and
Cov(X(l),X(2>) = Y12, where X has full rank. For coefficients p x 1 vector a
and ¢ x 1 vector b, form the linear combination U = a XM and V =b'X?,

Then

max Corr(U, V') = p]
ab

attained by the linear combinations (first canonical variate pair)
U =e,32 XD and V; =£5,,/°X®,
The kth pair of canonical variates, K =2,3,...,p
Up =€,5°XY and V, =£3,,°X®

maximize

max Corr(U, V') = py.
a.b

among those linear combinations uncorrelated with the preceding 1,2, ...

canonical variables.



Here p12 > p - > ,0* are the eigenvalues of >, /22122 2212_1/2, nd
e, ey, ...,e, are associated p X 1 eigenvectors.

The quantities pi% > pi2--- > ,0*2 are also the p largest eigenvalues of

the matrix 22_2/ 21912477 212222/ with corresponding g X 1 eigenvectors
fi,fa,..., 1.

Each f; is proportional to X, 1/22212_1/2 e;.
The canonical variates have the properties
Var(Ug) = Var(Vy) =1, k=1,...,p,

Corr(Uy, Uy) = Corr(Vy, Vi) = Corr(Ug, Vy) =0
for k,/ =1,2,...,pand k # /.



Example 6-1.1 Suppose ZY) = [Z(l) Z( )] are standardize variables and
yASUES [Z(Q) Z( )] are also standardized variables. Let Z = [Z()), Z®) and

10 4 5 .6

4 10 3 A4

CvZ)=1 5 3 19 o
6 4 2 10

Calculate canonical variates and canonical correlations for standardized variables
ZW and 2@,

Example 6-1.2 Compute the computing correlations between the first pair

canonical variates and their component variables for the situation considered in
Example 6-1.1.



Example 6-1.3 Consider the covariance matrix

[ X}V C100 0 0 0
Cou x| o 1 09 0
X§2> 0 095 1 0

\ x( 0 0 0 100 |

Calculate the canonical correlation between [Xfl),Xél)]’ and [XfQ),XQQ)]’



The Sample Canonical Variates and Sample Canonical
Correlation

Results 6-1.2. Let pi* > p3> > ... > p*? be the p ordered eigenvalues of
,€,, Where

5111/25125221S218111/ with correspondmg eigenvectors €1,€o, ...
p<gq. Letfy,... f be the eigenvectors of S, /252151115125221/2. Then the

kth sample canonlcal variate pair is

U = €,55°xD, W = .95, *x@

where x(1) and x(?) are the values of the variables X" and X® for a particular
experimental unit. Also for the kth pair, Kk =1,...,p

_ax
TUkaVk o pk

The quantities p7, ..., p; are the sample canonical correlations.



Large Sample Inference

Results 6-1.3 Let

x (M
Xj_[ i=1,2,....n

X<2>

bee a random sample from an N, ,(u,X) population with

Z:[Z“ E12]

291 222

Then the likelihood ratio test Hy : Y12 = 0 vs Hy : X125 # 0 reject H for large
value of

—21nF:nln(|511"!f|g22‘) anH (1 =75 A*Q

where

S11 S12
g —
[ So1 S22 ]

is the unbiased estimator of . For large n the test statistic —2InI' is
approximately distributed as a chi-square random variable with pg degree
freedom.
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and we can define

R 0 = matrix of sample correlations of U with x(!)
Ry ,» = matrix of sample correlations of V with x(?
Ry ,» = matrix of sample correlations of U with x(?)

Ry v = matrix of sample correlations of V with x()

Cormresponding to (10-19), we have
Ry = AS“DI'}/‘2 -
Ry o = ﬁSzzDE%/z
Ri x = AS;,D7}? (10-29)
Ry = BS;D}?
where D;}? is the (p X p) diagonal matrix with ith diagonal element (sample

var(x\))™* and D;}/2 is the (g X q) diagonal matrix with ith diagonal element
(sample var(x?)) 12

Comment. If the observations are standardized [see (8-25)], the data matrix

becomes
zgl): 5 zgz)r
z-[z0 zo)- | "
S
and the sample canonical variates become
U =A,z20) Vv =B,2® (10-30)

{px1) {gx1)

where A, = AD}{z and l?!,, = IASD%/ZZ. The sample canonical correlations are unaffect-
ed by the standardization. The correlations displayed in (10-29) remain unchanged
and may be calculated, for standardized observations, by substituting A, for
A,B,for B, and R forS.Note that D712 = I andD;}2 = I for standardized
observations. (pxp) (g4)

Example 10.4 (Canonical correlation analysis of the chicken-bone data) In Example
0.14, data consisting of bone and skull measurements of white leghorn fowl were
described. From this example, the chicken-bone measurements for

X ﬁ” = skull length

d(X);
Head (X'") { x5 = skull breadth

X 52) = femur length

Leg (X2)y:
g(X%) {Xéz’ = tibialength
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have the sample correlation matrix

1.0 505§ 569 .602
ro | Ru iR | _|.505 10 422 467
R;; (R, 569 422 1.0 926

602 467 926 10

A canonical correlation analysis of the head and leg sets of variables
using R produces the two canonical correlations and corresponding pairs of
variables

. U, = 78124 + 345747
pi=.631 @ @
‘/]_ = .O60Zl + .94422
and
—_ 02 = —.856251) + 1.1062&1)
p3 = .057 N

~2.64822 + 2.4757%)

NS
I

Here zgl), i = 1,2 and Z’gz), i = 1,2 are the standardized data values for sets 1 and

2, respectively. The preceding results were taken from the SAS statistical software
output shown in Panel 10.1. In addition, the correlations of the original variables
with the canonical variables are highlighted in that panel. -

Example 10.5 (Canonical correlation analysis of job satisfaction) As part of a larger
study of the effects of organizational structure on *job satisfaction,” Dunham [4] in-
vestigated the extent to which measures of job satisfaction are related to job charac-
teristics. Using a survey instrument, Dunham obtained measurements of p = 5 job
characteristics and g = 7 job satisfaction variables for n = 784 executives from the
corporate branch of a large retail merchandising corporation. Are measures of job
satisfaction associated with job characteristics? The answéer may have implications
for job design.

PANEL 10.1 5AS ANALYSIS FOR EXAMPLE 10.4 USING PROC CANCORR.

title ‘Canonical Correlation Analysis’;

data skull (type = corr);

_type_ ='CORR";

input _name_$ x1 x2 x3 x4;

cards;

x1 1.0 ; . .

x2 505 10 . . ¢ PROGRAM COMMANDS

x3  .569 422 1.0 .

x4  .602 467 926 1.0

proc cancorr data = skull vprefix = head wprefix = leg;
var x1 x2; with x3 x4;

(continues on next page)
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PANEL 10.1 ({(continued)
Canonical Correlation Analysis
Adjusted Approx Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.631085 0.628291 0.036286 0.398268
0.056794 0.060108 0.003226

Raw Canonical Coefficient for the 'VAR' Variables

HEAD1 HEAD2 OUTPUT
X1 0.7807924389 -0.855973184
X2 D.3445068301 1.1061835145

Raw Canonical Coefficient for the ‘"WITH' Variables

LEG1 LEG2
X3 0.0602508775 -2.648156338
X4 0.943948961 2.4749388913

Canonical Structure

Correlations Between the ‘VAR’ Variables and Their Canonical Variables

HEAD1 HEAD?2
X1 0.9548 -0.2974 (see 10-29)
X2 0.7388 0.6739

Correlations Between the 'WITH' Variables and Their Canonical Variables

LEG1 LEGZ2
X3 0.9343 -0.3564 (see 10-29)
Xa 0.9997 0.0227
Correlations Between the 'VAR' Variables
and the Canonical Variables of the "WITH' Variables
LEG1 LEG2
X1 0.6025 -0.0169 (see 10-29)
X2 0.4663 0.0383
Correlations Between the ‘WITH' Variables
and the Canonical Variables of the ‘'VAR' Variables
HEAD1 HEAD2
X3 0.5897 -0.0202 (see 10-29)
X4 0.6309 0.0013
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The original job characteristic variables, X(!), and job satisfaction variables,
X (), were respectively defined as

" xP7 [ feedback ]
X gl) task significance
XD = | ¥ | =| task variety
x{ task identity
| X 9) | L autonomy
X 52" i supervisor satisfaction |
X 52’ career-future satisfaction
X §2) financial satisfaction
X® = x f) = workload satisfaction
X ?) company identification
X gz) kind-of-work-satisfaction
| X %2)_ | general satisfaction

Responses for variables X1 and X® were recorded on a scale and then stan-
dardized. The sample correlation matrix based on 784 responses is

"Ru R12:|
R = R A B 1 S
_R21 i Ry,
(1.0 33 32 20 .19 30 37 21
49 10 30 21 .16 08 27 35 20
53 57 1.0 31 23 .14 07 24 37 .18
49 46 48 1.0 24 .22 12 19 21 29 16

..............................................................................................................................

19 08 07 19 23i 24 26 25 1.0

30 27 24 21 32! 34 54 46 28 10

37 35 37 29 36! 37 32 29 30 35 1.0

21 20 .18 16 27} 40 58 45 27 59 31 10

The min(p, q) = min(5,7) = 5 sample canonical correlations and the sample
canonical variate coefficient vectors (from Dunham [4]) are displayed in the
following table:
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For example, the first sample canonical variate pair is

Oy = 422" + 21280 + 1749 — 0270 + 447
V, = 4229 + 22282 — 0327 + 0127 + 2922 + .52 — 1278

with sample canonical correlation p} = .55.

~

According to the coefficients, U; 1s primarily a feedback and autonomy
variable, while V] represents supervisor, career-future, and kind-of-work satisfaction,
along with company identification. _ ) .

To provide interpretations for U; and V], the sample correlations between U
and its component variables and between V; and its component variables were com-
puted. Also, the following table shows the sample correlations between variables in
one set and the first sample canonical variate of the other set. These correlations can
be calculated using (10-29).

Sample Correlations Between Original Variables and Canonical Variables

Sample Sample

canonical canonical

variates variates

X variables l}l 1}1 X @ variables I}l 171
1. Feedback 83 46 1. Supervisor satisfaction 42 75
2. Task significance 74 41 2. Career-future satisfaction 35 65
3. Task variety 75 42 3. Financial satisfaction 21 39
4. Task identity 62 34 4. Workload satisfaction 21 37
5. Autonomy 85 48 5. Company identification 36 .65
6. Kind-of-work satisfaction 44 .80
7. General satisfaction 28 S50

All five job characteristic variables have roughly the same correlations with the
first canonical variate U;. From this standpoint, U; might be interpreted as a job
characteristic “index.” This differs from the preferred interpretation, based on
coefficients, where the task variables are not important.

The other member of the first canonical variate pair, ¥}, seems to be represent-
ing, primarily, supervisor satisfaction, career-future satisfaction, company identifica-
tion, and kind-of-work satisfaction. As the variables suggest, V; might be regarded as
a job satisfaction-company identification index. This agrees with the preceding
interpretation based on the canonical coefficients of the z,gz)‘s. The sample correla-
tion between the two indices U; and V; is p} = .55. There appears to be some over-
lap between job characteristics and job satisfaction. We explore this issue further in
Example 10.7. -

Scatter plots of the first ( IAJI , f’l) pair may reveal atypical observations x; requir-
ing further study. If the canonical correlations p3, p3, ... are also moderately large,
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scatter plots of the pairs (U, V2), (U, V3),... may also be helpful in this 7
Many analysts suggest plotting “significant” canonical variates against their ¢
nent variables as an aid in subject-matter interpretation. These plots reinfo;
correlation coefficients in (10-29). )
If the sample size is large, it is often desirable to split the sample in ha
first half of the sample can be used to construct and evaluate the sample ¢
cal variates and canonical correlations. The results can then be “validat
the remaining observations. The change (if any) in the nature of the ¢
analysis will provide an indication of the sampling variability and the staf
the conclusions. . .

10.5 Additional Sample Descriptive Measures

If the canonical variates are “good” summaries of their respective sets of v
then the associations between variables can be described in terms of the cifl
variates and their correlations. It is useful 1o have summary measures of th
to which the canonical variates account for the variation in their respective set§:
also useful, on occasion, to calculate the proportion of variance in one set of
ables explained by the canonical variates of the other set.

Matrices of Errors of Approximations

Given the nyatrices A and B defined in ( 19-27), let ﬁf‘) and I;(i ) denote the ith‘é
of A™! and B, respectively. Since U = Ax(") and V = Bx'?) we can write

x = A1 ¢ x2 = g
(px1) (pxp) (px1) (gx1) (g%q) (gx1)

1

Because sample Cov (U, V) = AS,,B’, sample Cov(U) = AS;;A' = WL
V BXp):

sample Cov (V) = flSzzﬁ' = I

(9%q)
E’f 0 0 :
sp=a7] Y P O g By = Fa0bO + FRAMK@
0 0 - pp; oo+ pra@he

81 = (A (AT) = aWal) + 3@ 4 ... 4 AP

S,, = (B (B = bWbW + bR 4 ... + ploIp@"
since x = AU and U has sample covariance 1, the first r col
contain the sample covariances of the first r canonical variates Uy, Uz

their component variables X", X" ..., x (1) similarly, the first r colu
contain the sample covariances of V;, V5, ..., V, with their component val
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If only the first r canonical pairs are used, so that for instance,

— A —

Uy
%0 <[40 1 5@ 5 ...y 50 | 2
0,
and (10-33)

@ = [t‘,(l) L b® P ﬁ(r)]

then $,, is approximated by sample Cov (%), ¥(%)).
Continuing, we see that the matrices of errors of approximation are

§;; — (AMAMY + AWFD 1 ... 4 GOF0)) = FEFDZEAD 4L AP)R(P)

S,, — (f,(l)f,(l): 4 5(2)[;(2). Tt I;(r)I;(r)r) = bUr+DpUr+l)r 4.4 B(Q)B(q).
Si2 — (aﬁ(])ﬁ(])’ + 5%5(2)6(2)' 4o 4 Efﬁ(f)l;(’)’)

—

= p:‘+1ﬁ(r+1)i;(r+1)r o+ Ejz;ﬁ(p)ﬁ(p)r
(10-34)

The approximation error matrices (10-34) may be interpreted as descriptive
summaries of how well the first r sample canonical variates reproduce the sample
covariance matrices. Patterns of large entries in the rows and/or columns of the ap-
proximation error matrices indicate a poor “fit” to the corresponding variable(s).

Ordinarily, the first r variates do a better job of reproducing the elements of
S12 = S5, than the elements of S;; or S;,. Mathematically, this occurs because the
residual matrix in the former case is directly related to the smallest p — r sample
canonical correlations. These correlations are usually all close to zero. On the other
hand, the residual matrices associated with the approximations. to the matrices §,; and
S,, depend only on the last p — r and g — r coefficient vectors. The elements in
these vectors may be relatively large, and hence, the residual matrices can have “large”
entries. R R

For standardized observations, Ry, replaces S,; and a{*), b{") replace a*), b
in (10-34).

Example 10.6 (Calculating matrices of errors of approximation) In Example 10.4, we
obtained the canonical correlations between the two head and the two leg variables
for white leghorn fowl. Starting with the sample correlation matrix

602 467 926 1.0
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we obtained the two sets of canonical correlations and variables

- 0, = 1814" + 3457
pr =631 @) @
V, = 060z + 944z

and

~

~ 0, = — 8562 + 1.10625"
p2 = .057 ~ (2)

P, = —2.64827 + 24752;

il

where z{", i = 1,2 and z¥ i =1,2are the standardized data values for sets 1 and
2, respectively.
We first calculate (see Panel 10.1)

qa | 81 3as|t_[ose8 —2074
= | -85 1106 | [.7388  .6739

a1 - 9343 —.3564
= | 9997 0227

Consequently, the matrices of errors of approximation created by using only the
first canonical pair are

- 2974
Rlz—sampleCov("z"(l),;(z)):(_057)|: 6739:![—.3564 0227]
[ 006 -.000
~ | -014 001
[ 2974
~ 0y = —2974 6739
R,; — sample Cov(Z'") ] .6739][ ]
[ 088 -200
| -200 454
[ - 3564
_ F2)y = -3564 0227
R,, — sample Cov(Z'?) I -0227][ ]
[ 127 -.008
~ | -008 001

where 21, 7® are given by (10-33) with r = 1 and a{", b{!) replace &), bV,

respectively.
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We see that the first pair of canonical variables effectively summarizes (repro-
duces) the intraset correlations in R;;. However, the individual variates are not
particularly effective summaries of the sampling variability in the original z() and
z(?) sets, respectively. This is especially true for U . -

Proportions of Explained Sample Variance

When the observations are standardized, the sample covariance matrices S, are
correlation matrices Ry,. The canonical coefficient vectors are the rows of the
matrices A, and B, and the columns of A;! and B;! are the sample correlations

between the canonical variates and their component variables.
Specifically,

sample Cov (z(V, U) = sample Cov(f&;lfj, U) = A]!

and
A a A A A
sample Cov (z®, V) = sample Cov (B;'V, V) = B;!
SO
—rfll,z‘:’ rl}z,z(;) r,_‘,P’zt:)
Af = [0,a0, a) = | At e T
__r[,h,_r:,) rl}g,z‘,‘,’ r{,pzcy
—rl:’,,sz’ rQMulJ rf/q,z(f]
B = 60,62,....69] = ffq_.zfi’ ff/z:,z‘i’ a ’ﬁq;z‘i’ (10-35)
| TV, @ rv, 2 r{}q,zt;)

where rg, o and ry o are the sample correlation coefficients between the quantities
with subscripts.
Using (10-32) with standardized observations, we obtain

Total (standardized) sample variance 1n first set

= tr(Ry;) = tr (@Al + aPa® 4+ .+ aPalP) = p (10-36a)
Total (standardized) sample variance in second set

= tr(Ryy) = tr(bb{Y" + BPBE + .- + BP) = ¢ (10-36b)

Since the correlations in the first r < p columns of A;l and ﬁ;l involve only the
sample canonical variates Uy, Us, ..., U, and Vi, W4,..., V,, respectively, we define
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the contributions of the first r canonical variates to the tota] (standardized) s
variances as

g

tl'(a(l) ~(1), + 3(2) (2)r e az(’)ﬁir):) = rf}_ "
i=1 k=] “"°%
and
S (1) (1), c(2)0(2), S (r(r), I
tr (b + BB + - + BB = T 3 2
i=1 k=1 "

The proportions of total (standardized) sample variances “explained by” the ﬁrs
canonical variates then become

proportion of total standardized
RO, Gy, = sample variange in first set
explained by U, 0}, ..., U,

~ tr(a(l) (1)r o ﬁgf)ﬁgr).)
tr(Rll) .
r p 2
_ 21: 2‘:1 r(}[ W
P

and

proportion of total standardized
sample variance in second set
explainedby ¥}, 1, ..., V/

20 = -
R, 7s...

'l
Il

ar(bOBY 4 -+ BB
tr (R22)

r

q
>
=

Wy |-

Descriptive measures (10-37) provide some indication of how well the canoni-=
cal variates represent their respective sets. They provide single-number descriptions:

=

of the matrices of errors. In particular,

1 -~ A~ Il -~ -~ Alrlalr ¢ » A -
;tr Ry, — ai”ﬂi” - af)af)’ —— ai )3:(;) j=1- R§(1)|U1,U2.---,Ur
1 - ~ -~ A~ AR S oa -
5 (Ra2 = b6l ~ PP — - — BIB] = 1~ Rloyg, 3,...9,

according to (10-36) and (10-37).
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Example 10.7 (Calculating proportions of sample variance explained by canonical
variates) Consider the job characteristic—job satisfaction data discussed In
Example 10.5. Using the table of sample correlation coefficients presented in that
example, we find that

2 1
Raong, = E b = 5 ((83) + (74)* + - + (85)] = 58
17 1 ) , ,
Reo, = 3 Z, brap = 7 L(T5)" 4 (65)° + - + (50)7] =

The first sample canonical variate I}l of the job characteristics set accounts for 58%
of the set’s total sample variance. The first sample canonical variate V) of the job
satisfaction set explains 37% of the set’s total sample variance. We might thus infer
that U, is a “better” representative of its set than V] is of its set. The interested read-
er may wish to see how well U; and V, reproduce the correlation matrices R;; and
R;,, respectively. [See (10-29).] ]

10.6 Large Sample Inferences

When X, = 0, a’X(") and b’X® have covariance a’%;b = 0 for all vectors a and
b. Consequently, all the canonical correlations must be zero, and there is no point in
pursuing a canonical correlation analysis. The next result provides a way of testing
2,2 = 0, for large samples.

Result 10.3. Let

2 212
5 - (pxp) § (pxq)
o | 3o

(qxp) (gxq)

Then the likelihood ratio test of Hy: ., = 0 versus H;: %1, # 0 rejects Hyfor
large values of (pxq) (pxq)

Si1 IS
~2InA =nln (’—“%,—23—') nln H (1 — p (10-38)
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where

is the unbiased estimator of X. For large n, the test statistic (10-38

. Jisa '
distributed as a chi-square random variable with pq d.f Pprox

Proof. See Kshirsagar [8).

The likelthood ratio statistic (10-38) compares the sample generalized
under H,, namely, ‘

‘=|Sn||322|

S;;, 0
0 Sy,

with the unrestricted generalized variance | § |.

Bartlett [3] suggests replacing the multiplicative factor n in the likelj
rati(? statistic with thc_: factf)r n~1- %( p + g + 1) to improve the y? app
mation to the sampling distribution of —2In A. Thus, for n and n —
large, we '

Reject Hy: 212 = 0 (p] = p; = --- = p, = 0) atsignificance level aif
1 1 E %2 2
\n-1-35(p+q+1) 1ng(l—p;)>qu(a)

where x5.(a) is the upper (100a)th percentile of a chi-square distributions
If the null hypothesis Hy: 3y5 = 0 (p; = p5 = --- = p, = 0) is rejected, it iS8
ural to examine the “significance” of the individual canonical correlations. S
canonical correlations are ordered from the largest to the smallest, we can beg
assuming that the first canonical correlation is nonzero and the remaining
canonical correlations are zero. If this hypothesis is rejected, we assume that ¢
two canonical correlations are nonzero, but the remaining p — 2 canonical €
tions are zero, and so forth.

Let the implied sequence of hypotheses be

Hi:pl # 0,05 2 0,...,05 # 0, pjsy = =pp =0

H%:p} # 0, forsomei = k + 1
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Bartlett [2] has argued that the kth hypothesis in (10-40) can be tested by the likeli-
hood ratio criterion. Specifically,

Reject H (Kt significance level a if

—(n -1- %(p + g + 1))ln ﬁ (1 — 5?2) > X%p—k)(q—k)(a) (10-41)

i=k+1

where X%p—k)(q—k)(a) is the upper (100a)th percentile of a chi-square distribution

with (p — k)(g — k) d.f We point out that the test statistic in (10-41) involves
P

II a - p,z) the “residual” after the first £k sample canonical correlations have
i=k+1

P ~
been removed from the total criterion A%” = H (1 — p?)

If the members of the sequence Hy, H(l) H(Z) and so forth, are tested one at
a time until H gk) 1s not rejected for some k, the overall significance level is not a
and, in fact, would be difficult to determine. Another defect of this procedure is the
tendency it induces to conclude that a null hypothesis is correct simply because it is
not rejected.

To summarize, the overall test of significance in Result 10.3 is useful for multi-
variate normal data. The sequential tests implied by (10-41) should be interpreted
with caution and are, perhaps, best regarded as rough guides for selecting the num-
ber of important canonical variates.

Example 10.8 (Testing the significance of the canonical correlations for the job satis-
faction data) Test the significance of the canonical correlations exhibited by the job
characteristics—job satisfaction data introduced in Example 10.5.

All the test statistics of immediate interest are summarized in the table on
page 566. From Example 10.5,n =784, p = 5.9 = 7,p} = 55, p5 = 23, p3 = .12,
pz = .08, and p5 = .05.

Assuming multivariate normal data, we find that the first two canonical correla-
tions, p; and p;, appear to be nonzero, although with the very large sample size,
small deviations from zero will show up as statistically significant. From a practical
point of view, the second (and subsequent) sample canonical correlations can prob-
ably be ignored, since (1) they are reasonably small in magnitude and (2) the corre-

sponding canonical variates explain very little of the sample variation in the variable
sets X() and X2, -

The distribution theory associated with the sample canonical correlations and
the sample canonical variate coefficients is extremely complex (apart from the
p = 1 and g = 1 situations), even in the null case, ¥;, = 0. The reader interested in
the distribution theory is referred to Kshirsagar [8].
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6-2. Discrimination and Classification

e Discrimination and classification are multivariate techniques concerned with
separating distinct sets of objects (or observations) and with allocating new
objects (observations) to previously defined group.

Goal 1. To describe, either graphically ( in three or fewer dimensions)
or algebraically, the differential features of objects (observations) from
several known collections (population). We try to find discriminants whose
numerical values are such that the collections are separated as much as
possible.

Goal 2. To sort objects (observations) into two or more labeled classes.
The emphasis is on deriving a rule that can be used to optimally assign new
objects to the labeled classes.



Separation and Classification for Two populations

Populations =, and ' Measured variah[es_ K
1. Solvent and distressed property-liability  Total assets cost of stocks and bonds, market
insurance companies. value of stocks and bonds, loss expenses,

surplus, amount of premiums written.
2. Nonulcer dyspeptics (those with upset  Measures of anxiety, dependence, guilt,

stomach problems) and controls perfectionism.
(“normal™).
3. Federalist Papers written by James Frequencies of different words and lengths of
Madison and those written by senlences.
Alexander Hamilton.
4. Two species of chickweed. Sepal and petal length, petal cleft depth, bract
length, scarious tip length, pollen diameter.
5. Purchasers of a new product and Education, income, family size, amount of
laggards (those “slow™ to purchase). previous brand switching,
6. Successful or unsuccessful (fail to Entrance examination scores, high school grade-
graduate) college students. point average, number of high school activities.
7. Males and females. Anthropological measurements, like
circumference and volume on ancient skulls.
8. Good and poor credit risks. Income, age, number of credit cards, family size.
9. Alcoholics and nonalcoholics. Activity of monoamine oxidase enzyme, activity

of adenylate cyclase enzyme.

i



e Allocation or classification rules are usually developed from learning samples.
Measured characteristics of randomly selected object known to come from
each of the two populations are examined for differences.

e \WWhy we know that some observations belong to a particular population, but
we are unsure about others.

— Incomplete knowledge of future performance
— Perfect information requires destroying the object.

— Unavailable or expensive information.



Example 11.1 (Discriminating owners from nonowners of riding mowers) Con51der m.zaa
two groups in a city: 77y, nding-mower owners, and 7, those without riding mowers— . =

that is, nonowners. In order to identify the best sales prospects for an intensive sales E

campaign, a riding-mower manufacturer is interested in classifying families asﬂ-;-‘-?ﬁi

prospective owners or nonowners on the basis of x; = income and x; = lot size,
Random samples of n; = 12 current owners and n, = 12 current nONowners y1e1d
the values in Table 11.1.

Table I 1.1
ary: Riding-mower owners 1. Nonowners
x; (Income x, (Lot size x1 (Income x; (Lot 51ze
in $1000s) in 1000 ft?) in $1000s) in 1000 ft)
90.0 18.4 105.0 19.6
115.5 16.8 82.8 208 -
94.8 21.6 94.8 17.2 -
91.5 20.8 732 20.4
117.0 23.6 114.0 17.6
140.1 19.2 79.2 17.6
138.0 17.6 89.4 16.0
112.8 22.4 96.0 184
99.0 20.0 774 164
123.0 20.8 63.0 18.8 i
81.0 22.0 81.0 140
111.0 20.0 93.0 14.8




Lot size in thousands of square fest
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Figure |1 1.1 Income and Iot size
for riding-mower owners and
NONOWNErs.



e Let f1(x) and f5(x) be the probability density functions associated with p x 1
vector random variable X for the populations m; and 7y respectively.

e An object with associate measurements x must be assigned to either 7 or
9.

o Let ) be the complete sample space, let R; be that set of x values for which

we classify objects as m; and Ry = {2 — R; be the remaining x values for
which we classify objects as m3. So Ry U Ry = Q and Ry N Ry = 0.

for two populations.




e The conditional probability , P(2|1), of classifying an object as w2 when, in
fact, it is from 71 is

P(2]1) = P(X € Ry|m) = /R o f1(x)dx

e Similar, the conditional probability , P(1|2), of classifying an object as 7
when, in fact, it is from 75 is

P(1]2) = P(X € Ry|m) = /R o filx)x

pity = [£, () dr

P:llz:=j;1¢;1dx / R,

Kf};ﬂ
- I

. R, :—1 < R, -
Classify as @, Classify as

1, (x)

Figure 11.3 Misclassification probabilities for hypothetical classification regions
when p = 1.



Let p; be the prior probability of w1 and ps be the prior probability of 7o,
where p1 + ps = 1. Then

P(observation is correlectly classified as 1)
= P(X € Ry|m)P(m) = P(1|1)py,
P(observation is misclassified as 1)

(
(
(
(X € Ry|ma)P(m2) = P(1]2)p2,
(
(
(
(

|
i

P(observation is correlectly classified as )
= P(X e RQ‘T(Q)P(T(Q) = P(2‘2)p27
P(observation is misclassified as 75)

= P(X € Ry|lm)P(m) = P(2|1)ps,



e The costs of misclassification is defined by a cost matrix

1 U
1 0 C(2|1)
o | ¢(1]2) 0

e Fxpected cost of misclassification (ECM)
ECM = ¢(2|1)P(2|1)p1 + c¢(1]|2) P(1|2)p2

A reasonable classification rule should have an ECM as small, or nearly as
small, as possible.



Results 6-2.1 The region R; and R, that minimize the ECM are defined by
the value x for which the following inequalities hold:

7> () ()
(e ) (o) (Prir ottt
"o < (aam) o)

( density ) ( cost ) ( prior probability )
ratio ratio ratio

10



Special Cases of Minimum Expected Cost Regions

(a) p2/p = 1 (equal prior probabilities)

A _e2) o f)_(Li2)
fa(x) ~ eIy T A <(241)
(b) ¢(112)/c(211) = 1 {equal misclassification costs)

h® _p o 68 _p _
Ax) - S (11-7)

(©) pa/py = c(112)/c(211) = Torpy/py = 1/(c(112)/c(211))
(equal prior probabilities and equal misclassification costs)
filx) fi(x)
> : ——=< ]
A T

K,:

Rli

R].'

11



Example 11.2 (Classifying a new observation into one of the two populations) A re-
searcher has enough data available to estimate the density functions f(x) and f(x)
associated with populations m, and ,, respectively. Suppose ¢(211) = 5 units and
¢(112) = 10 units. In addition, it is known that about 20% of all objects {for which’
the measurements x can be recorded) belong to w,. Thus, the prior probabilities are
pp = Band p, = 2.

Given the prior probabilities and costs of misclassification, we can use (11-6) 1o
derive the classification regions R, and R,. Specifically, we have

e 9 (9)(3)-
e B8 <(9)3) -

Suppose the density functions evaluated at a new observation x, give fi(xg) = .3
and f>(xy) = 4. Do we classify the new observation as m; or m;? To answer the
question, we form the ratio

filxe) 3
Hi{x) 4

= .75

and compare it with .5 obtained before. Since

oo~ 7> (dam) (5) - 3

we find that xy € R, and classify it as belonging to m,. - 12




Other classification procedures:

e Choose R; and R, to minimize the total probability of maisclassification
(TPM).

TPM=p1 [ fi(x)dx+p2 [ fa(x)dx.
Ry Ry

e Allocate a new observation xg to the population with the largest posterior
probability P(7;|xq).

. p1f1(X0)
Plmifxo) = p1f1(x0) + p2f2(x0)’

P2 f2(xo)
p1f1(x0) + p2fa(Xo)

P(T('2|X0> =1— P<7Tl|X0> E—

Classifying an observation xy as 1 when P(m|xq) > P(m2|Xg) is equivalent
to using the (b) rule for total probability of misclassification.

13



Classification with Two Multivariate Normal Populations

Assume f1(x) and fo(x) are multivariate normal densities , the first with mean
vector p; and covariance X; and the second with mean p, and covariance ,.

Suppose that joint densities of X' = [X1, X5, ..., X,] for population 71 and
are given by

1 1

fi(x) = (27 )P/2|2[1/2 exXp _5(’( — p)B(x = p)| fori=1,2.

14



Result 6-2.2. Let the populations m; and w5 be described by multivariate
normal densities of the form above . Then the allocation rule that minimizes
the ECM is as follows:

Allocate xg to 7y if

1 c(1/2)

(11 = p12)’ 27 0 = S (11 = )57 (11 + ) 2 In [(C(2|1)) (i—j)] :

Allocate xy to mo otherwise.

The Estimated Minimum ECM Rule for Two Normal Population

Allocate xg to 7 If

(X1 — X2)'SppieaXo — %(il —X2)S,piea(X1 +X2) > In KZE;E;) (@)] :

P1

Allocate xy to my otherwise.

15



Example 11.3 (Classification with two normal populations—common X, and equal
costs) This example is adapted from a study [4] concerned with the detection of
hemophilia A carriers. (See also Exercise 11.32.)

To construct a procedure for detecting potential hemophilia A carriers, blood
samples were assayed for two groups of women and measurements on the two
variables, ' :

X = logi( AHF activity)
X; = log,({ AHF-like antigen )

recorded. (“AHF” denotes antihemophilic factor.) The first group of n; = 30
women were selected from a population of women who did not carry the hemophilia
gene. This group was called the normal group. The second group of n, = 22 women
was selected from known hemophilia A carriers (daughters of hemophiliacs,
mothers with more than one hemophilic son, and mothers with one hemophihic son
and other hemophilic relatives). This group was called the obligatory carriers. The
pairs of observations (x;, x;) for the two groups are plotted in Figure 11.4. Also
shown are estimated contours containing 50% and 95% of the probability for
bivanate normal distributions centered at X; and X,, respectively, Their common
covariance matrix was taken as the pooled sample covariance matrix Spooled- In this
example, bivariate normal distributions seem to fit the data fairly well.
The investigators (see [4]) provide the information

. _ [ 0065 _ [ -.2483
'l -o3e0 | *2T | e
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a;=log,, (AHF-like antigen)

A

4

N

._'2 —

d -

0+ _
-1 II
i o Normals
-3+ © Obligatory carriers
-4 -

A YO WS TN S S — = x = log,, (AHF activity)
-7 -5 -3 -.1 Ny 3

Figure 11.4 Scatter plots of [log,o AHF activity), log;o{ AHF-like antigen)] for the
normal group and obligatory hemophilia A carriers,
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and
N 131.158 —90.423
pocled = | _ 090423 108.147

Therefore, the equal costs and equal priors discriminant function [see (11-19}] is
¥ =a'x = X — X3)'Spooled X

131.158 -=90.423 | | x;
= [.2418 —.ﬂﬁjzl[—gﬂAZE 1{}3.147] I:Iz]

= 3?.15111 — 28.92x,

Moreover, ~ _
—.0065
VWo=a'x, = a1 —=-2897 = B8
» = a'x; = [37.6] ]__*039']_
[ -2483
T = @'Xs = R —28. = =10.10
¥, = a'x; = [37.61 —28.92 062

and the midpoint between these means [see (11-20)] is
m=3(% + ) = ;(.88 —10.10) = -4.61

Measurements of AHF activity and AHF-like antigen on a woman who may be
a hemophilia A carrier give x, = —.210 and x, = —.044. Should this woman be clas-
sified as #r; (normal) or 7, (obligatory carrier)?

Using (11-18).with equal costs and equal priors so that In(1) = 0, we obtain

o
-3

Allocatexgtom, if y = a'xy = m = —4.61
Allocate xgto 7> if iy = a'xy < m = -4.61




where x'y = [—.210, —.044]. Since

"ol B =210 _ _

Yo = a'xg = [37.61 —2892] |:_ .044} = —6.62 < —4.61
we classify the woman as 5, an obligatory carrier. The new observation 1s indicated
by a star in Figure 11.4. We see that it falls within the estimated .50 probability con-
tour of population 7; and about on the estimated .95 probability contour of popula-
tion 7 . Thus, the classification is not clear cut.

Suppose now that the prior probabilities of group membership are known. For
example, suppose the blood yielding the foregoing x, and x; measurements is drawn
from the maternal first cousin of a hemophiliac. Then the genetic chance of being a
hemophilia A carrier in this case is .25. Consequently, the prior probabilities of
group membership are p; = .75 and p, = 25. Assuming, somewhat unrealistically,
that the costs of misclassification are equal, so that ¢(112)} = ¢(211), and using the
classification statistic )

W = (%) — %2)'SpookedXn ~ 3 (X1 — %2)'Spoced (X1 + X2)
or W = a'xy — m with x’y = [-.210, —.044],/m = —4.61, and a'xy; = —6.62, we
have
w = —6.62 - (—4.61) = —-2.01

Applying (11-18), we see that

=20l <2 |=1ml 2= -110
F 75

and we classify the woman as w,, an obligatory carrier. -

19



Scaling

e The coefficient vector @ = S,501¢4(X1—X2) is unique only up to a multiplicative
constant, so for ¢ # 0, any vector ca will also serve as discriminant

coefficients.

e The vector a is frequently “scaled” or “normalized” to ease the interpretation
of its elements.

Q>
|
Q>

* (1)
(2)

*
*

Set
Set

N

Q>
|
Q>
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Fisher’'s Approach to Classification with Two populations

e Fisher's idea was to transform the multivariate observations x to univariate
observation y such that y's derived from populations 71 and 75 were separated
as much as possible.

e Fisher suggested taking linear combinations of x to create y's because they
are simple enough functions of the x to be handled easily.

e Fisher's approach does not assume that the populations are normal, but
implicitly assume that the population covariance matrices are equal.

21



—1

Result 6-2.3. The linear combinations § = a'x = (X1 — X2)'S__,.

the ratio

X maximize

squared distance
between sample mean of y

(sample variance of y) s2

over all possible coefficient vectors a where d = (X; — X3). The maximum of
the ratio is

D? = (X1 — %2)'S ppreq(X1 — X2).

22



Example |1.4 (Fisher's linear discriminant for the hemophilia data) Consider the
detection of hemophilia A carriers introduced in Example 11.3. Recall that the equal
costs and equal priors linear discriminant function was

y =a'x = (%; — %) Spooiea X = 37.61x; — 28.92x,

This linear discriminant function is Fisher’s linear function, which maximally
separates the two populations, and the maximum separation in the samples is

D* = (X, - %)'S 00ea(X; — X3)
131.158 -90.423 2418
~90.423 m&m] [-.ﬂﬁsz]
= 10.98 -

= [2418, —.0652] [

23



An Allocation Rule Based on Fisher’s Discriminant Function

Allocate xg to 7y If

1
Yo = (xl — X2)Spooledx0 >m = 2(X1 - X2>Spooled(xl + x2)

or
Yo —m = 0.
Allocate xg to mo if
Jo<m or go—m <O.

24



L] t'
Figure 11.5 A pictorial representation of Fisher’s procedure for two populations
with p = 2.
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Classification of Normal Population When >, # 5

Result 6-2.4. Let the populations m; and w5 be described by multivariate
normal densities with mean vectors and covariance matrices p,, X1 and p,,
Yo, respectively. The allocation rule that minimizes the expected cost of
misclassification is given by

Allocate xg to 7y If

| ) ) ) B c(1]2)\ (p2
—5)(6(21 1 22 1)XO + ([,Lllzl L “/222 1)X0 —k > In [(C<2‘1)> (p_l)] 7

where k = %ln (%

) + %(,u’lzl_lul — b33 py). Allocate xg to o otherwise.

26



Quadratic Classification Rule
(Normal Populations with Unequal Covariance Matrices)

Allocate xg to 7y If

1, o= — _/Q— o/ Q— c(1)2 P

Allocate xy to my otherwise.

)]

27



R, R,
(b)

Figure 11.6 Quadratic rules for (a) two normal distribution with unequal variances
and (b) two distributions, one of which is nonnormal—rule not appropriate.
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Evaluating Classification Functions

e The total probability of misclassification

TPM = p; f1(x)dx + po f2(x)dx
Ro R4

o Optimum error rate (OER): the smallest value of TPM, obtained by a
judicious choice of Ry and R5.

e Ry and R5 for OER are determined by the rule of Minimum Expected Cost
Regions with equal misclassification costs.

29



Example 11.5 (Calculating misclassification probabilities) 1.et us derive an expres-
sion for the optimum error rate when p, = p, = % and fi(x) and f;(x) are the mul-

tivariate normal densities in (11-10).
Now, the minimum ECM and minimum TPM classification rules coincide when

c(112) = ¢(211). Because the prior probabilities are also equal, the minimum
TPM classification regions are defined for normal populations by (11-12), with

In[(cg:fi) (%ﬂ = (. We find that
c 1

Ry (my — ) E7'% = F(my =~ ) 7y + pay) 2 0

Ry (g = pa)'E7'x = (g = o) X () + pg) <0

These sets can be expressed in terms of y = (pg — p;)'E 'x = a'x as
Ri(y): y=i(m — m2) E (g + py)
Roy): ¥ <3(my = )T () + )

But Y is a linear combination of normal random variables, so the probability densi-
ties of Y, fi(y) and f(y), are univariate normal (see Result 4.2) with means and a

variance given by
py =a'py = (= M)y
Moy = 8'py = (py — @)’ T ',
oy =a'Xa=(p — p) T (uy - ) = A?




fAy) = N(u,, A%
2y III}'] = H{ﬂh.ﬂ:]

Figure 11.7 The misclassification probabilities based on Y.
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Now,
TPM = %P[misclassif}ringa 71 observation as ;]
+ ;P [misclassifying a 7, observation as ]
But, as shown in Figure 11.7
P[misclassifying a 7, observation as 7;] = P(211)
= PlY <3(m — m)'E (uy + py))
= P(Y — My _ 3 = ) TNy + o) — (g - #2]*2_1#1)
oy A

— Z —_ _
ﬁP[z-c: n ) f-‘b(?_ )

where @ () is the cumulative distribution function of a standard normal random
variable. Similarly,

P[misclassifying a 7, observation as ]
= P(112) = PY = J(py — p2) 2N (py + p3)]

=P(za%)=1—¢(%)=¢(:2é)

Therefore, the optimum error rate is

1 _/-A 1 /-A -A
= T 1 = - — — _—) = —_— 11-31
OER = minimum TPM 2¢.( 3 )+ 2-:1:-( > ) dr( 5 ) ( )

If, for example, A* = (p; — pu3)' 27 (g — p») = 2.56, then A = V2.56 = 1.6, and,
using Table 1 in the appendix, we obtain

Minimum TPM = -1-(—%‘—6) = ®(—.8) = 2119

The optimal classification rule here will incorrectly allocate about 21% of the items 32
to one population or the other. -



e Actual error rate (AER):

AER =p1 [ filx)dx+p2 [ fa(x)dx
Ro Ry

e Apparent error rate (APER): the fraction of observations in the training
sample that are misclassified by the sample classification function.

33



The apparent error rate can be easily calculated from the confusion matrix,
which shows actual versus predicted group membership. For n; observations from
ary and ny observations from 4, the confusion matrix has the form

Predicted membership

"ﬂ'] 1']‘1
Actual m) nyc Mm =n = e "oy (11-33)
InEth':l'El'Il]:ll m2 Ny = nz = "IE HIC AI n,

where
ny e = number of ) items correctly classified as ) items
ny p = number of ) items misclassified as ur; items
nyc = number of 1, items correctly classified
nyp = number of r; items misclassified

The apparent error rate is then

+
APER = Z\M = T2M (11-34)
ny + Ry

which is recognized as the proportion of items in the training set that are misclassified.
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Example 11.6 (Calculating the apparent error rate) Consider the classification re-
gions R, and R, shown in Figure 11.1 for the riding-mower data. In this case, obser-
vations northeast of the solid line are classified as #,, mower owners; observations
southwest of the solid line are classified as 7, nonowners. Notice that some obser-
vations are misclassified. The confusion matrix is

Predicted membership
7r1: riding-mower owners  7: NONOWNETS
riding-
7). MOWer nyc =10 Ny =2 n =12
Actual owners
membership
2! NONOWNETS Moy = 2 nae = 10 n, = 12

The apparent error rate, expressed as a percentage, is

2+ 2 4
= = — = .
APER (12 . u)mcn% (24)1ﬂ0% 16.7%

35



e APER tends to underestimate the AER, and the problem does not disappear
unless the sample sizes nq1 and ny are very large.

e Essentially, this optimistic estimate occurs because the data used to build
the classification function are also used to evaluate it.

e Error-rate estimates can be constructed that are better than the apparent
error rate, remain relatively easy to calculate, and do not require distributional

assumption.

— Split the total sample into training sample and a validation sample.
Shortcoming: 1. Requires large samples, 2. valuable information may be

lost.
— Lachenbruch’s "holdout” procedure.
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Lachenbruch’s “holdout” procedure

1. Start with the m; group of observations. Omit one observation from this
group, and develop a classification function based on the remaining n1 —1, ny
observations.

2. Classify the “holdout” observation, using the function constructed in Step 1.
3. Repeat Step 1 and 2 until all of the m; observations are classified, Let ngfj\?
be the number of holdout (H) observations misclassified in this group.

4. Repeat Step 1 through 3 for the w5 observations, Let ngfj\? be the number of

holdout observations misclassified in this group.

o1y — T8y — o
P(21) = B p1fe) = 22

and (=) | (H)
- Nipg + Nopg

E(AER) =

37



Example 11.7 Calculating an estimate of the error rate using the holdout procedure)
We shall illustrate Lachenbruch’s holdout procedure and the calculation of error
rate estimates for the equal costs and equal priors version of (11-18). Consider the
following data matrices and descriptive statistics. (We shall assume that the
n; = n, = 3 bivariate observations were selected randomly from two populations
7r; and ; with a common covariance matrix. )

2 12 ~

2 -2

X,=[4 10|; %= 13:’, zsl=[_2 3]
3 8 -
5 7 -

2 =2

X1= 3 9 ' iz= :}, 25:=|:_2 S}
4 5 -

The pooled covariance matrix is
1 1 -1
spﬂﬂled = E{ZSI + 28;) = [—l 4]

Using S ooieq- the rest of the data, and Rule (11-18) with equal costs and equal pri-
Ors, We majr clasmf_',r the sample observations. You may then verify (see Exercise
11.19) that the confusion matrix is
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| ™ 2
Tru lation: ! 2 !
e population: T 1 5
and consequently,
APER(apparent error rate) = % = .33

Holding out the first observation xy = [2,12] from X, we calculate

4 10 _ 3.5 S 01
XIH=[3 8}1 EIH=[9]; and 1513=[1 2}

The new pooled covariance matrix, Sy ocled. iS

I 1{25 -1
St pooled = 5[1513 + 2§8,] = gl:_l lﬂ:]

_1 _1[10 1
Siopootea = 5| 1 55

It is computationally quicker to classify the holdout observation x, 5 on the basis
ofits qu.lared distances from the group means X, pandx X This procedure is ¢quwalent
to mmputmg the value of the linear fuacunn y = ayxy = {IJH -~ %;)'SH .pooled XH
and comparing it to the midpoint My = 3 (%5 — %2)'SH pootea (K15 + %,). [See
(11-19) and (11-20).]

Thus with x; = [2,12] we have

with inverse®
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Squared distance from X, 5y = (xy — ilH}*E}ﬁW(lH - X14)

1/{10 1 ]{ 2 -35
=[2 - - 9]= =45
2-35 12 g]sl: 1 Z.SJ [12 ~9 ]

Squared distance from X, = (xx — X2)'SH pootea(Xy — X2)

1{10 1 2 —4
— [ - _ 7 = 103

Since the distance from X to X, 4 is smaller than the distance from xy to X5, we
classify X, as a 7, observation. In this case, the classification is correct.
If xjy = [4,10] is withheld, X, 5 and S ,o1eq become

. 25 . 116 4
Xt = | g | ad Shpeoked =G| 4 5
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We find that

10 - 10

- ) 116 4 |[ 4~25] =
(X1 = %147)'SH pooted (Xy = Tim) = [4 =25 10 - ID]E[ 4 2-5:‘ |: S:l B

=435

(g — %2)'SH postea(Xyy — %) = [4 — 4 10 - ?]-;-[l: 2‘?5] [1; _ :]

=128

and consequently, we would incorrectly assign xj; = [4,10] to m;. Holding our i3
x}; = [3,8] leads to incorrectly assigning this observation to m as well. Thus,

ni;:} =2

Turning to the second group, suppose xy = [5,7] is withheld. Then

3 9] . _[3s] [ 5 -
xEH—[4 5i|‘ lzn—[?]- and 153&‘[ 5 E}

The new pooled covariance matrix is

1 125 4
S‘H-ankd = 5 [28; + 18] = 3[ 4 15]

6 4
SH.pocted = 24 4 25
We find that

et _ 3[16 a7|[s5-3
(xy — Xy) SH.PDnlcd[xH %) =[5-3 7- 10]'23 4 25 7 - 10
=48 '
e _ 3116 4 5-35
(xp = Xon)'SH poclea (X5 — ¥ag) =[5~ 35 T— lej[ 4 2'5] [ 77 :|

=45

with inverse

and xjy = [5,7]is correctly assigned to ;.
When xj; = [3,9] is withheld,

i _ 3110 1 3=3
(Xy — ¥y) Sh'l.puolsd{xh' —X)=[3-3 9~ IGIE[ 1 2,5] [9 — 1(}}

=3

10 1][3-4s
[(3-45 9-6l5 [1 2.5][9-5}

=45

(% — X200) SH pootea (X — Xz1)

and x}; = [3, 9] is incorrectly assigned to m;. Finally, withholding xj = [4,5] leads

to correctly classifying this observation as 7. Thus, ngf# = 1.

Evaluating Classification Functions 603

An estimate of the expected actual error rate is provided by

- +
E(AER) E'HL,}.Z L s

Hence, we see that the apparent error rate APER = .33 is an optimistic measure of
performance. Of course, in practice, sample sizes are larger than those we have
considered here, and the difference between APER and E(AER) may not be as
larpe. L

If you are interested in pursuing the approaches to estimating classification
error rates, see [23].

The next example illustrates a difficulty that can arise when the variance of the
discriminant is not the same for both populations.

Example 11.B (Classifying Alaskan and Canadian salmon) The salmon fishery is &
valuable resource for hoth the United States and Canada. Because it is a limited
resource, it must be managed efficiently. Moreover, since more than one couniry is
involved, problems must be solved equitably. That is, Alaskan commercial fishermen
cannot catch too many Canadian salmon and vice versa.

These fish have a remarkable life cycle. They are born in freshwater streams
and after a year or two swim into the ocean. After a couple of years in salt water,
they return to their place of birth to spawn and die. At the time they are about to
return as mature fish, they are harvested while still in the ocean. To help regulate
catches, samples of fish taken during the harvest must be identified as coming
from Alaskan or Canadian waters. The fish carry some information about their
birthplace in the growth rings on their scales. Typically, the rings associated with
freshwater growth are smaller for the Alaskan-born than for the Canadian-born
salmon. Table 11.2 gives the diameters of the growth ring regions, magnified 100
times, where

X, = diameter of rings for the first-year freshwater growth
(hundredths of an inch)

X3 = diameter of rings for the first-year marine growth
(hundredths of an inch)

In addition, females are coded as 1 and males are coded as 2.
Training samples of sizes n; = 50 Alaskan-born and n, = 50 Canadian-born
salmon yield the summary statistics

[98380] s _[ 260.608 --183.0-;3]
[ i M

X1 429660 —188.093 1399.086

% = 137.460 g, = 326090 133.505
z 366.620 | : 133505 893261
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e
Table 11.2 Salmon Data (Growth-Ring Diameters)
Alaskan Canadian
Gender Freshwater Marine Gender  Freshwater  Maripe

2 108 368 1 129 420
1 131 355 1 148 371
1 105 469 1 179 407
2 86 506 2 152 33
1 99 402 2 166 Fir
2 87 423 2 124 329
1 o4 440 1 156 413
2 117 489 2 131 345
2 79 432 1 140 362
1 99 403 2 144 345
1 114 428 2 149 3
2 123 372 1 108 20
1 123 372 1 135 355
2 109 420 2 170 386
2 112 394 1 152 3l
1 104 407 1 153 357
2 111 422 1 152 301
2 126 423 2 136 43
2 105 434 2 122 306
1 119 474 1 148 333
1 114 396 2 90 385
2 100 470 1 145 337
2 84 399 1 123 364
2 102 429 2 145 376
2 101 469 2 115 354
A 85 444 2 134 383
1 109 397 1 117 355
2 106 442 2 126 345
1 82 431 1 118 379
2 118 381 2 120 369
1 105 388 1 153 403
1 121 403 2 150 354
1 85 451 1 154 390
1 83 453 1 155 349
1 53 427 2 109 325
1 95 411 2 117 344
1 76 442 1 128 400
1 95 426 1 144 403
2 87 402 2 163 370
1 70 397 2 145 335
2 84 511 1 133 375
2 91 469 1 128 383
1 T4 451 2 123 349
2 101 474 1 144 373
1 80 398 2 140 388

(continues an next page)
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Table 11.2 (continued)

Alaskan Canadian
Gender Freshwater Marine Gender Freshwater Marine
T 95 433 2 150 339
z az 404 2 124 341
1 99 481 1 125 346
2 94 491 1 153 352
1 87 480 1 108 339

Gender Key:1 = female; 2 = male.
Source: Data courtesy of K. A. Jensen and B.Van Alen of the State of Alaska Depanment of Fish and Game

The data appear to satisfy the assumption of bivariate normal distributions (see
Exercise 11.31), but the covariance matrices may differ. However, to illustrate a point
concermng misclassification probabilities, we will use the linear classification procedure.

The classification procedure, using equal costs and equal prior probabilities,
yields the holdout estimated error rates

Predicted membership

my: Alaskan 5 Canadian
Actual my: Alaskan 44 | & J
membership 7r,: Canadian 1 i 49

based on the linear classification function [see (11-19) and (11-20)]
=y - A= -554121 — 12839x, + .05194x,

There is some difference in the sample standard deviations of @ for the two
populations:

Sample Sample
n Mean Standard Deviation
Alaskan 50 4,144 3.253
Canadian 50 —4.147 2.450

Although the overall error rate (7/100, or 7%) is quite low, there is an unfair-
ness here, It is less likely that a Canadian-born salmon will be misclassified as
Alaskan born, rather than vice versa. Figure 11.8, which shows the two normal
densities for the linear discriminant y, explains this phenomenon. Use of the

|
¥ M ¥

¥

Figure | 1.8 Schematic of normal densities for linear discriminant—salmon data.
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midpoint between the two sample means does not make the two misclassificatipn

probabilities equal. It clearly penalizes the population with the largest variance,
Thus, blind adherence 1o the linear classification procedure can be unwise, -

43



Classification with Serval Populations

The Minimum Expected Cost of Misclassification Method

Let f;(x) be the density associated with population m;,¢ = 1,2,...,g. Let
p; be the prior probability of population 7;,i =1,...,¢, and ¢(k|i¢) be the cost
of allocating an item to m; when, in fact, it belongs to m;, for k,72 =1,...,g.
For k =1, c(i|i) = 0. Finally, let Ry be the set of x’s classed as 7, and

P(kli) = i fi(x)dx

for ki =1,2,...,g with P(ili) =1— > P(kl).
k=1,k#i

e The conditional expected cost of misclassifying an x from m; int my, or
T3,y ..., g IS

ECM(1) = P(2[1)e(2[1) + ... + P(g|1)e(g1) = Y P(k|L)c(k|1).



e Multiplying each conditional ECM by its prior probability and summing gives
the overall ECM:

ECM = pECM(1)+ -+ p,ECM(g)
g g
= Zpi Z P(kli)c(k|i)
i=1 k=1,k+#q

e Result 6-2.5 The classification regions that minimize the above ECM are

defined by allocating
g

> pifi(x)c(k|i)

i=1,i#k
is smallest. If a tie occurs, x can be assigned to any of the tied populations.

If c(¢|k) for any i # k are same, allocate x to 7y, if

pefr(xX) > pifi(x), forall i # k. 45



Classification with Normal Populations

e \When the

1 1 _ .
fl(x) — (27T)p/2’27;|1/2 exXp ——(X T l’l’z)/zz 1(X o l’l’z) y U= 1727 ce s 9,

2

If further the misclassification costs are all equals, c¢(k|t) = 1,k # 4, then

Allocate x to g if

1

1 _
In pg fi(x) = lnpk—glﬂ(%)—§ln \Ek|—§(x—uk)/2k Hx—py) = max In p; fi(x).
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e Define the sample quadratic discrimination score dAz (x) as

N 1 1 _ _
sz(x) — —5111 |SZ| o §(X o (x)i)/zlzl(x o (X)Z) + lnpiai — 17 27 cee 8-

Then allocate x to mg if the quadratic score cz,?(x) is the largest of

A

dy(x), . ..,d9(x).
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e |f the population covariance matrices Y; are equal, then define the sample
linear discrimination score as

CZ ( ) — Xzspooledx SpOOledX'L —l_ lnpz,for /[/ — 1, 27 . o 79.

Then, allocate x to m; if the linear discrimination score dk( ) is the a largest
of di(x),. dg( X). where

1

_ —1 —1 .
ny—+mng+...+ Ny _g((n1 142 = 1Sz 4+ (g = 1))

Spooled —
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Fisher’'s Method for Discrimiating among Several
Populations

e The motivation behind the Fisher discriminant analysis is the need to obtain
a reasonable representation of the populations that involves only a few linear
combinations of the observations, such as a}x,abx and a%x.

e The approach has several advantages when one is interested in separating
several population for (1) visual inspection or (2) graphical descriptive
purposes.

e Assume that p x p population covariance matrices are equal and of full rank.
That ilezEgz---:Zg:E.
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e Define

1 _ 1
XZ:n_z.inj’Z_l’ ,g,and X = — X;
j=1 1=1
g
B=>) (x;—X)(X; — X)
=1
and
g g
W = Z(m 1>S’L — Z Z(xz] Xz)(xw )_(z)/
i=1 i=1 j=1
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Fisher’'s Sample Linear Discriminants

Let A1, Ao, ..., \s > 0 denote the s < min(g — 1,p) nonzero eigenvalues
of W™1B and é;,...,é, be the corresponding eigenvectors (scaled so that
é’Spooledé = 1). Then the vector of coefficients a that maximizes the ratio

aBa (

/\/ A -
a Wa n;

Mm

(%; — %) (% — x)') 4

é’z

=17

(ij X;)(xi; —X;)' | a

is given by a; = &;. The linear combination a}x is, called the sample first
discriminant. The choice a; = €5 produces the sample second discriminant,
é’zx, and continuing, we obtain agx = é;cx, the sample kth discriminant, k < s.
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Let !
di(x) = pi% " x = oS £ Inp

or, equivalently

1 1
d;i(x) — 5’(/2_1’( = —§(x — ;)27 (x — ;) +Inp;.
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Result 6-2.6. Let y; = a’x where a; = ¥~/2e, and e, is an eigenvector of
1/2B, X712, Then

Z — Hiy;) Z (x = p))” = (x = ) 27 H(x — ;)

gj=1 g=1

= —2d;(x) +xX'T " 'x + 21np;

p
fA > - >A>0=Xy1=-=2X,, > 1(yj — iy;)” is constant for all
j=st
S
populations, i = 1,2,..., g so only the first s discriminants y;, or >~ (y;—pv;)?,

j=1
contribute to the classification.
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Fisher’'s Classification Procedure Based on Sample Discriminations
Allocate x to 7y, if
T T

Z(Qj — Urj)° = Z[é;(x —%)]* < Z[é;(x —x,)]? mboxforall i # k
j=1

j=1 j=1

where a; is the corresponding eigenvectors of W™!B, §,; = a.X; and r < s.
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