
6-1. Canonical Correlation Analysis

• Canonical Correlatin analysis focuses on the correlation between a linear
combination of the variable in one set and a linear combination of the
variables in another set.

• Canonical variables, Canonical correlation.

• Examples: Arithmetic speed and arithmetic power to reading speed and
reading power, Governmental policy variables with economic goal variables,
College “performance” variables with precollege “achievement” variables.
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Canonical Variates and Canonical Correlation

Let X(1) be a p × 1 random vector, X(2) be a q × 1 random vector with
p ≤ q, and

E(X(1)) = µ(1); Cov(X(1)) = Σ11;

E(X(2)) = µ(2); Cov(X(2)) = Σ22;

Cov(X(1),X(2)) = Σ12 = Σ′21.

Set
U = a′X(1), V = b′X(2),

Then we shall seek coefficient vectors a and b such that

Corr(U, V ) =
a′Σ12b√

a′Σ11a
√
b′Σ22b

is as large as possible.
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• The first pair of canonical variables, or first canonical variate pair
the pair linear combination U1 and V1 having unit variances, which maximize
the correlation Corr(U, V );

• The second pair of canonical variables, or second canonical variate pair
the pair of linear combinations U2 and V2 having unit variances , which
maximize the correlation Corr(U, V ) among all choices that are uncorrelated
with the first pair of canonical variables.

• The kth pair of canonical variables, or kth canonical variate pair
the pair of linear combinations Uk, Vk having unit variances, which maximize
the correlation Corr(U, V ) among all choices uncorrelated with the previous
k − 1 canonical variable pares

The correlation between the kth pair of canonical variable s is called the kth
canonical correlation

3



Result 6-1.1: Suppose p ≤ q and let the p-dimensional random vectors
X(1) and q dimensional X(2) have Cov(X(1)) = Σ11, Cov(X(1)) = Σ22, and

Cov(X(1),X(2)) = Σ12, where Σ has full rank. For coefficients p× 1 vector a
and q × 1 vector b, form the linear combination U = a′X(1) and V = b′X(2).
Then

max
a,b

Corr(U, V ) = ρ∗1

attained by the linear combinations (first canonical variate pair)

U1 = e′1Σ
−1/2
11 X(1) and V1 = f′1Σ

−1/2
22 X(2),

The kth pair of canonical variates, k = 2, 3, . . . , p

Uk = e′kΣ
−1/2
11 X(1) and Vk = f′kΣ

−1/2
22 X(2),

maximize
max
a,b

Corr(U, V ) = ρ∗k

among those linear combinations uncorrelated with the preceding 1, 2, . . . , k− 1
canonical variables.
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• Here ρ∗21 ≥ ρ∗22 · · · ≥ ρ∗2p are the eigenvalues of Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , and

e1, e2, . . . , ep are associated p× 1 eigenvectors.

• The quantities ρ∗21 ≥ ρ∗22 · · · ≥ ρ∗2p are also the p largest eigenvalues of

the matrix Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 with corresponding q × 1 eigenvectors

f1, f2, . . . , fp.

• Each fi is proportional to Σ
−1/2
22 Σ21Σ

−1/2
11 ei.

• The canonical variates have the properties

Var(Uk) = Var(Vk) = 1, k = 1, . . . , p,

Corr(Uk, U`) = Corr(Vk, V`) = Corr(Uk, V`) = 0

for k, ` = 1, 2, . . . , p and k 6= `.
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Example 6-1.1 Suppose Z(1) = [Z
(1)
1 , Z

(1)
2 ]′ are standardize variables and

Z(2) = [Z
(2)
1 , Z

(2)
2 ]′ are also standardized variables. Let Z = [Z(1),Z(2)]′ and

Cov(Z) =


1.0 4 .5 .6
.4 1.0 .3 .4
.5 .3 1.0 .2
.6 .4 .2 1.0


Calculate canonical variates and canonical correlations for standardized variables
Z(1) and Z(2).

Example 6-1.2 Compute the computing correlations between the first pair
canonical variates and their component variables for the situation considered in
Example 6-1.1.
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Example 6-1.3 Consider the covariance matrix

Cov


X

(1)
1

X
(1)
2

X
(2)
1

X
(2)
2

 =


100 0 0 0
0 1 0.95 0
0 0.95 1 0
0 0 0 100



Calculate the canonical correlation between [X
(1)
1 , X

(1)
2 ]′ and [X

(2)
1 , X

(2)
2 ]′
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The Sample Canonical Variates and Sample Canonical
Correlation

Results 6-1.2. Let ρ̂∗21 ≥ ρ̂∗22 ≥ . . . ≥ ρ̂∗2p be the p ordered eigenvalues of

S
−1/2
11 S12S

−1
22 S21S

−1/2
11 with corresponding eigenvectors ê1, ê2, . . . , êp, where

p ≤ q. Let f̂1, . . . , f̂p be the eigenvectors of S
−1/2
22 S21S

−1
11 S12S

−1/2
22 . Then the

kth sample canonical variate pair is

Ûk = êkS
−1/2
11 x(1), V̂k = f̂kS

−1/2
22 x(2)

where x(1) and x(2) are the values of the variables X(1) and X(2) for a particular
experimental unit. Also for the kth pair, k = 1, . . . , p

rÛk,V̂k
= ρ̂∗k.

The quantities ρ̂∗1, . . . , ρ̂
∗
p are the sample canonical correlations.
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Large Sample Inference

Results 6-1.3 Let

Xj =

[
X

(1)
j

X
(2)
j

]
, j = 1, 2, . . . , n

bee a random sample from an Np+q(µ,Σ) population with

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then the likelihood ratio test H0 : Σ12 = 0 vs H1 : Σ12 6= 0 reject H0 for large
value of

−2 ln Γ = n ln

(
|S11||S22|
|S|

)
= −n ln

p∏
i=1

(1− ρ̂∗2i )

where

S =

[
S11 S12

S21 S22

]
is the unbiased estimator of Σ. For large n the test statistic −2 ln Γ is
approximately distributed as a chi-square random variable with pq degree
freedom. 9

































6-2. Discrimination and Classification

• Discrimination and classification are multivariate techniques concerned with
separating distinct sets of objects (or observations) and with allocating new
objects (observations) to previously defined group.

Goal 1. To describe, either graphically ( in three or fewer dimensions)
or algebraically, the differential features of objects (observations) from
several known collections (population). We try to find discriminants whose
numerical values are such that the collections are separated as much as
possible.

Goal 2. To sort objects (observations) into two or more labeled classes.
The emphasis is on deriving a rule that can be used to optimally assign new
objects to the labeled classes.
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Separation and Classification for Two populations
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• Allocation or classification rules are usually developed from learning samples.
Measured characteristics of randomly selected object known to come from
each of the two populations are examined for differences.

• Why we know that some observations belong to a particular population, but
we are unsure about others.

– Incomplete knowledge of future performance

– Perfect information requires destroying the object.

– Unavailable or expensive information.
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• Let f1(x) and f2(x) be the probability density functions associated with p×1
vector random variable X for the populations π1 and π2 respectively.

• An object with associate measurements x must be assigned to either π1 or
π2.

• Let Ω be the complete sample space, let R1 be that set of x values for which
we classify objects as π1 and R2 = Ω − R1 be the remaining x values for
which we classify objects as π2. So R1 ∪R2 = Ω and R1 ∩R2 = ∅.
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• The conditional probability , P (2|1), of classifying an object as π2 when, in
fact, it is from π1 is

P (2|1) = P (X ∈ R2|π1) =

∫
R2=Ω−R1

f1(x)dx

.• Similar, the conditional probability , P (1|2), of classifying an object as π1

when, in fact, it is from π2 is

P (1|2) = P (X ∈ R1|π2) =

∫
R1=Ω−R2

f1(x)dx

.
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Let p1 be the prior probability of π1 and p2 be the prior probability of π2,
where p1 + p2 = 1. Then

P (observation is correlectly classified as π1)

= P (X ∈ R1|π1)P (π1) = P (1|1)p1,

P (observation is misclassified as π1)

= P (X ∈ R1|π2)P (π2) = P (1|2)p2,

P (observation is correlectly classified as π2)

= P (X ∈ R2|π2)P (π2) = P (2|2)p2,

P (observation is misclassified as π2)

= P (X ∈ R2|π1)P (π1) = P (2|1)p1,
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• The costs of misclassification is defined by a cost matrix

π1 π2

π1 0 c(2|1)
π2 c(1|2) 0

• Expected cost of misclassification (ECM)

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2

A reasonable classification rule should have an ECM as small, or nearly as
small, as possible.
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Results 6-2.1 The region R1 and R2 that minimize the ECM are defined by
the value x for which the following inequalities hold:

R1 :
f1(x)

f2(x)
≥
(
c(1|2)

c(2|1)

)(
p2

p1

)
(

density
ratio

)
≥
(

cost
ratio

)(
prior probability

ratio

)

R2 :
f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
p2

p1

)
(

density
ratio

)
<

(
cost
ratio

)(
prior probability

ratio

)
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Other classification procedures:

• Choose R1 and R2 to minimize the total probability of misclassification
(TPM).

TPM = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx.

• Allocate a new observation x0 to the population with the largest posterior
probability P (πi|x0).

P (π1|x0) =
p1f1(x0)

p1f1(x0) + p2f2(x0)
,

P (π2|x0) = 1− P (π1|x0) =
p2f2(x0)

p1f1(x0) + p2f2(x0)
.

Classifying an observation x0 as π1 when P (π1|x0) > P (π2|x0) is equivalent
to using the (b) rule for total probability of misclassification.
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Classification with Two Multivariate Normal Populations

Assume f1(x) and f2(x) are multivariate normal densities , the first with mean
vector µ1 and covariance Σ1 and the second with mean µ2 and covariance Σ2.

Suppose that joint densities of X ′ = [X1, X2, . . . , Xp] for population π1 and π2

are given by

fi(x) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(x− µi)

′Σ(x− µi)

]
for i = 1, 2.
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Result 6-2.2. Let the populations π1 and π2 be described by multivariate
normal densities of the form above . Then the allocation rule that minimizes
the ECM is as follows:
Allocate x0 to π1 if

(µ1 − µ2)′Σ−1x0 −
1

2
(µ1 − µ2)Σ−1(µ1 + µ2) ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

Allocate x0 to π2 otherwise.

The Estimated Minimum ECM Rule for Two Normal Population

Allocate x0 to π1 if

(x̄1 − x̄2)′S−1
pooledx0 −

1

2
(x̄1 − x̄2)S−1

pooled(x̄1 + x̄2) ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

Allocate x0 to π2 otherwise.
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Scaling

• The coefficient vector â = Spooled(x̄1−x̄2) is unique only up to a multiplicative
constant, so for c 6= 0, any vector câ will also serve as discriminant
coefficients.

• The vector â is frequently “scaled” or “normalized” to ease the interpretation
of its elements.

• (1) Set â∗ = â/
√

â′â.
(2) Set â∗ = â/â1.
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Fisher’s Approach to Classification with Two populations

• Fisher’s idea was to transform the multivariate observations x to univariate
observation y such that y’s derived from populations π1 and π2 were separated
as much as possible.

• Fisher suggested taking linear combinations of x to create y’s because they
are simple enough functions of the x to be handled easily.

• Fisher’s approach does not assume that the populations are normal, but
implicitly assume that the population covariance matrices are equal.
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Result 6-2.3. The linear combinations ŷ = â′x = (x̄1 − x̄2)′S−1
pooledx maximize

the ratio

(
squared distance

between sample mean of y

)
(sample variance of y)

=
(ȳ1 − ȳ2)2

s2
y

=
(â′x̄1 − â′x̄2)2

â′Spooledâ

=
(â′d)2

â′Spooledâ

over all possible coefficient vectors â where d = (x̄1 − x̄2). The maximum of
the ratio is

D2 = (x̄1 − x̄2)′S−1
pooled(x̄1 − x̄2).
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An Allocation Rule Based on Fisher’s Discriminant Function

Allocate x0 to π1 if

ŷ0 = (x̄1 − x̄2)S−1
pooledx0 ≥ m̂ =

1

2
(x̄1 − x̄2)S−1

pooled(x̄1 + x̄2)

or
ŷ0 − m̂ ≥ 0.

Allocate x0 to π2 if
ŷ0 < m̂ or ŷ0 − m̂ < 0.
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Classification of Normal Population When Σ1 6= Σ2

Result 6-2.4. Let the populations π1 and π2 be described by multivariate
normal densities with mean vectors and covariance matrices µ1, Σ1 and µ2,
Σ2, respectively. The allocation rule that minimizes the expected cost of
misclassification is given by
Allocate x0 to π1 if

−1

2
x′0(Σ−1

1 − Σ−1
2 )x0 + (µ′1Σ−1

1 − µ′2Σ−1
2 )x0 − k ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
,

where k = 1
2 ln

(
|Σ1|
|Σ2|

)
+ 1

2(µ′1Σ−1
1 µ1 − µ′2Σ−1

2 µ2). Allocate x0 to π2 otherwise.
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Quadratic Classification Rule
(Normal Populations with Unequal Covariance Matrices)

Allocate x0 to π1 if

−1

2
x′0(S−1

1 − S−1
2 )x0 + (x̄′1S−1

1 − x̄′2S−1
2 )x0 − k ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
.

Allocate x0 to π2 otherwise.
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Evaluating Classification Functions

• The total probability of misclassification

TPM = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx

• Optimum error rate (OER): the smallest value of TPM, obtained by a
judicious choice of R1 and R2.

• R1 and R2 for OER are determined by the rule of Minimum Expected Cost
Regions with equal misclassification costs.
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• Actual error rate (AER):

AER = p1

∫
R̂2

f1(x)dx + p2

∫
R̂1

f2(x)dx

• Apparent error rate (APER): the fraction of observations in the training
sample that are misclassified by the sample classification function.
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• APER tends to underestimate the AER, and the problem does not disappear
unless the sample sizes n1 and n2 are very large.

• Essentially, this optimistic estimate occurs because the data used to build
the classification function are also used to evaluate it.

• Error-rate estimates can be constructed that are better than the apparent
error rate, remain relatively easy to calculate, and do not require distributional
assumption.

– Split the total sample into training sample and a validation sample.
Shortcoming: 1. Requires large samples, 2. valuable information may be
lost.

– Lachenbruch’s “holdout” procedure.
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Lachenbruch’s “holdout” procedure

1. Start with the π1 group of observations. Omit one observation from this
group, and develop a classification function based on the remaining n1−1, n2

observations.

2. Classify the “holdout” observation, using the function constructed in Step 1.

3. Repeat Step 1 and 2 until all of the π1 observations are classified, Let n
(H)
1M

be the number of holdout (H) observations misclassified in this group.

4. Repeat Step 1 through 3 for the π2 observations, Let n
(H)
2M be the number of

holdout observations misclassified in this group.

P̂ (2|1) =
n

(H)
1M

n1
, P̂ (1|2) =

n
(H)
2M

n2

and

Ê(AER) =
n

(H)
1M + n

(H)
2M

n1 + n2
37



38



39



40



41



42



43



Classification with Serval Populations

The Minimum Expected Cost of Misclassification Method

Let fi(x) be the density associated with population πi, i = 1, 2, . . . , g. Let
pi be the prior probability of population πi, i = 1, . . . , g, and c(k|i) be the cost
of allocating an item to πk when, in fact, it belongs to πi, for k, i = 1, . . . , g.
For k = i, c(i|i) = 0. Finally, let Rk be the set of x′s classed as πk and

P (k|i) =

∫
Rk

fi(x)dx

for k, i = 1, 2, . . . , g with P (i|i) = 1−
g∑

k=1,k 6=i

P (k|i).

• The conditional expected cost of misclassifying an x from π1 int π2, or
π3, . . . , πg is

ECM(1) = P (2|1)c(2|1) + . . .+ P (g|1)c(g|1) =

g∑
k=2

P (k|1)c(k|1). 44



• Multiplying each conditional ECM by its prior probability and summing gives
the overall ECM:

ECM = p1ECM(1) + · · ·+ pgECM(g)

=

g∑
i=1

pi

 g∑
k=1,k 6=i

P (k|i)c(k|i)

 .

• Result 6-2.5 The classification regions that minimize the above ECM are
defined by allocating

g∑
i=1,i6=k

pifi(x)c(k|i)

is smallest. If a tie occurs, x can be assigned to any of the tied populations.

If c(i|k) for any i 6= k are same, allocate x to πk if

pkfk(x) > pifi(x), for all i 6= k. 45



Classification with Normal Populations

• When the

fi(x) =
1

(2π)p/2|Σi|1/2
exp

[
−1

2
(x− µi)

′Σ−1
i (x− µi)

]
, i = 1, 2, . . . , g,

If further the misclassification costs are all equals, c(k|i) = 1, k 6= i, then

Allocate x to πk if

ln pkfk(x) = ln pk−
p

2
ln(2π)−1

2
ln |Σk|−

1

2
(x−µk)′Σ−1

k (x−µk) = max
i

ln pifi(x).
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• Define the sample quadratic discrimination score d̂Qi (x) as

d̂Qi (x) = −1

2
ln |Si| −

1

2
(x− (̄x)i)

′Σ−1
k (x− (̄x)i) + ln pi, i = 1, 2, . . . , g.

Then allocate x to πk if the quadratic score d̂Qk (x) is the largest of

d̂Q1 (x), . . . , d̂Qg (x).
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• If the population covariance matrices Σi are equal, then define the sample
linear discrimination score as

d̂i(x) = x̄iS
−1
pooledx− 1

2
S−1
pooledx̄i + ln pi, for i = 1, 2, . . . , g.

Then, allocate x to πi if the linear discrimination score d̂k(x) is the a largest
of d̂1(x), . . . , d̂g(x). where

Spooled =
1

n1 + n2 + . . .+ ng − g
((n1−)S1 + (n2−1)S2 + · · ·+ (ng−1)Sg).
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Fisher’s Method for Discrimiating among Several
Populations

• The motivation behind the Fisher discriminant analysis is the need to obtain
a reasonable representation of the populations that involves only a few linear
combinations of the observations, such as a′1x, a′2x and a′3x.

• The approach has several advantages when one is interested in separating
several population for (1) visual inspection or (2) graphical descriptive
purposes.

• Assume that p× p population covariance matrices are equal and of full rank.
That is Σ1 = Σ2 = · · · = Σg = Σ.
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• Define

x̄i =
1

ni

ni∑
j=1

xij, i = 1, . . . , g, and x̄ =
1

g

g∑
i=1

xi.

B =

g∑
i=1

(x̄i − x̄)(x̄i − x̄)′

and

W =

g∑
i=1

(ni − 1)Si =

g∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
′.
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Fisher’s Sample Linear Discriminants

Let λ̂1, λ̂2, . . . , λ̂s > 0 denote the s ≤ min(g − 1, p) nonzero eigenvalues
of W−1B and ê1, . . . , ês be the corresponding eigenvectors (scaled so that
ê′Spooledê = 1). Then the vector of coefficients â that maximizes the ratio

â′Bâ

â′Wâ
=

â′
(

g∑
i=1

(x̄i − x̄)(x̄i − x̄)′
)

â

â′
(

g∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)′

)
â

is given by â1 = ê1. The linear combination â′1x is, called the sample first
discriminant. The choice â2 = ê2 produces the sample second discriminant,
â′2x, and continuing, we obtain âkx = ê′kx, the sample kth discriminant, k ≤ s.
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Let

di(x) = µ′iΣ
−1x− 1

2
µ′iΣ

−1µi + ln pi

or, equivalently

di(x)− 1

2
x′Σ−1x = −1

2
(x− µi)

′Σ−1(x− µi) + ln pi.
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Result 6-2.6. Let yj = a′jx where aj = Σ−1/2ej and ej is an eigenvector of

Σ−1/2BµΣ−1/2. Then

p∑
j=1

(yj − µiYj
)2 =

p∑
j=1

[a′j(x− µi)]
2 = (x− µi)

′Σ−1(x− µi)

= −2di(x) + x′Σ−1x + 2 ln pi

If λ1 ≥ · ≥ λs > 0 = λs+1 = · = λp,
p∑

j=s+1

(yj − µiYj
)2 is constant for all

populations, i = 1, 2, . . . , g so only the first s discriminants yj, or
s∑

j=1

(yj−µiYj
)2,

contribute to the classification.
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Fisher’s Classification Procedure Based on Sample Discriminations

Allocate x to πk if

r∑
j=1

(ŷj − ȳkj)2 =

r∑
j=1

[â′j(x− x̄k)]2 ≤
r∑

j=1

[â′j(x− x̄j)]
2 mboxforall i 6= k

where âj is the corresponding eigenvectors of W−1B, ȳkj = â′jx̄k and r ≤ s.
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