
1. Probability

1.1 Sample Space and Events

• Suppose that we are about to perform an experiment whose outcome is not
predictable in advance.

• However, while the outcome of the experiment will not be known in advance,
let us suppose that the set of all possible outcomes is known.

• This set of all possible outcome of an experiment is known as the sample
space of the experiment and is denoted by S.
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Some examples are the following

1. If the experiment consists of the flipping of a coin, then

S = {H,T}

where H means that the outcome of the toss is a head and T that it is a
tail.

2. If the experiment consists of rolling a die, then the sample space is

S = {1, 2, 3, 4, 5, 6}

where the outcome i means that i appeared on the die, i = 1, 2, 3, 4, 5, 6.

3. If the experiments consists of flipping two coins, then sample space consists
of the following four points

S = {(H,H), (H,T ), (T,H), (T, T )}.
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4. If the experiment consists of rolling two dice, then the sample space consists
of the following 36 points

S = {(i, j), i, j = 1, 2, 3, 4, 5, 6}

where i appears on the first die, and j on the second die.

5. If the experiment consists of measuring the lifetime of a car, then the sample
space consists of all nonnegative real number. That is

S = [0,∞).

• Any subset E of the sample space S is known as an event.

For examples, in Example 1, E = {H} or {T}, Example 2, E = {1},
or {2, 4, 6}, Example 3, E = {(H,H), (H,T )}, Example 4, E =
(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), Example 5, E = (2, 6).
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• For any two events E and F of a sample space S we define the new event
E ∪ F to consist of all outcomes that are either in E or in F or in both E
and F .

• For any two events E and F , we may also define the new event E ∩ F ,
referred to as the intersection of E and F , all of outcomes which are both in
E and in F .

• For example, in Example 1, if E = {H} and F = {T} , then

E ∪ F = {H,T}, E ∩ F = φ (mutually exclusive);

in Example 2, if E = {1, 3, 5} and F = {1, 2, 3}, then

E ∪ F = {1, 2, 3, 5}, E ∩ F = {1, 3}.
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• If E1, E2, . . . , are events, then the union of these events, denoted by
⋃∞
i=1Ei,

is defined to be that event which consists of all outcomes that are in En for
at least one value of n = 1, 2, . . ..

• Similarly, the interaction of events En, denoted by
⋂∞
i=1Ei, is defined to

be the event consisting of those outcomes that are in all of the events
En, n = 1, 2, . . ..

• For any event E we define the new event Ec, referred to as the complement
fo E, to consist of all outcomes in the sample space S that are not in E.

For example, in Example (4) if E = {(1, 6), (2, 5)(3, 4), (4, 3), (5, 2), (6, 1)},
then Ec will occur if sum of the dice not equal to seven.
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1.2 Probabilities Defined on Events

Consider an experiment whose sample space is S. For each event E of the
sample space S, we assume that a number P (E) is defined and satisfies the
following three conditions

(i) 0 ≤ P (E) ≤ 1.

(ii) P (S) = 1.

(iii) For any sequence of events E1, E2, . . . that are mutually exclusive, that is,
events for which Ei ∩ Ej = ∅ when i 6= j, then

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei).

We refer to P (E) as the Probability of the event E.
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• Example 1. In the coin tossing example, if we assume that a head is equally
likely to appear as a tail , then we would have

P ({H}) = P ({T}) =
1

2

On the other hand if we had biased coin and felt that a head was twice as
likely to appear as a tail, then we would have

P ({H}) =
2

3
, P ({T}) =

1

3
.

• Example 2. In the die tossing example, if we supposed that all six number
were equally likely to appear, then we would have

P ({1}) = P ({2}) = P ({3}) = P ({4}) = P ({5}) = P ({6}) =
1

6
,

and then

P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6}) =
1

2
. 7



• Since E and Ec are always mutually exclusive and E ∪ Ec = S, then

1 = P (S) = P (E ∪ F ) = P (E) + p(Ec), or P (Ec) = 1− P (E).

• Furthermore for the events E and F , we have

P (E) + P (F ) = P (E ∪ F ) + P (E ∩ F )

or equivalently

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).
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• In fact it can be shown by induction that, for any n events E1, E2, . . . , En,

P (E1 ∪ E2 ∪ · · · ∪ En) =
∑
i

P (Ei)−
∑
i<j

P (Ei ∩ Ej)

+
∑
i<j<k

P (Ei ∩ Ej ∩ Ek)

−
∑

i<j<k<l

P (Ei ∩ Ej ∩ Ek ∩ El) + · · ·

+(−1)n+1P (E1 ∩ E2 ∩ · · · ∩ En).

• Example 3. Tossing two coins, S = {(H,H), (H,T ), (T,H), (T, T )}, and
E = {(H,H), (H,T )}, F = {(H,H), (T,H)}, then

P (E ∪F ) = P (E) +P (F )−P (E ∩F ) =
1

2
+

1

2
−P ({H,H}) = 1− 1

4
=

3

4
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1.3 Conditional Probability and Independent Events

If we let E and F denote respectively the event that the sum of the dice is
six and the event that the first die is a four, then the probability just obtained
is called the conditional probability that E occurs given that F has occurred
and is denote by

P (E|F )

• A general formula for P (E|F ) which is valid for all events E and F is derived
in the same manner as above. Namely if the event F occurs, then in order
for E to occur it is necessary for the actual occurrence to be a point in both
E and in F , that is, it must be in E ∩ F . That is

P (E|F ) =
P (E ∩ F )

P (F )

which is only defined when P (F ) > 0.
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Examples:

1. Suppose cards numbered one through ten are placed in a hat, mixed up, and
then one of the cards is drawn. If we are told that the number on the drawn
card is at least five, then what is the conditional probability that it is ten?
(Solution: 1/6)

2. A family has two children. What is the conditional probability that both are
boys given that at least one of them is a boy? Assume that the sample
space S is given by S = {(b, b), (b, g), (g, b), (g, g)}, and all outcomes are
equally likely. ((b, g) means, for instance, that the older child is a boy and
the younger child a girl.) (Solution: 1/3)

3. Bev can either take a course in computers or in chemistry. If Bev takes the
computer course, then she will receive an A grade with probability 1

2 ; if she
takes the chemistry course then she will receive an A grade with probability
1
3 . Bev decides to base her decision on the flip of a fair coin. What is the
probability that Bev will get an A in chemistry? (Solution: 1/6)
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4. Suppose an urn contains seven black balls and five white balls. We draw two
balls from the urn without replacement. Assuming that each ball in the urn
is equally likely to be drawn, what is the probability that both drawn balls
are black? (Solution: 42/132)

5. Suppose that each of three men at a party throws his hat into the center of
the room. The hats are first mixed up and then each man randomly selects
a hat. What is the probability that none of the three men selects his own
hat? (Solution: 1/3)
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• Two events E and F are said to be independent if

P (E ∩ F ) = P (E)P (F ).

This implies that E and F are independent if

P (E|F ) = P (E).

• That is, E and F are independent if knowledge that F has occurred does
not affect the probability that E occurs. That is, the occurrence of E is
independent of whether or not F occurs.

• Two events E and F that are not independent are said to be dependent.

• Example : Suppose we toss two fair dice. Let E1 and E2 denote the
event that the sum of the dice is six and Seven, and F denote the event
that the first die equals four, are E1 and F independent, and are E2 and
F independent ? ( E1 and F are not independent, but E2 and F are
independent. ) 13



The definition of independence can be extended to more than two events.
The events E1, E2, . . . , En are said to be independent if for every subset
E1, E2, . . . , Er, r ≤ n, of these events

P (E1 ∩ E2 ∩ · · · ∩ Er) = P (E1)P (E2) · · ·P (Er).

Intuitively, the events E1, E2, . . . , En are independent if knowledge of the
occurrence of any of these events has no effect on the probability of any other
event.

• Example: (Pairwise Independent Events That Are Not Independent). Let a
ball be drawn from an urn containing four balls, numbered 1, 2, 3, 4. Let
E = {1, 2}, F = {1, 3}, G = {1, 4}. If all four outcomes are assumed equally
likely, then

P (E ∩ F ) = P (E)P (F ) = P (E ∩G) = P (E)P (G)

= P (F ∩G) = P (F )P (G) =
1

4

= P (E ∩ F ∩G) 6= P (E)P (F )P (G).

Hence, even though the events E,F,G are pairwise independent, they are
not jointly independent.
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• Example: There are r players, with player i initially having ni units,
ni > 0, i = 1, . . . , r. At each stage, two of the players are chosen to play
a game, with the winner of the game receiving 1 unit from the loser. Any
player whose fortune drops to 0 is eliminated, and this continues until a
single player has all n =

∑r
i=1 ni units, with that player designated as the

victor. Assuming that the results of successive games are independent, and
that each game is equally likely to be won by either of its two players, find
the probability that player i is the victor. (Solution: ni

n )

Suppose that a sequence of experiments, each of which results in either a
“success” or a “failure”, is to be performed. Let Ei, i ≥ 1, denote the event
that the ith experiment results in a success. If, for all i1, i2, . . . , in,

P (Ei1 ∩ Ei2 ∩ · · · ∩ Ein) =

n∏
j=1

P (Eij)

we say that the sequence of experiments consists of independent trials.
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1.4 Bayes’Formula

Let E and F be events. We may express E as E = (E ∩F )∪ (E ∩F c) because
in order for a point to be in E, it must either be in both E and F , or it must
be in E and not in F . Since E ∩ F and E ∩ F c are mutually exclusive, we
have that

P (E) = P (E ∩ F ) + P (E ∩ F c)
= P (E|F )P (F ) + P (E|F c)P (F c)

= P (E|F )P (F ) + P (E|F c)(1− P (F ))

The equation above states that the probability of the event E is a weighted
average of the conditional probability of E given that F has occurred and the
conditional probability of E given that F has not occurred, each conditional
probability being given as much weight as the event on which it is conditioned
has of occurring.
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Example. Consider two urns. The first contains two white and seven black
balls, and the second contains five white and six black balls. We flip a fair coin
and then draw a ball from the first urn or the second urn depending on whether
the outcome was heads or tails. What is the conditional probability that the
outcome of the toss was heads given that a white ball was selected? (Solution:
22/67)

Example. In answering a question on a multiple-choice test a student either
knows the answer or guesses. Let p be the probability that she knows the answer
and 1− p the probability that she guesses. Assume that a student who guesses
at the answer will be correct with probability 1/m, where m is the number of
multiple-choice alternatives. What is the conditional probability that a student
knew the answer to a question given that she answered it correctly? (Solution:

mp
1+(m−1)p)
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Example. A laboratory blood test is 95 percent effective in detecting a certain
disease when it is, in fact, present. However, the test also yields a “false positive
result” for 1 percent of the healthy persons tested. (That is, if a healthy
person is tested, then, with probability 0.01, the test result will imply he has
the disease.) If 0.5 percent of the population actually has the disease, what is
the probability a person has the disease given that his test result is positive?
(Solution: 0.323)
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• Suppose that F1, F2, . . . , Fn are mutually exclusive events such that⋃n
i=1Fi = S . In other words, E =

⋃n
i=1(E ∩ Fi) and using the fact

that the events E ∩ Fi, i = 1, . . . , n are mutually exclusive,

P (E) =

n∑
i=1

P (E ∩ Fi) =

n∑
i=1

P (E|Fi)P (Fi).

• Thus, for given events F1, F2, . . . , Fn of which one and only one must occur,
P (E) is equal to a weighted average of P (E|Fi), each term being weighted
by the probability of the event on which it is conditioned.

• Suppose now that E has occurred and we are interested in determining which
one of the Fj also occurred. By the above equation we have that

P (Fj|E) =
P (E ∩ Fj)
P (E)

=
P (E|Fj)P (Fj)∑n
i=1P (E|Fi)P (Fi)

This equation is known as Bayes’ formula. 19



Example. You know that a certain letter is equally likely to be in any one of
three different folders. Let αi be the probability that you will find your letter
upon making a quick examination of folder i if the letter is, in fact, in folder
i, i = 1, 2, 3. (We may have αi < 1.) Suppose you look in folder 1 and do not
find the letter. What is the probability that the letter is in folder 1 ? ( Solution:
1−α1
3−α1

)
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1.5 Random Variables

• It frequently occurs that in performing an experiment we are mainly interested
in some functions of the outcome as opposed to the outcome itself.

• For instance, in tossing dice we are often interested in the sum of the two
dice and are not really concerned about the actual outcome. That is, we may
be interested in knowing that the sum is seven and not be concerned over
whether the actual outcome was (1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or
(6, 1).

• These quantities of interest, or more formally, these real-valued functions
defined on the sample space, are known as random variables.
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• Example. Letting X denote the random variable that is defined as the sum
of two fair dice; then X could be 2, 3, . . . , 12 or

P (X = 2) = P ({1, 1}) =
1

36
,

P (X = 3) = P ({1, 2}, {2, 1}) =
2

36
,

. . . . . .

P (X = 12) = P ({6, 6}) =
1

36
and

1 = P

{
12⋃
n=2

{X = n}

}
=

12∑
n=2

P (X = n).

• Example. For a second example, suppose that our experiment consists of
tossing two fair coins. Letting Y denote the number of heads appearing, then
Y is a random variable taking on one of the values 0, 1, 2 with respective
probabilities 1

4,
2
4,

1
4. Of course,

P (Y = 0) + P (Y = 1) + P (Y = 2) = 1. 22



Example. Suppose that we toss a coin having a probability p of coming up
heads, until the first head appears. Letting N denote the number of flips
required, then assuming that the outcome of successive flips are independent,
N is a random variable taking on one of the values 1, 2, 3, . . . , with respective
probabilities

P (N = n) = P{(T, T, . . . , T︸ ︷︷ ︸
n−1

, H} = (1− p)n−1p, n ≥ 1

and

P

( ∞⋃
n=1

{N = n}

)
=

∞∑
n=1

P (N = n) = p

∞∑
n=1

(1− p)n−1 =
p

1− (1− p)
= 1.
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Example. Suppose that our experiment consists of seeing how long a battery
can operate before wearing down. Suppose also that we are not primarily
interested in the actual lifetime of the battery but are concerned only about
whether or not the battery lasts at least two years. In this case, we may define
the random variable I by

• I = 1, if the lifetime of battery is two or more years

• I = 0, otherwise

If E denotes the event that the battery lasts two or more years, then the random
variable I is known as the indicator random variable for event E. (Note that I
equals 1 or 0 depending on whether or not E occurs.
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Example. Suppose that independent trials, each of which results in any of
m possible outcomes with respective probabilities p1, . . . , pm,

∑m
i=1 pi = 1,are

continually performed. Let X denote the number of trials needed until each
outcome has occurred at least once. (Solution:

P (X = n) =

m∑
i=1

pi(1− pi)n−1 −
∑
i<j

(pi + pj)(1− pi − pj)n−1

∑
i<j<k

(pi + pj + pk)(1− pi − pj − pk)n−1 − · · ·

• Discrete random variables: a finite or a countable number of possible
variables.

• Continuous random variables: a continuum of possible variables. One
example is the random variable denoting the lifetime of a car, when the car?s
lifetime is assumed to take on any value in some interval (a, b).
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• Cumulative distribution function(cdf) F (·) of the random variable X is
defined for any real number b, −∞ < b <∞ by

F (b) = P (X ≤ b).

• Some properties of the cdf F are

(i) F (b) is a nondiscreaing function of b,
(ii) limb→∞F (b) = F (∞) = 1,
(iii) limb→−∞F (b) = F (−∞) = 0,

•
F (a < X ≤ b) = F (b)− F (a)

P (X < b) = lim
h→0+

P (X ≤ b− h) = lim
h→0+

F (b− h)
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1.6 Discrete Random Variables

As was previously mentioned, a random variable that can take on at most a
countable number of possible values is said to be discrete.

• For a discrete random variable X, we define the probability mass function
p(a) of X by p(a) = P{X = a}

• The probability mass function p(a) is positive for at most a countable number
of values of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) > 0, i = 1, 2, . . .

p(x) = 0, all other values of x

• Since X must take on one of the values xi , for the cumulative function F ,
we have ∞∑

i=1

p(xi) = 1 and F (a) =
∑

all xi≤a

p(xi)
27



• For instance, suppose X has a probability mass function given by p(1) =
1
2, p(2) = 1

3, p(3) = 1
6.

• The Bernolli Random Variable

p(0) = P (X = 0) = 1− p, p(1) = P (X = 1) = p

• The Binomial Random Variable

p(X = i) =
(
n
i

)
pi(1− p)n−i, i = 0, 1, . . . , n.

• Example. Suppose that an airplane engine will fail, when in flight, with
probability 1 − p independently from engine to engine; suppose that the
airplane will make a successful flight if at least 50 percent of its engines
remain operative. For what values of p is a four-engine plane preferable to a
two-engine plane? (Solution: the four-engine plane is safer when the engine
success probability is at least as large as 2

3 , whereas the two-engine plane is
safer when this probability falls below 2

3)
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• The Geometric Random Variable: Suppose that independent trials, each
having probability p of being a success, are performed until a success occurs.
If we let X be the number of trials required until the first success, then X
is said to be a geometric random variable with parameter p. Its probability
mass function is given by

p(n) = P (X = n) = (1− p)n−1p, n = 1, 2, . . . .

• The Poisson Random Variable: A random variable X, taking on one of the
values 0, 1, 2, . . . , is said to be a Poisson random variable with parameter λ,
if for some λ > 0,

p(i) = P (X = i) = e−λ
λi

i!
, i = 0, 1, 2, . . .

• Example. Suppose that the number of typographical errors on a single page
of this book has a Poisson distribution with parameter λ = 1. Calculate the
probability that there is at least one error on this page. (Solution: 0.632)

• Example. If the number of accidents occurring on a highway each day is a
Poisson random variable with parameter λ = 3, what is the probability that
no accidents occur today? (Solution: 0.05) 29



1.7 Continuous Random Variables

Let X be such a random variable. We say that X is a continuous random variable
if there exists a nonnegative function f(x), defined for all real x ∈ (−∞,∞),
having the property that for any set B of real numbers

P (X ∈ B) =

∫
B

f(x)dx.

The function f(x) is called the probability density function of the random
variable X.

• All probability statements about X can be answered in terms of f(x). For
instance, letting B = [a, b] , we obtain that

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

• The relationship between the cumulative distribution F (·) and the probability
density f(·) is expressed by

F (a) = P (X ∈ (−∞, a]) =

∫ a

−∞
f(x)dx,

d

da
F (a) = f(a). 30



• The Uniform Random Variable: In general, we say that X is a uniform
random variable on the interval (α, β) if its probability density function is
given by

f(x) =

{ 1
α−β , if α < x < β

0, otherwise

• Example. Calculate the cumulative distribution function of a random
variable uniformly distributed over (α, β). (Solution: 0, a < α; a−αβ−α, α < a <

β; 1, a ≥ β)

• Example. If X is uniformly distributed over (0, 10), calculate the probability
that (a) X < 3, (b) X > 7, (c) 1 < X < 6. (Solution: 3

10,
3
10,

1
2 )

• Exponential Random Variables: A continuous random variable whose
probability density function is given, for some λ > 0, by

f(x) =

{
λe−λx, if x ≥ 0
0, ifx < 0

F (a) =

∫ a

0

λe−λxdx = 1− e−λa, a ≥ 0.
31



• Gamma Random Variables: A continuous random variable whose density is
given by

f(x) =

{
λe−λx(λx)α−1

Γ(α) , if x ≥ 0

0, ifx < 0
where λ > 0, α > 0, and

Γ(α) =

∫ ∞
0

exxα−1dx, Γ(n) = (n− 1)!

• Normal Random Variables: a normal random variable (or simply that X is
normally distributed) with parameters µ and σ2 if the density of X is given
by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
,−∞ < x <∞.

• An important fact about normal random variables is that if X is normally
distributed with parameters µ and σ2 then Y = αX+β is normally distributed
with parameters αµ+ β and α2σ2.
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1.8 Expectation of a Random Variable

If X is a discrete random variable having a probability mass function p(x),
then the expected value of X is defined by

E(X) =
∑

x:p(x)>0

xp(x)

• Example. Find E(X) where X is the outcome when we roll a fair die.
(Solution: 7

2)

• Example. Calculate E[X] when X is (1) a Bernoulli random variable with
parameter p,(2) a binomial random variable with parameters n and p, (3) a
geometric random variable having parameter p, (4) a Poisson random variable
with parameter λ. (Solution: (1) p, (2) np, (3) 1

p, (4) λ )
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We may also define the expected value of a continuous random variable.
This is done as follows. If X is a continuous random variable having a probability
density function f(x), then the expected value of X is defined by

E(X) =

∫ ∞
−∞

xf(x)dx

• Example. (i) Expectation of an Exponential Random Variable with parameter
λ. (ii) Expectation of a Normal Random Variable with parameter µ and σ2.
(Solution: (1) 1

λ,(ii) µ )

• Expectation of a Function of a Random Variable E(g(X)),
(1) for a discrete random variable X with mass function p(x)

E(g(X)) =
∑

x:p(x)>0

g(x)p(x)

(2) for a continuous random variable with density function f(x)

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx
34



Example. Let X be normally distributed with parameters µ and σ2. Find
Var(X). (Solution: σ2)

Example. Calculate Var(X) when X is binomially distributed with parameters
n and p. (Solution: np(1− p))
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1.9 Jointly Distribution of Random Variables

We are often interested in probability statements concern- ing two or more
random variables. To deal with such probabilities, we define, for any two random
variables X and Y , the joint cumulative probability distribution function of X
and Y by

F (a, b) = P (X ≤ a, Y ≤ b),−∞ < a, b <∞

• Marginal distribution of X and Y :

Fx(a) = P (X ≤ a) = P (X ≤ a, Y <∞) = F (a,∞)

Fy(b) = P (Y ≤ b) = P (X ≤ ∞, Y < b) = F (∞, b)

• In the case where X and Y are both discrete random variables, it is convenient
to define the joint or marginal probability mass function of X and Y by

p(x, y) = P (X = x, Y = y),

pX(x) =
∑

y:p(x,y)>0

p(x, y), pY (y) =
∑

x:p(x,y)>0

p(x, y)
36



• X and Y are jointly continuous if there exists a function f(x, y), defined
for all real x and y, having the property that for all sets A and B of real
numbers

P (X ∈ A, Y ∈ B) =

∫
B

∫
A

f(x, y)dx, dy)

The function f(x, y) is called the joint probability density function of X and
Y .

• The probability density of X can be obtained from a knowledge of f (x , y )
by the following reasoning:

P (X ∈ A) = P (X ∈ A, Y ∈ (−∞,∞)) =

∫ ∞
−∞

∫
A

f(x, y)dxdy =

∫
A

fX(x)dx

where fX(x) =
∫∞
−∞ f(x, y)dy

• Because

F (a, b) = P (X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞
f(x, y)dydx

differentiation yields d2

dadb
F (a, b) = f(a, b). 37



If X and Y are random variables and g is a function of two variables, then

• In the discrete case

E(g(X,Y )) =
∑
y

∑
x

g(x, y)p(x, y)

In the continuous case

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy

• If g(X,Y ) = aX + bY , then

E(aX + bY ) = aE(X) + bE(Y )

If X1, X2, . . . , Xn are n random variables, then for any n constants
a1, a2, . . . , an,

E(a1X1 + a2X2 + · · ·+ anXn) = a1E(X1) + a2E(X2) + · · ·+ anE(Xn)
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Example. At a party N men throw their hats into the center of a room. The
hats are mixed up and each man randomly selects one. Find the expected
number of men who select their own hats. (Solution 1)

Example. Suppose there are 25 different types of coupons and suppose that
each time one obtains a coupon, it is equally likely to be any one of the 25
types. Compute the expected number of different types that are contained in a
set of 10 coupons. (Solution: 25(1− (24

25)10))

Example. Let R1, · · · , Rn+m be a random permutation of 1, · · · , n+m. (That
is, R1, · · · , Rn+m is equally likely to be any of the (n + m)! permutations of
1, · · · , n + m.) For a given i ≤ n, let X be the ith smallest of the values
R1, ..., Rn. Find E[X]. (Solution: i+m i

n+1)
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Independent Random Variables

The random variables X and Y are said to be independent if, for all a, b,

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b) or F (a, b) = FX(a)Fy(b)

• When X and Y are discrete, the condition of independence reduces to

p(x, y) = pX(x)pY (y)

• while if X and Y are jointly continuous, independence reduces to

f(x, y) = fX(x)fY (y)

• Proposition. If X and Y are independent, then for any functions h and g

E[g(X)h(Y )] = E[g(X)]E[h(Y )]
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Covariance and Variance of Random Variables

The covariance of any two random variables X and Y , denoted by Cov(X,Y ),
is defined by

Cov(X,Y ) = E(X − EX)(Y − EY ) = E(XY )− EXEY.

• If X and Y are independent, then Cov(X,Y ) = 0.

• For any random variable X,Y, Z and constant c

Cov(X,X) = Var(X),Cov(X,Y ) = Cov(Y,X),

Cov(cX, Y ) = cCov(X,Y ),Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z)

Definition: If X1, . . . , Xn are independent and identically distributed, then the
n random variable X̄ =

∑n
i=1Xi/n is called the sample mean.
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Proposition. Suppose that X1, . . . , Xn are independent and identically
distributed with expected value µ and variance σ2. Then, (a) E(X̄) = µ,
(b) Var(X̄) = σ2/n, (c) Cov(X̄,Xi − X̄) = 0.

Example. Compute the variance of a binomial random variable X with
parameters n and p. (Solution: np(1− p))

Example. (Sums of Independent Poisson Random Variables). Let X and Y
be independent Poisson random variables with respective means λ1 and λ2.
Calculate the distribution of X + Y . (Solution: a Poisson distribution with
mean λ1 + λ2)
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Joint Probability Distribution of Functions of Random
Variables

Let X1 and X2 be jointly continuous random variables with joint probability
density function f(x1, x2). suppose that Y1 = g1(X1, X2) and Y2 = g2(X1, X2)
for some functions g1 and g2. Assume that the functions g1 and g2 satisfy the
following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved for x1 and x2

in terms of y1 and y2 with solutions given by, say, x1 = h1(y1, y2), x2 = h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all points (x1, x2) and are

such that the following 2× 2 determinant

J(x1, x2) =

∣∣∣∣∣
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
∂g1

∂x1

∂g2

∂x2

−
∂g1

∂x2

∂g2

∂x1

6= 0

at all points (x1, x2).

Under these two conditions it can be shown that the random variables Y1

and Y2 are jointly continuous with joint density function given by

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1

where x1 = h1(y1, y2), x2 = h2(y1, y2).
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Example. If X and Y are independent gamma random variables with parameters
(α, λ) and (β, λ), respectively, compute the joint density of U = X + Y and

V = X/(X + Y ). (Solution: f(u, v) = λe−λu(λu)α+β−1

Γ(α+β)
vα−1(1−v)β−1Γ(α+β)

Γ(α)Γ(β) , U

with a gamma distribution of parameter (α+ β, λ) and V with the beta density
with parameter (α, β) are independent. )

• The extension to the joint density function of the n random variables
X1, X2, · · · , Xn which is given and want to compute the joint density function
of Y1, Y2, . . . , Yn, where Y1 = g1(X1, . . . , Xn), . . . , Yn = gn(X1, . . . , Xn).
Furthermore it has a unique solution x1 = h1(y1, . . . , yn), . . . , xn =
hn(y1, . . . , yn).

Under these assumptions the joint density function of the random variables
Yi is given by

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn|J(x1, . . . , xn)|−1

where xi = hi(y1, . . . , yn), i = 1, 2, . . . , n, and the Jacobian determinant
J(x1, . . . , xn) 6= 0.
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1.10 Moment Generating Functions

The moment generating function φ(x) of the random variable X is defined for
all values t by

φ(t) = E[etX] =

{ ∑
x
etXp(x), if X is discrete∫∞
−∞ e

tXf(x)dx, if X is continuous

• We call φ(t) the moment generating function because all of the moments of
X can be obtained by successively differentiating φ(t). For example,

φ′(t) =
d

dt
E[etX] = E

[
d

dt
etX
]

= E[XetX]

and hence
φ′(0) = E[X].

Similarly,
φ′′(0) = E[X2], . . . , φn(0) = E[Xn], n ≥ 1.
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Table 2.1

Discrete
probability
distribution

Probability mass
function, p(x)

Moment
generating
function, φ(t)

Mean Variance

Binomial with
parameters n,p,
0 ≤ p ≤ 1

(n
x

)
px(1 − p)n−x ,

x = 0,1, . . . , n

(pet + (1 − p))n np np(1 − p)

Poisson with pa-
rameter λ > 0

e−λ λx

x! ,

x = 0,1,2, . . .

exp{λ(et − 1)} λ λ

Geometric with
parameter
0 ≤ p ≤ 1

p(1 − p)x−1,
x = 1,2, . . .

pet

1 − (1 − p)et

1
p

1 − p

p2

If Z is a standard normal, then X = σZ + µ is normal with parameters µ and σ 2;
therefore,

φ(t) = E[etX] = E[et(σZ+µ)] = etµE[etσZ] = exp
{

σ 2t2

2
+ µt

}

By differentiating we obtain

φ′(t) = (µ + tσ 2) exp
{

σ 2t2

2
+ µt

}
,

φ′′(t) = (µ + tσ 2)2 exp
{

σ 2t2

2
+ µt

}
+ σ 2 exp

{
σ 2t2

2
+ µt

}

and so

E[X] = φ′(0) = µ,

E[X2] = φ′′(0) = µ2 + σ 2

implying that

Var(X) = E[X2] − E([X])2

= σ 2 !

Tables 2.1 and 2.2 give the moment generating function for some common distri-
butions.

An important property of moment generating functions is that the moment gener-
ating function of the sum of independent random variables is just the product of the
individual moment generating functions. To see this, suppose that X and Y are inde-
pendent and have moment generating functions φX(t) and φY (t), respectively. Then
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Table 2.2

Continuous
probability
distribution

Probability density function,
f (x)

Moment
generating
function, φ(t)

Mean Variance

Uniform
over (a, b)

f (x) =






1
b − a

, a < x < b

0, otherwise

etb − eta

t (b − a)

a + b

2
(b − a)2

12

Exponential
with
parameter
λ > 0

f (x) =
{

λe−λx, x ≥ 0
0, x < 0

λ

λ − t

1
λ

1

λ2

Gamma
with
parameters
(n,λ), λ > 0

f (x) =






λe−λx(λx)n−1

(n − 1)! , x ≥ 0

0, x < 0

(
λ

λ − t

)n n

λ

n

λ2

Normal with
parameters
(µ,σ 2)

f (x) = 1√
2πσ

× exp{−(x − µ)2/2σ 2},
−∞ < x < ∞

exp

{

µt + σ 2t2

2

}

µ σ 2

φX+Y (t), the moment generating function of X + Y , is given by

φX+Y (t) = E[et(X+Y)]
= E[etXetY ]
= E[etX]E[etY ]
= φX(t)φY (t)

where the next to the last equality follows from Proposition 2.3 since X and Y are
independent.

Another important result is that the moment generating function uniquely deter-
mines the distribution. That is, there exists a one-to-one correspondence between the
moment generating function and the distribution function of a random variable.

Example 2.44 (Sums of Independent Binomial Random Variables). If X and Y are in-
dependent binomial random variables with parameters (n,p) and (m,p), respectively,
then what is the distribution of X + Y ?

Solution: The moment generating function of X + Y is given by

φX+Y (t) = φX(t)φY (t) = (pet + 1 − p)n(pet + 1 − p)m

= (pet + 1 − p)m+n
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• An important property of moment generating functions is that the moment
generating function of the sum of independent random variables is just the
product of the individual moment generating functions

• To see this, suppose that X and Y are independent and have moment
generating functions φX(t) and φY (t), respectively. Then

φX+Y (t) = Eet(X+Y ) = EetXetY = EetXEetY = φX(t)φY (t)

• Example.(Sums of Independent Poisson Random Variables). Calculate the
distribution of X + Y when X and Y are independent Poisson random
variables with means λ1 and λ2, respectively (Solution: X + Y is Poisson
distributed with mean λ1 + λ2.

• Example.(Sums of Independent Normal Random Variables). Show that if
X and Y are independent normal random variables with parameters (µ1, σ

2
1)

and (µ2, σ
2
2), respectively, then X + Y is normal with mean µ1 + µ2 and

variance σ2
1 + σ2

2 .
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1.11 Limit Theorems

Theorem (Strong Law of Large Number) Let X1, X2, . . . be a sequence of
independent random variables having a common distribution, and let E[Xi] = µ.
Then, with probability 1,

X1 +X2 + · · ·+Xn

n
→ µ, as n→∞.

Theorem (Central Limit Theorem). Let X1, X2, . . . be a sequence of
independent, identically distributed random variables, each with mean µ and
variance σ2 .Then the distribution of

X1 +X2 + · · ·+Xn − nµ
σ
√
n

tends to the standard normal as n→∞. That is as n→∞

P

(
X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ a
)
→ 1√

2π

∫ a

−∞
e−x

2/2dx. 48



Example. (Normal Approximation to the Binomial). Let X be the number
of times that a fair coin, flipped 40 times, lands heads. Find the probability
that X = 20. Use the normal approximation and then compare it to the exact
solution. (Solution: approximated 0.1272, exact, 0.1254)

Example. Let Xi, i = 1, 2, . . . , 10 be independent random variables, eachbeing
uniformly distributed over (0, 1). Estimate P (

∑10
i=1Xi > 7). (Solution: 0.0143)

Example. The lifetime of a special type of battery is a random variable with
mean 40 hours and standard deviation 20 hours. A battery is used until it fails,
at which point it is replaced by a new one. Assuming a stockpile of 25 such
batteries, the lifetimes of which are independent, approximate the probability
that over 1100 hours of use can be obtained. (Solution: 0.1587)
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1.12 Conditional Probability and Conditional Expectation

• One of the most useful concepts in probability theory is that of conditional
probability and conditional expectation. The reason is twofold.

• First, in practice, we are often interested in calculating probabilities and
expectations when some partial information is available; hence, the desired
probabilities and expectations are conditional ones.

• Secondly, in calculating a desired probability or expectation it is often
extremely useful to first “condition” on some appropriate random variable.
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The Discrete Case

Recall that for any two events E and F , the conditional probability of E given
F is defined, as long as P (F ) > 0, by

P (E|F ) =
P (E ∩ F )

P (F )

• Hence, if X and Y are discrete random variables, then it is natural to define
the conditional probability mass function of X given that Y = y, by

pX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

PY (y)
,

FX|Y (x|y) = P (X ≤ x|Y = y) =
∑
a≤x

PX|Y (a|y).

E[X|Y = y] =
∑
x

xP (X = x|Y = y)

for all values of y such that P (Y = y) > 0. 51



The Continuous Case

• If X and Y have a joint probability density function f(x, y), then the
conditional probability density function of X, given that Y = y, is defined
for all values of y such that fY (y) > 0, by

fX|Y (x|y) =
f(x, y)

fY (y)
=

f(x, y)∫∞
−∞ f(x, y)dx

• The conditional expectation of X, given Y = y, is defined for all values of
y such that fY (y) > 0, by

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx.

• If X is independent of Y , then

pX|Y (x|y) = P (X = x|Y = y) = P (X = x) or fX|Y (x|y) = fX(x)
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Example. If X1 and X2 are independent binomial random variables with
respective parameters (n1, p) and (n2, p), calculate the conditional probability
mass function of X1 given that X1 +X2 = m. (Solution: Ckn1

Cm−kn2
/Cmn1+n2

)

Example. If X and Y are independent Poisson random variables with respective
means λ1 and λ2, calculate the conditional expected value of X given that
X + Y = n. (Solution: n λ1

λ1+λ2
)

Example. Suppose that the joint density of X and Y is given by

f(x, y) =

{
6xy(2− x− y), 0 < x < 1, 0 < y < 1
0 otherwise

Compute the conditional expectation of X given that Y = y, where 0 < y < 1.
(Solution: 5−4y

8−6y)

Example. Let X1 and X2 be independent exponential random variables with
rates µ1 and µ2. Find the conditional density of X1 given that X1 + X2 = t.

(Solution: fX1|X1+X2
(x|t) = (µ1−µ2)e−(µ1−µ2)x

1−e−(µ1−µ2)t , if µ1 6= µ2. If µ1 = µ2, it is

uniformly distributed on (0, t))
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Computing Expectations and Probabilities by Conditioning

• Let us denote by E[X|Y ] that function of the random variable Y whose value
at Y = y is E[X|Y = y]. Note that E[X|Y ] is itself a random variable.
An extremely important property of conditional expectation is that for all
random variables X and Y

E[X] = E[E[X|Y ]]

• If Y is a discrete random variable, then the equation above states that

E[X] =
∑
y

E[X|Y = y]P (Y = y)

• While if Y is continuous with density fY (y), then the above equation says
that

E[X] =

∫ ∞
−∞

E[X|Y = y]fY (y)dy
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Let E denote an arbitrary event and define the indicator random variable X
by

X =

{
1, if E occurs
0, if E does not occur

It follows from the definition of X that

•

E[X] = P (E),E[X|Y = y] = P (E|Y = y), for any random variable Y

•

P (E) =

{ ∑
y
P (E|Y = y)P (Y = y), if Y is discrete∫∞
−∞P (E|Y = y)fY (y)dy, if Y is continuous
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Conditional expectations can also be used to compute the variance of a
random variable. Specifically, we can use

Var(X) = E[X2]− (E[X])2

• The conditional variance of X given that Y = y is defined by

Var(X|Y = y) = E[(X−E[X|Y = y])2|Y = y] = E[X2|Y = y]−(E[X|Y = y])2

• Hence
Var(X) = E[Var(X|Y )] + Var(E[X|Y ])
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Example. Sam will read either one chapter of his probability book or one chapter
of his history book. If the number of misprints in a chapter of his probability
book is Poisson distributed with mean 2 and if the number of misprints in
his history chapter is Poisson distributed with mean 5, then assuming Sam is
equally likely to choose either book, what is the expected number of misprints
that Sam will come across? (Solution: 7/2)

Example. (The Expectation of the Sum of a Random Number of Random
Variables). Suppose that the expected number of accidents per week at an
industrial plant is four. Suppose also that the numbers of workers injured in
each accident are independent random variables with a common mean of 2.
Assume also that the number of workers injured in each accident is independent
of the number of accidents that occur. What is the expected number of injuries
during a week? (Solution: 8)

Example. (The Variance of a Compound Random Variable). Let X1, X2, . . .
be independent and identically distributed random variables with distribution
F having mean µ and variance σ2, and assume that they are independent of
the nonnegative integer valued random variable N, and its expected value was
determined, the random variable S =

∑N
i=1Xi is called a compound random

variable. Find its variance. (Solution: σ2E[N ] + µ2Var(N))
57



Example. Suppose that X and Y are independent continuous random variables
having densities fX and fY , respectively. Compute P (X < Y ).

Example. An insurance company supposes that the number of accidents that
each of its policyholders will have in a year is Poisson distributed, with the
mean of the Poisson depending on the policyholder. If the Poisson mean of a
randomly chosen policyholder has a gamma distribution with density function

g(λ) = λe−λ, λ ≥ 0

what is the probability that a randomly chosen policyholder has exactly n
accidents next year? (Solution: P (X = n) = (n+ 1)/2n+2)

Example. (The Ballot Problem). In an election, candidate A receives n votes,
and candidate B receives m votes where n > m. Assuming that all orderings
are equally likely, show that the probability that A is always ahead in the count
of votes is (n−m)/(n+m).
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Case Studies: Gambling Problems

We consider an amount $S of S dollars which is to be shared between
two players A and B. At each round, player A may earn $1 with probability
p ∈ (0, 1), and in this case player B loses $1. Conversely, player A may lose
$1 with probability q = 1 − p, and in this case player B gains $1. We let Xn

represent the wealth of player A at time n ∈ N , while S −Xn represents the
wealth of player B at time n ∈ N .

The initial wealth X0 of player A could be negative,1 but for simplicity we
will assume that it is comprised between 0 and S. Assuming that the value of
Xn, n ≥ 0, belongs to {1, 2, . . . , S − 1} at the time step n, at the next step
n+ 1 we will have{

Xn+1 = Xn + 1 if player A wins round n+ 1,
Xn+1 = Xn − 1, if player B wins round n+ 1.

As soon as Xn hits one of the boundary points {0, S}, the process remains
frozen at that state over time. In other words, the game ends whenever the
fortune of any of the two players reaches 0, in which case the other player’s
account contains S.
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Among the main issues of interest are:

• the probability that player A (or B) gets eventually ruined (Ruin Probabilities)

• the mean duration of the game.

According to the above problem description, for all n ∈ N we have

P (Xn+1 = k + 1|Xn = k) = p and P (Xn+1 = k − 1|Xn = k) = q,

1 ≤ k ≤ S − 1, and in this case the chain is said to be time homogeneous since
the transition probabilities do not depend on the time index n. Since we will
not focus on the behaviour of the chain after it hits states 0 or N , the law of
Xn+1 given {Xn = 0} or {Xn = S} can be left unspecified.

The probability space Ω corresponding to this experiment could be taken as

Ω = {−1,+1}N ,

with any element ω ∈ Ω represented by a countable sequence of +1 or -1,
depending whether the process goes up or down at each time step. However
here we will not focus on this particular representation. 60


