Lecture Note 1: Appendix

Page 47.

- Example 1. Solution:

$$
\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t)=e^{\lambda_{1}\left(e^{t}-1\right)} e^{\lambda_{2}\left(e^{t}-1\right)}=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)}
$$

Hence, $X+Y$ is Poisson distributed with mean $\lambda_{1}+\lambda_{2}$

- Example 2. Solution:

$$
\begin{aligned}
\phi_{X+Y}(t) & =\phi_{X}(t) \phi_{Y}(t)=\exp \left\{\frac{\sigma_{1}^{2} t^{2}}{2}+\mu_{1} t\right\} \exp \left\{\frac{\sigma_{2}^{2} t^{2}}{2}+\mu_{2} t\right\} \\
& =\exp \left\{\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2}}{2}+\left(\mu_{1}+\mu_{2}\right) t\right\}
\end{aligned}
$$

which is the moment generating function of a normal random variable with mean $\mu_{1}+\mu_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$. Hence, the result follows since the moment generating function uniquely determines the distribution.

Page 49.

- Example 1. Solution: Since the binomial is a discrete random variable, and the normal a continuous random variable, it leads to a better approximation to write the desired probability as

$$
\begin{aligned}
P\{X=20\} & =P\{19.5<X<20.5\} \\
& =P\left\{\frac{19.5-20}{\sqrt{10}}<\frac{X-20}{\sqrt{10}}<\frac{20.5-20}{\sqrt{10}}\right\} \\
& =P\left\{-0.16<\frac{X-20}{\sqrt{10}}<0.16\right\} \\
& \approx \Phi(0.16)-\Phi(-0.16)=2 \Phi(0.16)-1=0.1272
\end{aligned}
$$

The exact result is

$$
P\{X=20\}=\binom{40}{20}\left(\frac{1}{2}\right)^{40}=0.1254
$$

Page 49.

- Example 2. Solution: Since $\mathrm{E}\left[X_{i}\right]=\frac{1}{2}, \operatorname{Var}\left(X_{i}\right)=\frac{1}{12}$ we have by the central limit theorem that

$$
\begin{aligned}
P\left\{\sum_{1}^{10} X_{i}>7\right\} & =P\left\{\frac{\sum_{1}^{10} X_{i}-5}{\sqrt{10\left(\frac{1}{12}\right)}}>\frac{7-5}{\sqrt{10\left(\frac{1}{12}\right)}}\right\} \\
& \approx 1-\Phi(2.19)=0.0143
\end{aligned}
$$

- Example 3. Solution: If we let X_{i} denote the lifetime of the i th battery to be put in use, then we desire $p=P\left\{X_{1}+\cdots+X_{25}>1100\right\}$, which is approximated as follows:

$$
\begin{aligned}
p & =P\left\{\frac{X_{1}+\cdots+X_{25}-1000}{20 \sqrt{25}}>\frac{1100-1000}{20 \sqrt{25}}\right\} \\
& \approx P(N(0,1)>1)=1-\Phi(1) \approx 0.1587
\end{aligned}
$$

Page 53.

- Example 1. Solution: With $q=1-p$

$$
\begin{aligned}
& p\left\{X_{1}=k \mid X_{1}+X_{2}=m\right\} \\
= & \frac{P\left\{X_{1}=k, X_{1}+X_{2}=m\right\}}{P\left\{X_{1}+X_{2}=m\right\}} \\
= & \frac{P\left\{X_{1}=k, X_{2}=m-k\right\}}{P\left\{X_{1}+X_{2}=m\right\}}=\frac{P\left\{X_{1}=k\right\} P\left\{X_{2}=m-k\right\}}{P\left\{X_{1}+X_{2}=m\right\}} \\
= & \frac{\binom{n_{1}}{k} p^{k} q^{n_{1}-k}\binom{n_{2}}{m-k} p^{m-k} q^{n_{2}-m+k}}{\binom{n_{1}+n_{2}}{m} p^{m} q^{n_{1}+n_{2}-m}}
\end{aligned}
$$

where we have used that $X_{1}+X_{2}$ is a binomial random variable with parameters $\left(n_{1}+n_{2}, p\right)$. Thus, the conditional probability mass function of X_{1}, given that $X_{1}+X_{2}=m$, is

$$
P\left\{X_{1}=k \mid X_{1}+X_{2}=m\right\}=\frac{\binom{n_{1}}{k}\binom{n_{2}}{m-k}}{\binom{n_{1}+n_{2}}{m}}
$$

Page 53.

- Example 2. Solution: Let us firstly calculate the conditional probability mass function of X given that $X+Y=n$. We obtain

$$
\begin{aligned}
P\{X=k \mid X+Y=n\} & =\frac{P\{X=k, X+Y=n\}}{P\{X+Y=n\}}=\frac{P\{X=k, Y=n-k\}}{P\{X+Y=n\}} \\
& =\frac{P\{X=k\} P\{Y=n-k\}}{P\{X+Y=n\}}
\end{aligned}
$$

where the last equality follows from the assumed independence of X and Y. Recalling that $X+Y$ has a Poisson distribution with mean $\lambda_{1}+\lambda_{2}$, the preceding equation equals

$$
\begin{aligned}
P\{X=k \mid X+Y=n\} & =\frac{e^{-\lambda_{1}} \lambda_{1}^{k}}{k!} \frac{e^{-\lambda_{2}} \lambda_{2}^{n-k}}{(n-k)!}\left[\frac{e^{-\left(\lambda_{1}+\lambda-2\right)}\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}\right]^{-1} \\
& =\frac{n!}{(n-k)!k!} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}} \\
& =\binom{n}{k}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{k}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{n-k}
\end{aligned}
$$

In other words, the conditional distribution of X given that $X+Y=n$ is the binomial distribution with parameters n and $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$. Hence,

$$
\mathrm{E}\{X \mid X+Y=n\}=n \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Page 53.

- Example 3. Solution: We first compute the conditional density

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)}=\frac{6 x y(2-x-y)}{\int_{0}^{1} 6 x y(2-x-y) d x} \\
& =\frac{6 x y(2-x-y)}{y(4-3 y)}=\frac{6 x(2-x-y)}{4-3 y}
\end{aligned}
$$

Hence,

$$
\mathrm{E}[X \mid Y=y]=\int_{0}^{1} \frac{6 x^{2}(2-x-y) d x}{4-3 y}=\frac{(2-y) 2-\frac{6}{4}}{4-3 y}=\frac{5-4 y}{8-6 y}
$$

Page 53.

- Example 4. Solution: To begin, let us first note that if $f(x, y)$ is the joint density of X, Y, then the joint density of X and $X+Y$ is

$$
f_{X, X+Y}(X, t)=f(x, t-x)
$$

which is easily seen by noting that the Jacobian of the transformation

$$
g_{1}(x, y)=x, g_{2}(x, y)=x+y
$$

is equal to 1 . Hence

$$
\begin{aligned}
f_{X_{1} \mid X_{1}+X_{2}(x \mid t)} & =\frac{f_{X_{1}, X_{1}+X_{2}}(x, t)}{f_{X_{1}+X_{2}}(t)} \\
& =\frac{\mu_{1} e^{-\mu_{1} x} \mu_{2} e^{-\mu_{2}(t-x)}}{f_{X_{1}+X_{2}}(t)}=C e^{\left(\mu_{1}-\mu_{2}\right) x}, 0 \leq x \leq t
\end{aligned}
$$

where $C=\frac{\mu_{1} \mu_{2} e^{-\mu_{2} t}}{f_{X_{1}+X_{2}}(t)}$.

Page 53.

- Example 4. Solution continuous:

Now if $\mu_{1}=\mu_{2}$, then $f_{X_{1} \mid X_{1}+X_{2}}(x \mid t)=C, 0 \leq x \leq t$ yield that $C=1 / t$, and that X_{1} given $X_{1}+X_{2}=t$ is uniformly distributed on $(0, t)$.

On the other hand, if $\mu_{1} \neq \mu_{2}$, then we use

$$
1=\int_{0}^{t} f_{X_{1} \mid X_{1}+X_{2}}(x \mid t) d x=\frac{C}{\mu_{1}-\mu_{2}}\left(1-e^{-\left(\mu_{1}-\mu_{2}\right) t}\right)
$$

to obtain

$$
C=\frac{\mu_{1}-\mu_{2}}{1-e^{-\left(\mu_{1}-\mu_{2}\right) t}}
$$

thus yield the result:

$$
f_{X_{1} \mid X_{1}+X_{2}}(x \mid t)=\frac{\left(\mu_{1}-\mu_{2}\right) e^{-\left(\mu_{1}-\mu_{2}\right) x}}{1-e^{-\left(\mu_{1}-\mu_{2}\right) t}}
$$

Page 57.

- Example 1. Solution: Let X be the number of misprints. Because it would be easy to compute $\mathrm{E}[X]$ if we know which book Sam chooses, let

$$
Y= \begin{cases}1, & \text { if Sam choose his history book } \\ 2, & \text { if chooses his probability book }\end{cases}
$$

Conditioning on Y yields

$$
\mathrm{E}[X]=\mathrm{E}[X \mid Y=1] P(Y=1)+\mathrm{E}[X \mid Y=2] P(Y=2)=5 \frac{1}{2}+2 \frac{1}{2}=\frac{7}{2}
$$

- Example 2. Solution: Letting N denote the number of accidents and X_{i} the number injured in the i th accident, $i=1,2, \ldots$, then the total number of injuries can be expressed as $\sum_{i=1}^{N} X_{i}$. Hence, we need to compute the expected value of the sum of a random number of random variables. Because it is easy to compute the expected value of the sum of a fixed number of random variables, let us try conditioning on N.

Page 57.

- Example 2. Solution continuous: This yields

$$
\mathrm{E}\left[\sum_{1}^{N} X_{i}\right]=\mathrm{E}\left[\mathrm{E}\left[\sum_{1}^{N} X_{i} \mid N\right]\right]
$$

But

$$
\mathrm{E}\left[\sum_{1}^{N} X_{i} \mid N=n\right]=\mathrm{E}\left[\sum_{1}^{n} X_{i}\right]=n \mathrm{E}[X]
$$

So

$$
\mathrm{E}\left[\sum_{1}^{N} X_{i} \mid N\right]=N \mathrm{E}[X]
$$

and

$$
\mathrm{E}\left[\sum_{1}^{N} X_{i}\right]=\mathrm{E}[N \mathrm{E}[X]]=\mathrm{E}[N] \mathrm{E}[X]
$$

Therefore, in our example, the expected number of injuries during a week equals $4 \times 2=8$.

Page 57.

- Example 3. Solution: Whereas we could obtain $\mathrm{E}[S]$ by conditioning on N, let us instead use the conditional variance formula. Now

$$
\begin{aligned}
\operatorname{Var}(S \mid N=n) & =\operatorname{Var}\left(\sum_{i=1}^{N} X_{i} \mid N=n\right)=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i} \mid N=n\right) \\
& =\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=n \sigma^{2}
\end{aligned}
$$

By the same reasoning

$$
\mathrm{E}[S \mid N=n]=n \mu
$$

Therefore

$$
\operatorname{Var}(S \mid N)=N \sigma^{2}, \mathrm{E}[S \mid N]=N \mu
$$

and the conditional variance formula gives

$$
\operatorname{Var}(S)=\mathrm{E}\left[N \sigma^{2}\right]+\operatorname{Var}(N \mu)=\sigma^{2} E[N]+\mu^{2} \operatorname{Var}(N)
$$

Page 58.

- Example 1. Solution: Conditioning on the value of Y yields

$$
\begin{aligned}
P(X<Y) & =\int_{-\infty}^{\infty} P(X<Y \mid Y=y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P(X<y \mid Y=y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P(X<y) f_{Y}(y) d y=\int_{-\infty}^{\infty} F_{X}(y) f_{Y}(y) d y
\end{aligned}
$$

where $F_{X}(y)=\int_{-\infty}^{y} f_{X}(x) d x$.

Page 58.

- Example 2. Solution: Let X denote the number of accidents that a randomly chosen policyholder has next year. Letting Y be the Poisson mean number of accidents for this policyholder, then conditioning on Y yields

$$
\begin{aligned}
P(X=n) & \left.=\int_{0}^{\infty} P(X=n \mid Y=\lambda) g(\lambda) d \lambda\right)=\int_{0}^{\infty} e^{-\lambda} \frac{\lambda^{n}}{n!} \lambda e^{-\lambda} d \lambda \\
& =\frac{1}{n!} \int_{0}^{\infty} \lambda^{n+1} e^{-2 \lambda} d \lambda
\end{aligned}
$$

However, because

$$
h(\lambda)=\frac{2 e^{-2 \lambda}(2 \lambda)^{n+1}}{(n+1)!}, \lambda>0
$$

is the density function of a gamma $(n+2,2)$ random variable, its integral is 1. Therefore,

$$
1=\int_{0}^{\infty} \frac{2 e^{-2 \lambda}(2 \lambda)^{n+1}}{(n+1)!} d \lambda=\frac{2^{n+2}}{(n+1)!} \int_{0}^{\infty} \lambda^{n+1} e^{-2 \lambda} d \lambda
$$

showing that

$$
P(X=n)=\frac{n+1}{2^{n+2}}
$$

Page 58.

- Example 3. Let $P_{n, m}$ denote the desired probability. By conditioning on which candidate receives the last vote counted we have

$$
\begin{aligned}
P_{n, m}= & P(\mathrm{~A} \text { always ahead } \mid \mathrm{A} \text { receives last vote }) \frac{n}{n+m} \\
& +P(\mathrm{~A} \text { always ahead } \mid \mathrm{B} \text { receives last vote }) \frac{m}{n+m}
\end{aligned}
$$

Now, given that A receives the last vote, we can see that the probability that A is always ahead is the same as if A had received a total of $n-1$ and B a total of m votes. Because a similar result is true when we are given that B receives the last vote, we see from the preceding that

$$
P_{n, m}=\frac{n}{n+m} P_{n-1, m}+\frac{m}{n+m} P_{n, m-1}
$$

We can now prove that $P_{n, m}=(n-m) /(n+m)$ by induction on $n+m$. As it is true when $n+m=1$, that is, $P_{1,0}=1$, assume it whenever $n+m=k$. Then when $n+m=k+1$, we have by the equation above and the induction hypothesis that

$$
P_{n, m}=\frac{n}{n+m} \frac{n-1-m}{n-1+m}+\frac{m}{n+m} \frac{n-m+1}{n+m-1}=\frac{n-m}{n+m}
$$

and the result is proven.

