
Lecture Note 1: Appendix
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• Example 1. Solution:

φX+Y (t) = φX(t)φY (t) = eλ1(e
t−1)eλ2(e

t−1) = e(λ1+λ2)(e
t−1)

Hence, X + Y is Poisson distributed with mean λ1 + λ2

• Example 2. Solution:

φX+Y (t) = φX(t)φY (t) = exp

{
σ2
1t

2

2
+ µ1t

}
exp

{
σ2
2t

2

2
+ µ2t

}
= exp

{
(σ2

1 + σ2
2)t2

2
+ (µ1 + µ2)t

}
which is the moment generating function of a normal random variable with
mean µ1 + µ2 and variance σ2

1 + σ2
2. Hence, the result follows since the

moment generating function uniquely determines the distribution.
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• Example 1. Solution: Since the binomial is a discrete random variable, and
the normal a continuous random variable, it leads to a better approximation
to write the desired probability as

P{X = 20} = P{19.5 < X < 20.5}

= P

{
19.5− 20√

10
<
X − 20√

10
<

20.5− 20√
10

}
= P

{
−0.16 <

X − 20√
10

< 0.16

}
≈ Φ(0.16)− Φ(−0.16) = 2Φ(0.16)− 1 = 0.1272

The exact result is

P{X = 20} =

(
40
20

)(
1

2

)40

= 0.1254.
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• Example 2. Solution: Since E[Xi] = 1
2,Var(Xi) = 1

12 we have by the central
limit theorem that

P

{
10∑
1

Xi > 7

}
= P


∑10

1 Xi − 5√
10
(

1
12

) >
7− 5√
10
(

1
12

)


≈ 1− Φ(2.19) = 0.0143.

• Example 3. Solution: If we let Xi denote the lifetime of the ith battery
to be put in use, then we desire p = P{X1 + · · · + X25 > 1100}, which is
approximated as follows:

p = P

{
X1 + · · ·+X25 − 1000

20
√

25
>

1100− 1000

20
√

25

}
≈ P (N(0, 1) > 1) = 1− Φ(1) ≈ 0.1587
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• Example 1. Solution: With q = 1− p
p{X1 = k|X1 +X2 = m}

=
P{X1 = k,X1 +X2 = m}

P{X1 +X2 = m}

=
P{X1 = k,X2 = m− k}

P{X1 +X2 = m}
=
P{X1 = k}P{X2 = m− k}

P{X1 +X2 = m}

=

(
n1

k

)
pkqn1−k

(
n2

m− k

)
pm−kqn2−m+k(

n1 + n2

m

)
pmqn1+n2−m

where we have used that X1 + X2 is a binomial random variable with
parameters (n1 + n2, p). Thus, the conditional probability mass function of
X1, given that X1 +X2 = m, is

P{X1 = k|X1 +X2 = m} =

(
n1

k

)(
n2

m− k

)
(
n1 + n2

m

)
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• Example 2. Solution: Let us firstly calculate the conditional probability mass function of

X given that X + Y = n. We obtain

P{X = k|X + Y = n} =
P{X = k,X + Y = n}

P{X + Y = n}
=
P{X = k, Y = n− k}

P{X + Y = n}

=
P{X = k}P{Y = n− k}

P{X + Y = n}

where the last equality follows from the assumed independence of X and Y . Recalling that

X + Y has a Poisson distribution with mean λ1 + λ2, the preceding equation equals

P{X = k|X + Y = n} =
e−λ1λk1
k!

e−λ2λn−k2

(n− k)!

[
e−(λ1+λ−2)(λ1 + λ2)

n

n!

]−1

=
n!

(n− k)!k!
λk1λ

n−k
2

(λ1 + λ2)n

=

(
n

k

)(
λ1

λ1 + λ2

)k( λ1

λ1 + λ2

)n−k
In other words, the conditional distribution of X given that X + Y = n is the binomial

distribution with parameters n and λ1/(λ1 + λ2). Hence,

E{X|X + Y = n} = n
λ1

λ1 + λ2

.
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• Example 3. Solution: We first compute the conditional density

fX|Y (x|y) =
f(x, y)

fY (y)
=

6xy(2− x− y)∫ 1

0
6xy(2− x− y)dx

=
6xy(2− x− y)

y(4− 3y)
=

6x(2− x− y)

4− 3y

Hence,

E[X|Y = y] =

∫ 1

0

6x2(2− x− y)dx

4− 3y
=

(2− y)2− 6
4

4− 3y
=

5− 4y

8− 6y
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• Example 4. Solution: To begin, let us first note that if f(x, y) is the joint
density of X,Y , then the joint density of X and X + Y is

fX,X+Y (X, t) = f(x, t− x)

which is easily seen by noting that the Jacobian of the transformation

g1(x, y) = x, g2(x, y) = x+ y

is equal to 1. Hence

fX1|X1+X2(x|t) =
fX1,X1+X2(x, t)

fX1+X2(t)

=
µ1e
−µ1xµ2e

−µ2(t−x)

fX1+X2(t)
= Ce(µ1−µ2)x, 0 ≤ x ≤ t

where C = µ1µ2e
−µ2t

fX1+X2
(t).
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• Example 4. Solution continuous:
Now if µ1 = µ2, then fX1|X1+X2

(x|t) = C, 0 ≤ x ≤ t yield that C = 1/t,
and that X1 given X1 +X2 = t is uniformly distributed on (0, t).

On the other hand, if µ1 6= µ2, then we use

1 =

∫ t

0

fX1|X1+X2
(x|t)dx =

C

µ1 − µ2

(
1− e−(µ1−µ2)t

)
to obtain

C =
µ1 − µ2

1− e−(µ1−µ2)t
thus yield the result:

fX1|X1+X2
(x|t) =

(µ1 − µ2)e
−(µ1−µ2)x

1− e−(µ1−µ2)t
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• Example 1. Solution: Let X be the number of misprints. Because it would
be easy to compute E[X] if we know which book Sam chooses, let

Y =

{
1, if Sam choose his history book
2, if chooses his probability book

Conditioning on Y yields

E[X] = E[X|Y = 1]P (Y = 1) + E[X|Y = 2]P (Y = 2) = 5
1

2
+ 2

1

2
=

7

2

• Example 2. Solution: Letting N denote the number of accidents and Xi

the number injured in the ith accident, i = 1, 2, ..., then the total number
of injuries can be expressed as

∑N
i=1Xi. Hence, we need to compute the

expected value of the sum of a random number of random variables. Because
it is easy to compute the expected value of the sum of a fixed number of
random variables, let us try conditioning on N .
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• Example 2. Solution continuous: This yields

E

[
N∑
1

Xi

]
= E

[
E

[
N∑
1

Xi|N

]]

But

E

[
N∑
1

Xi|N = n

]
= E

[
n∑
1

Xi

]
= nE[X]

So

E

[
N∑
1

Xi|N

]
= NE[X]

and

E

[
N∑
1

Xi

]
= E[NE[X]] = E[N ]E[X]

Therefore, in our example, the expected number of injuries during a week
equals 4× 2 = 8.
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• Example 3. Solution: Whereas we could obtain E[S] by conditioning on N ,
let us instead use the conditional variance formula. Now

Var(S|N = n) = Var

(
N∑
i=1

Xi|N = n

)
= Var

(
n∑
i=1

Xi|N = n

)

= Var

(
n∑
i=1

Xi

)
= nσ2

By the same reasoning
E[S|N = n] = nµ.

Therefore
Var(S|N) = Nσ2,E[S|N ] = Nµ

and the conditional variance formula gives

Var(S) = E[Nσ2] + Var(Nµ) = σ2E[N ] + µ2Var(N)
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• Example 1. Solution: Conditioning on the value of Y yields

P (X < Y ) =

∫ ∞
−∞

P (X < Y |Y = y)fY (y)dy

=

∫ ∞
−∞

P (X < y|Y = y)fY (y)dy

=

∫ ∞
−∞

P (X < y)fY (y)dy =

∫ ∞
−∞

FX(y)fY (y)dy

where FX(y) =
∫ y
−∞ fX(x)dx.
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• Example 2. Solution: Let X denote the number of accidents that a
randomly chosen policyholder has next year. Letting Y be the Poisson mean
number of accidents for this policyholder, then conditioning on Y yields

P (X = n) =

∫ ∞
0

P (X = n|Y = λ)g(λ)dλ) =

∫ ∞
0

e−λ
λn

n!
λe−λdλ

=
1

n!

∫ ∞
0

λn+1e−2λdλ

However, because

h(λ) =
2e−2λ(2λ)n+1

(n+ 1)!
, λ > 0

is the density function of a gamma (n+ 2, 2) random variable, its integral is
1. Therefore,

1 =

∫ ∞
0

2e−2λ(2λ)n+1

(n+ 1)!
dλ =

2n+2

(n+ 1)!

∫ ∞
0

λn+1e−2λdλ

showing that

P (X = n) =
n+ 1

2n+2
. 14
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• Example 3. Let Pn,m denote the desired probability. By conditioning on which candidate

receives the last vote counted we have

Pn,m = P (A always ahead|A receives last vote)
n

n+m

+P (A always ahead|B receives last vote)
m

n+m

Now, given that A receives the last vote, we can see that the probability that A is always

ahead is the same as if A had received a total of n− 1 and B a total of m votes. Because

a similar result is true when we are given that B receives the last vote, we see from the

preceding that

Pn,m =
n

n+m
Pn−1,m +

m

n+m
Pn,m−1

We can now prove that Pn,m = (n − m)/(n + m) by induction on n + m. As it is

true when n +m = 1, that is, P1,0 = 1, assume it whenever n +m = k. Then when

n+m = k + 1, we have by the equation above and the induction hypothesis that

Pn,m =
n

n+m

n− 1−m
n− 1 +m

+
m

n+m

n−m+ 1

n+m− 1
=
n−m
n+m

and the result is proven.
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