2. Markov Chains

2.1 Stochastic Process

e A stochastic process {X(t),t € T} is a collection of random variables. That
is, for each t € T, X (¢) is a random variable.

e The index t is often interpreted as time and, as a result, we refer to X ()
as the state of the process at time t. For example, X (¢) might equal the
total number of customers that have entered a supermarket by time t; or the
number of customers in the supermarket at time ¢; or the total amount of
sales that have been recorded in the market by time ¢; etc.



e The set T is called the index set of the process. When 1" is a countable
set the stochastic process is said to be a discrete-time process. If T is an
interval of the real line, the stochastic process is said to be a continuous-time
process.

e The state space of a stochastic process is defined as the set of all possible
values that the random variables X (¢) can assume.

e In applications to physics for example one can mention phase transitions,
atomic emission phenomena, etc. In biology the time behaviuor of live beings
is often subject to randomness, at least when the observer only handles
partial information.



This point is of importance, as it shows that the notion of randomness is
linked to the concept of information: what appears random to an observer
may not be random to another observer equipped with more information.

In finance the importance of modeling time-dependent random phenomena
is quite clear as no one can make fully accurate predictions for the future
moves of risky assets.

The concrete outcome of such modeling lies in the computation of
expectations or expected values , which often turn out to be more useful
than the probability values themselves.

A stochastic process {X(¢),t > 0} is said to be a stationary process
or strong stationary process if for all n,s,t1,...,t,, the random vectors
X(t1),...,X(tn) and X(t1+$),..., X (tn + s) have same joint distribution.
X (t) is defined to be a weakly stationary process if EX(t) = ¢ and
Cov(X(t), X (t + s)) = R(s) does not dependent on t, where R(s) is
called as the autocovariance of the process.



2.2 Markov Chains: Introduction

e Let X, denote its value in time period n, and suppose we want to make a
probability model for the sequence of successive values Xy, X1, X5... The
simplest model would probably be to assume that the X, are independent
random variables, but often such an assumption is clearly unjustified.

e For instance, starting at some time suppose that X,, represents the price of
one share of some security, such as Google, at the end of n additional trading
days. Then it certainly seems unreasonable to suppose that the price at the
end of day n + 1 is independent of the prices on days n,n — 1,n — 2 and so
on down to day 0.

e However, it might be reasonable to suppose that the price at the end of
trading day n + 1 depends on the previous end-of-day prices only through
the price at the end of day n. That is, it might be reasonable to assume
that the conditional distribution of X,, 11 given all the past end-of-day prices
Xn, Xn_1,...,Xo depends on these past prices only through the price at the
end of day n.
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o Let {X,,,n =0,1,2,...} be a stochastic process that takes on a finite or
countable number of possible values. If X,, = ¢ , then the process is said to
be in state ¢ at time n. We suppose that whenever the process is in state
i, there is a fixed probability P;; that it will next be in state 5. That is, we

suppose that
P(Xpt1=jlXn=1%,2p1 =ipn_1,..., X0 =1p) = P(Xyy1 = j|X;, = 1) = P

for all states ig,%1,...,%,—1,%,7 and all n > 0. Such a stochastic process is
known as a Markov chain.

e The value P;; represents the probability that the process will, when in state
7, next make a transition into state 7, so we have

7=0



o Let P denote the matrix of one-step transition probabilities P;; , so that

Poo Por Foo

Pio P11 P2
P = ; ; ;

Py Ppn P

e Example 1. (Forecasting the Weather). Suppose that the chance of rain
tomorrow depends on previous weather conditions only through whether or
not it is raining today and not on past weather conditions. Suppose also that
if it rains today, then it will rain tomorrow with probability «; and if it does
not rain today, then it will rain tomorrow with probability 3.

a 1—«
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e Example 2. (Transforming a Process into a Markov Chain). Suppose that whether or not it
rains today depends on previous weather conditions through the last two days. Specifically,
suppose that if it has rained for the past two days, then it will rain tomorrow with probability
0.7; if it rained today but not yesterday, then it will rain tomorrow with probability 0.5; if it
rained yesterday but not today, then it will rain tomorrow with probability 0.4; if it has not
rained in the past two days, then it will rain tomorrow with probability 0.2.

0.7 0 0.3 0
0.5 0 0.5 0
O 04 0 0.6
O 02 O 0.8

e Example 3. (A Gambling Model). Consider a gambler who, at each play of the game,
either wins $1 with probability p or loses $1 with probability 1 — p. If we suppose that our
gambler quits playing either when he goes broke or he attains a fortune of $N, then the
gambler’s fortune is a Markov chain having transition probabilities

Pi,i—l—lzpz1_Pi,z’—1;i:1,2,---,N_17

Py = Pny =1
States 0 and N are called absorbing states since once entered they are never left. Note that

the preceding is a finite state random walk with absorbing barriers (states 0 and N).
.



2.3. Chapman-Kolmogorov Equations

We have already defined the one-step transition probabilities P;; . We now
define the n-step transition probabilities P;; to be the probability that a process
in state ¢ will be in state j after n additional transitions. That is,

Pl =P(Xpip = 4| X =4),n>0,i,j >0

e The Chapman-Kolmogorov equations provide a method for computing these
n-step transition probabilities. These equations are

oo
P,Z*m = g Py, forallm,m >0 alli,j.
k=0

o If we let P(n) denote the matrix of n-step transition probabilities P/} , then
the above equation asserts that

p(rtm) — p)pim)



Example 4. Consider Example 1 in which the weather is considered as a
two-state Markov chain. If & = 0.7 and 5 = 0.4 , then calculate the probability
that it will rain four days from today given that it is raining today.

Y|l 0.5749 0.4251
0.5668 0.4332

Example 5. Consider Example 2. Given that it rained on Monday and Tuesday,
what is the probability that it will rain on Thursday?

07 0 03 0 | 049 0.12 0.21 0.18
p@ _|[05 0 05 0 | _ 035 020 015 0.30
0 04 0 0.6 0.20 0.12 020 0.48
0 02 0 08 0.10 0.16 0.10 0.64

Since rain on Thursday is equivalent to the process being in either state 0 or state
1 on Thursday, the desired probability is given by Pg,+ P2 = 0.49+0.12 = 0.61

Example 6. In a sequence of independent flips of a fair coin, let N denote
the number of flips until there is a run of three consecutive heads. Find (a)
P(N < 8) and (b) P(N =8). (Solution: (a) 107/256 ~ .4180. (b) 1/2F;,.)
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Remark. So far, all of the probabilities we have considered are conditional
probabilities. For instance, P/ is the probability that the state at time n is j
given that the initial state at time O is z. If the unconditional distribution of the
state at time n is desired, it is necessary to specify the probability distribution

of the initial state. Let us denote this by
a;=P(Xo=1),i>0,) ;=1

All unconditional probabilities may be computed by conditioning on the initial
state. That is,

=) P(X, = j|Xo=1)P(Xo =) Z
1=0
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2.4 Classification of States

e State j is said to be accessible from state 7 if P{} > (0 for some n > 0. Note
that this implies that state j is accessible from state i if and only if, starting
in 2, it is possible that the process will ever enter state j. This is true since
if 7 i1s not accessible from ¢, then

P(ever be in jlstart ini) = P U (X =J)|Xo =1

N
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e Two states ¢z and j that are accessible to each other are said to communicate,
and we write 7 <> j.
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Note that any state communicates with itself since, by definition,
Pl =P{Xy=iXy=i}=1

The relation of communication satisfies the following three properties:

1. State ¢ communicates with state ¢, all 7 > 0.

2. If state ¢ communicates with state j, then state § communicates with state
7.

3. If state © communicates with state j, and state § communicates with state
k, then state © communicates with state k by that if P,L.ZL- > 0, f,;b > 0, then

n+m __
Pz'k E, T rk zg jk>0

e Two states that communicate are said to be in the same class. Any two
classes of states are either identical or disjoint. The concept of communication
divides the state space up into a number of separate classes. The Markov
chain is said to be irreducible if there is only one class, that is, if all states

communicate with each other. H



Example 7. Consider a Markov chain consisting of the four states 0, 1, 2, 3
and having transition probability matrix

ORI O O
— el o o

|-U

|
@ PN NI NI
O BN N =

The classes of this Markov chain are {0, 1}, {2}, and {3}. Note that while state
0 (or 1) is accessible from state 2, the reverse is not true. Since state 3 is an
absorbing state, that is, P33 = 1, no other state is accessible from it.

e For any state ¢ we let f; denote the probability that, starting in state i, the
process will ever reenter state 7. State ¢ is said to be recurrent if f; =1 and
transient if f; < 1.

e |f state ¢ is recurrent then, starting in state ¢, the process will reenter state ¢
again and again and again, in fact, infinitely often.

e if state 7 is transient then, starting in state ¢, the number of time periods
that the process will be in state ¢ has a geometric distribution with finite

mean 1/(1 — f;). -



Proposition 1. State i is
oo
recurrent if Z P = o0
n=1

oo
transient if Z P < o0
n=1

Corollary 1. If state 7 is recurrent, and state ¢ communicates with state 7 |,
then state j is recurrent.

Remarks:

(i) Corollary 1 also implies that transience is a class property. For if state i is
transient and communicates with state 7, then state ; must also be transient.

(i) Corollary 1 along with the result that not all states in a finite Markov chain
can be transient leads to the conclusion that all states of a finite irreducible
Markov chain are recurrent.
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Example 8. Let the Markov chain consisting of the states 0, 1, 2, 3 have the
transition probability matrix

00 % 1
1 00 O
P_o1oo
01 0 0

Determine which states are transient and which are recurrent. (Solution: It is a
simple matter to check that all states communicate and, hence, since this is a
finite chain, all states must be recurrent.)

Example 9. Consider the Markov chain having states 0, 1, 2, 3, 4 and

1 1
11 09 0 0
ii000
2 2
ono%%()
00 5 5 0
1 1 1
72 0 0 3

(Solution: This chain consists of the three classes {0,1},{2,3}, and {4}. The
first two classes are recurrent and the third transient.)



Example 10. (A Random Walk). Consider a Markov chain whose state space
consists of the integers ¢+ = 0, 1, £2,..., and has transition probabilities given
by

Pi,z'—i—l =P = 1 — P7;7i_1,’i — 0, :|:1,:|:2, ce

where 0 < p < 1. In other words, on each transition the process either moves
one step to the right (with probability p) or one step to the left (with probability
1 — p). One colorful interpretation of this process is that it represents the
wanderings of a drunken man as he walks along a straight line. Another is that
it represents the winnings of a gambler who on each play of the game either
wins or loses one dollar.

Since all states clearly communicate, it follows from Corollary 1 that they
are either all transient or all recurrent. So let us consider state 0 and attempt
to determine if Y7 | Py is finite or infinite.
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2.5 Long-Run Proportions and Limiting Probabilities

For pairs of states ¢ # j , let f; ; denote the probability that the Markov
chain, starting in state ¢, will ever make a transition into state 5 . That is,

fi;= P(X,, = j for some n > 0| Xy = 1)

We then have the following result.
Propoistion 2. If i is recurrent and i communicates with j, then f; ; = 1.

If state j is recurrent, let m; denote the expected number of transitions that
it takes the Markov chain when starting in state j to return to that state. That
is, with V; = min{n > 0 : X,, = j} equal to the number of transitions until
the Markov chain makes a transition into state j, m; = E[N;|Xo = j]

Definiton. Say that the recurrent state j is positive recurrent if m,; < oo and
say that it is null recurrent if m; = oo.
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Now suppose that the Markov chain is irreducible and recurrent. In this
case we now show that the long-run proportion of time that the chain spends in
state j is equal to 1/m; . That is, letting 7; denote the long-run proportion of
time that the Markov chain is in state j , we have the following proposition.

Proposition 3. If the Markov chain is irreducible and recurrent, then for any
initial state

mj = 1/my
Because m; < oo is equivalent to 1/m; > 0, it follows from the preceding

that state j is positive recurrent if and only if m; > 0. We now exploit this to
show that positive recurrence is a class property.

Proposition 4. If 7 is positive recurrent and ¢ <> j then j is positive recurrent.

e [t follows from the preceding result that null recurrence is also a class property.
e An irreducible finite state Markov chain must be positive recurrent.

e The classical example of a null recurrent Markov chain is the one dimensional
symmetric random walk. 18



To determine the long-run proportions {;,7 > 1}, note, because 7; is the
long-run proportion of transitions that come from state ¢, that

m;P; j = long-run proportion of transitions that go from state ¢ to state j

Summing the preceding over all ¢ now yields that
mj =) miP
i

Indeed, the following important theorem can be proven.

Theorem 1. Consider an irreducible Markov chain. If the chain is positive
recurrent then the long-run proportions are the unique solution of the equations

Wj:ZmPi,j,jZLand Zﬂ-jzl
@ J

Moreover, if there is no solution of the preceding linear equations, then the

Markov chain is either transient or null recurrent and all m; = 0. o



Example 11. Consider Example 3 in which the mood of an individual is
considered as a three-state Markov chain having a transition probability matrix

0.0 04 0.1
P=| 03 04 0.3
0.2 03 0.5

In the long run, what proportion of time is the process in each of the three
states? (Solution: my = 21/62,m; = 23/62, 73 = 18/62)

Example 12. (A Model of Class Mobility). A problem of interest to sociologists
is to determine the proportion of society that has an upper- or lower-class
occupation. One possible mathematical model would be to assume that
transitions between social classes of the successive generations in a family can
be regarded as transitions of a Markov chain. That is, we assume that the
occupation of a child depends only on his or her parent’s occupation. Let us
suppose that such a model is appropriate and that the transition probability

matrix is given by
0.45 0.48 0.07

P=] 0.0 0.70 0.25
0.01 0.50 0.49 20

(Solution: mg = 0.07, 7, = 0.62, 73 = 0.31)




Example 13. (The Hardy-Weinberg Law and a Markov Chain in Genetics).
Consider a large population of individuals, each of whom possesses a particular
pair of genes, of which each individual gene is classified as being of type A
or type a. Assume that the proportions of individuals whose gene pairs are
AA,aa, or Aa are, respectively, po,qo, and r9(po + qo + 70 = 1). When two
individuals mate, each contributes one of his or her genes, chosen at random,
to the resultant offspring. Assuming that the mating occurs at random, in
that each individual is equally likely to mate with any other individual, we are
interested in determining the proportions of individuals in the next generation
whose genes are AA, aa, or Aa. Calling these proportions p, g, and r, they are
easily obtained by focusing attention on an individual of the next generation
and then determining the probabilities for the gene pair of that individual.
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The long run proportions 7, 7 > 0, are often called stationary probabilities.
The reason being that if the initial state is chosen according to the probabilities
7;,J > 0, then the probability of being in state 5 at any time n is also equal to
m; . Thatis, if

P{Xo=j}=m;,j =20
then
P{X, =j}=mjforalln,j >0

The preceding is easily proven by induction, for it is true when n = 0 and if we
suppose it true for n — 1, then writing

P{X,=j}=) P{Xp=jlXn1=i}P{Xp_1=i}=) Pym=m

by the induction hypothesis by Theorem 1
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Example 14. Suppose the numbers of families that check into a hotel on
successive days are independent Poisson random variables with mean A. Also
suppose that the number of days that a family stays in the hotel is a geometric
random variable with parameter p,0 < p < 1. (Thus, a family who spent the
previous night in the hotel will, independently of how long they have already
spent in the hotel, check out the next day with probability p.) Also suppose
that all families act independently of each other. Under these conditions it is
easy to see that if X,, denotes the number of families that are checked in the
hotel at the beginning of day n then {X,,,n > 0} is a Markov chain. Find

(a) the transition probabilities of this Markov chain;
(b) E[X,[Xo = 1];

(c) the stationary probabilities of this Markov chain.
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Proposition 3. Let {X,,,n > 1} be an irreducible Markov chain with stationary
probabilities 7;,5 > 0, and let r be a bounded function on the state space.

Then, with probability 1,

lim Z”:%(Xn) = ZT(j)?Tj

N — o0
J=0

Limiting Probabilities

we considered a two-state Markov chain with transition probability matrix

0.7 0.3
p| ot 0
Then
pA) _ 0.5749 0.4251 ~p® _ 0.571 0.429
0.5668 0.4332 0.571 0.429
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e Indeed, it seems that P/ is converging to some value as n — oo, with
this value not depending on 7, thus making it appear that these long-run

proportions may also be limiting probabilities.

e Although this is indeed the case for the preceding chain, it is not always true
that the long-run proportions are also limiting probabilities. To see why not,
consider a two-state Markov chain having

Poa=Pio=1

e In general, a chain that can only return to a state in a multiple of d > 1
steps (where d = 2 in the preceding example) is said to be periodic and does
not have limiting probabilities.

25



e However, for an irreducible chain that is not periodic, and such chains
are called aperiodic, the limiting probabilities will always exist and will not
depend on the initial state.

e Moreover, the limiting probability that the chain will be in state 5 will equal
7; , the long-run proportion of time the chain is in state j.

e An irreducible, positive recurrent, aperiodic Markov chain is said to be
ergodic.
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2.6 Some Applications

The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p of winning
one unit and probability ¢ = 1 — p of losing one unit. Assuming that successive
plays of the game are independent, what is the probability that, starting with ¢
units, the gambler’s fortune will reach N before reaching 07

Example 15. Suppose Max and Patty decide to flip pennies; the one coming
closest to the wall wins. Patty, being the better player, has a probability 0.6 of
winning on each flip. (a) If Patty starts with five pennies and Max with ten,
what is the probability that Patty will wipe Max out? (b) What if Patty starts
with 10 and Max with 207

27



A Model for Algorithm Efficiency

The following optimization problem is called a linear program:
minimize cx, subject to Ax =b,x > 0

where A is an m x n matrix of fixed constants; ¢ = (¢y,...,¢,) and b =
(b1,...,bm) are vectors of fixed constants; and x = (x1,...,Z,) is the n-vector
of nonnegative values that is to be chosen to minimize cx = Z?Zl CiTi .
Supposing that n > m, it can be shown that the optimal x can always be
chosen to have at least n — m components equal to O-that is, it can always be
taken to be one of the so-called extreme points of the feasibility region.

The simplex algorithm solves this linear program by moving from an extreme
point of the feasibility region to a better (in terms of the objective function cx)
extreme point (via the pivot operation) until the optimal is reached. Because
there can be as many as N = (" such extreme points, it would seem that this
method might take many m iterations, but, surprisingly to some, this does not
appear to be the case in practice.
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4.7 Mean Time Spend in Transient States

Consider now a finite state Markov chain and suppose that the states are
numbered so that T'={1,2,...,t} denotes the set of transient states. Let

Py Py - Py
PT: . . R R

Py P - Py

For transient states ¢ and j , let s;; denote the expected number of time
periods that the Markov chain is in state j, given that it starts in state 7. Let
0i,; = 1 when ¢ = j and let it be 0 otherwise. Condition on the initial transition
to obtain

t
Sij = 04 + Z Pikskj = 0ij + Z PiSk;
k k=1
where the final equality follows since it is impossible to go from a recurrent to
a transient state, implying that s;; = 0 when k is a recurrent state.

29



Let S denote the matrix of values s;;,2,7 =1,...,t. That is,

So the above equation can be written as
S=I+P;S and I-Pp)S=1
Hence

S=(I-Pp)""

That is, the quantities s;;,72 € T,5 € 1", can be obtained by inverting the
matrix I — P .
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e Foric€T,j €T, the quantity f;; , equal to the probability that the Markov
chain ever makes a transition into state 5 given that it starts in state 1,
is easily determined from P . To determine the relationship, let us start
by deriving an expression for s;; by conditioning on whether state j is ever

entered. This yields

sij = E[time in j|start in i, ever transit to j|f;;

+E[time in j|start in i, never transit to j|(1 — fij)
(01,5 + 855) fig + 0i g (1L — fig) = 0ij + fijsj;

So
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Example 16. Consider the gambler’s ruin problem with p = 0.4 and N = 7.
Starting with 3 units, determine

(a) the expected amount of time the gambler has 5 units. (Solution: 0.9228)
(b) the expected amount of time the gambler has 2 units. (Solution: 2.3677)

(c) what is the probability that the gambler ever has a fortune of 17 (Solution:
0.8797)

Suppose we are interested in the expected time until the Markov chain enters
some sets of states A, which need not be the set of recurrent states. We can
reduce this back to the previous situation by making all states in A absorbing
states. That is, reset the transition probabilities of states in A to satisfy

Pi=11€A

This transforms the states of A into recurrent states, and transforms any state
outside of A from which an eventual transition into A is possible into a transient
state. Thus, our previous approach can be used. 32



4.8 Branching Process

In this section we consider a class of Markov chains, known as branching
processes, which have a wide variety of applications in the biological, sociological,
and engineering sciences.

e Consider a population consisting of individuals able to produce offspring of
the same kind. Suppose that each individual will, by the end of its lifetime,
have produced j new offspring with probability P;,7 > 0, independently of
the numbers produced by other individuals.

o We suppose that P; < 1 for all j > 0. The number of individuals initially
present, denoted by X, is called the size of the zeroth generation. All
offspring of the zeroth generation constitute the first generation and their
number is denoted by X;. In general, let X,, denote the size of the nth
generation.

e It follows that {X,,,n =0,1,...} is a Markov chain having as its state space

the set of nonnegative integers.
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e Note that state 0 is a recurrent state, since clearly Pyo = 1. Also, if Py > 0,
all other states are transient. This follows since P, = P¢, which implies that
starting with i individuals there is a positive probability of at least P! that no
later generation will ever consist of ¢ individuals.

e Moreover, since any finite set of transient states {1,2,...,n} will be visited
only finitely often, this leads to the important conclusion that, if Py > 0,
then the population will either die out or its size will converge to infinity.

e The mean number of offspring of a single individual is denoted by
p= iP;
j=0

and hence the variance of the number of offspring produced by a single
individual should be

o> => (j— p?’P;
=0
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e Let us suppose that Xy = 1, that is, initially there is a single individual
present. We calculate E[X,,] and Var(X,,) by first noting that we may write

where Z; represents the number of offspring of the ith individual of the

(n — 1)st generation. By conditioning on X,,_1, we obtain

ElX,] = E[EX,|Xm]]=E |E

E[Xn_1p] = pE[Xn_1]

= N2E[Xn—2]

_Xn—l
Z Zi| Xn—1
i=1
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e Similarly, Var(X,,) may be obtained by using the conditional variance formula

Var(X,,) = E(Var(X,|X,_1)) + Var(E(X,| X,,_1))

e Now, given X,,_1,X,, is just the sum of X,,_1 independent random variables
each having the distribution {P;,5 > 0}. Hence,

E(Xn|Xn—1) — Xn—l,ua Var(Xn|Xn—1) — Xn—102

e The conditional variance formula now yields
Var(X,) = E[X,_10%] +Var(X,_1p) = c*p" " + p*Var(X,,_1)
= o2+ P (0" T+ pPVar(X, o))
= ("t +p") + o Var(X, o)
= o (p" T+t 4+ 7 ?) + P Var(Xo)
= T ) 56



e T herefore,

2, n—1 (1=p" :
Var(X,)=1{ 7 ¥ (1—u)’ Tl
no?, if u=1

Let my denote the probability that the population will eventually die out
(under the assumption that Xy = 1). More formally,

o= lim P(X, =0|X,=1)

n—oo

e We first note that myp =1 if © < 1 since
p'=E[X,] =) jP(X,=j)>) P(X,=j)=P(X,>1)
j=1 j=1

Since p, — 0 when p < 1, it follows that P{X,, > 1} — 0 ,and hence
P{X, =0} — 1.
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e In fact, it can be shown that myg = 1 even when y = 1.

e When 4 > 1, it turns out that mg < 1, and an equation determining my may
be derived by conditioning on the number of offspring of the initial individual,
as follows:

mo = P(population dies out) = Z P(population dies out| X1 = j)P; = W%Pj
7=0

In fact when o > 1, it can be shown that mg is the smallest positive number
satisfying the above equation.

Example 17. (a) If Py = 1, P, = ;,P» = 1, then determine m. (b) If
Py =%,P = 1, P, = 4, then determine m. (c) For (a) and (b), what is the
probability that the population will die out if it initially consists of n individuals?
(Solution: (a) 1, (b) 2, (c) for (a) 1, for (b) 5=)
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9. Continuous-Time Markov Chains

Suppose we have a continuous-time stochastic process { X (¢),t > 0} taking
on values in the set of nonnegative integers. we say that the process { X (¢),¢ >
0} is a continuous-time Markov chain if for all s,¢ > 0 and nonnegative
integers ¢, j, x(u),0 <u <s

P{X(t+s) = j|X(s) =i, X(u) = z(u),0 <u < s} = P{X(t+s) = j| X (s) =i}
In addition,

P{X(t+s) =j|X(s) =i}

is independent of s, then the continuous-time Markov chain is said to have
stationary or homogeneous transition probabilities.
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Suppose that a continuous-time Markov chain enters state ¢ at some time,
say, time 0, and suppose that the process does not leave state ¢ (that is, a
transition does not occur) during the next ten minutes. What is the probability
that the process will not leave state i during the following five minutes?

Since the process is in state ¢ at time 10 it follows, by the Markovian
property, that the probability that it remains in that state during the interval
110, 15] is just the (unconditional) probability that it stays in state ¢ for at least
five minutes. That is, if we let T; denote the amount of time that the process
stays in state ¢ before making a transition into a different state, then

P{TZ>15‘T7J>1O}:P{TZ>5} or P{Tz>8—|—t‘Tz>S}:P{Tz>t}

for all s,t > 0. Hence, the random variable T} is memoryless and must thus be
exponentially distributed f(T};) = Xe™*%,t > 0 and else f(T}) = 0.
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10. The exponential distribution and the Poisson Process

A continuous random variable X is said to have an exponential distribution
with parameter A\, A > 0, if its probability density function is given by

e ™, x>0

f(”"):{o, z <0

or, equivalently, if its cdf is given by

Fa) = [ rws= {

e The mean of the exponential distribution, E[X], is given by

l—e >0
0, x <0

> 1
Elx] = / T e Mdr = —.
0 A
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e The moment generating function ¢(t) of the exponential distribution is given

by
> A
o(t) = E[e'*] = / e e M dx = ,for t < A
0 A—t
e [hen e o\ )
E X2 —_— —— t —N = N = —
and then

2 1 1
A2 A2 A2

Var(X) = E[X?] — (E[X])? =
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A random variable X is said to be without memory, or memoryless , if
P{X >s+t|X >t} =P{X >s}, forall s,t>0
It follows that exponentially distributed random variables are memoryless with

P{X >s+t}=P(X >s)P(X >1)

Example 18. Suppose that the amount of time one spends in a bank is
exponentially 1 distributed with mean ten minutes, that is, A = 10 . What
is the probability that a customer will spend more than fifteen minutes in the
bank? What is the probability that a customer will spend more than fifteen
minutes in the bank given that she is still in the bank after ten minutes?
(Solution: (1) 0.223 (2) 0.607)
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A stochastic process {N(t),t > 0} is said to be a counting process if N(t)

represents the total number of “events” that occur by time t. From its definition
we see that for a counting process N(t) must satisfy:

(i)

N(#) >0

N(t) is integer valued.
If s <t then N(s) > N(t) .

For s < t, N(t)— N(s) equals the number of events that occur in the interval
(s, 1]

A counting process is said to possess independent increments if the numbers
of events that occur in disjoint time intervals are independent.

A counting process is said to possess stationary increments if the distribution
of the number of events that occur in any interval of time depends only on

the length of the time interval.
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Definition 1. The counting process {N(t),t > 0} is said to be a Poisson
process having rate A > 0 if

(i) N(0) =0
(ii) The process has independent increments

(iii) The number of events in any interval of length t is Poisson distributed with
mean At. That is for all s, >0

P{N(t+s) — N(s) :n}:e_”(if!)n, n=0,1,...

It means that a Poisson Process has stationary increments and also that
EN(t) = Xt

which explains why X is called the rate of the process.
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Definition 2. The counting process {N(t),t > 0} is said to be a Poisson
process with rate A > 0 if the following axioms hold:

(i) N(0)=0

(i) {N(),t > 0} has independent increments
(iii) P(N(t+h)— N(t) = 1) = A + o(h)
(iv) P(N(t+h)— N(t) > 2) = o(h)

Definition 1 and Definition 2 are equivalent.

Example 19. Suppose that people immigrate into a territory according to a
Poisson process with rate A = 2 per day. (a) Find the probability there are 10
arrivals in the following week (of 7 days). (b) Find the expected number of days
until there have been 20 arrivals. (Solution: (a) e~14(14)1°/10!, (b) 10)
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11. Birth and Death Processes

Consider a system whose state at any time is represented by the number of
people in the system at that time. Suppose that whenever there are n people in
the system, then

(i) new arrivals enter the system at an exponential rate A, and

(ii) people leave the system at an exponential rate p,,.

That is, whenever there are n persons in the system, then the time until the
next arrival is exponentially distributed with mean 1/),, and is independent of
the time until the next departure, which is itself exponentially distributed with
mean 1/p,,.

Such a system is called a birth and death process . The parameters {\,}>°
and {p, 52, are called, respectively, the arrival (or birth) and departure (or
death) rates.
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Thus, a birth and death process is a continuous-time Markov chain with
states {0, 1,...} for which transitions from state n may go only to either state
n — 1 or state n + 1. The relationships between the birth and death rates and
the state transition rates and probabilities are

_—)‘7 z'_—)\z' iaP _—17P7Li — | 7Pii— — | ) >0
(0] 0,V M 01 ,i+1 )\Z ) ,i—1 )\Z ) ?

Example 20. (A Birth Process with Linear Birth Rate). Consider a population
whose members can give birth to new members but cannot die. If each member
acts independently of the others and takes an exponentially distributed amount
of time, with mean 1/\, to give birth, then if X(¢) is the population size at
time ¢, then {X (¢),t > 0} is a pure birth process with \,, = nA,n > 0. This
follows since if the population consists of n persons and each gives birth at
an exponential rate A, then the total rate at which births occur is nA. This
pure birth process is known as a Yule process after G. Yule, who used it in his
mathematical theory of evolution.
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Example 21. (A Linear Growth Model with Immigration). A model in which

uw = nu,n>1
Ap = nA+60,n>0

is called a linear growth process with immigration. Such processes occur
naturally in the study of biological reproduction and population growth. Each
individual in the population is assumed to give birth at an exponential rate A;
in addition, there is an exponential rate of increase 6 of the population due to
an external source such as immigration. Hence, the total birth rate where there
are n persons in the system is nA 4+ 6 . Deaths are assumed to occur at an
exponential rate u for each member of the population, so u, = nu.

Let X (¢) denote the population size at time t. Suppose that X (0) = ¢ and
let
M(t) = E[X ()]

We will determine M (t) by deriving and then solving a differential equation that
it satisfies.
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Example 22. (The Queueing System M/M/1). Suppose that customers
arrive at a single-server service station in accordance with a Poisson process
having rate A. That is, the times between successive arrivals are independent
exponential random variables having mean 1/A. Upon arrival, each customer
goes directly into service if the server is free; if not, then the customer joins the
queue (that is, he waits in line). When the server finishes serving a customer,
the customer leaves the system and the next customer in line, if there are any
waiting, enters the service. The successive service times are assumed to be
independent exponential random variables having mean 1/ .

The preceding is known as the M /M /1 queueing system. The first M refers
to the fact that the interarrival process is Markovian (since it is a Poisson
process) and the second to the fact that the service distribution is exponential
(and, hence, Markovian). The 1 refers to the fact that there is a single server.

If we let X (¢t) denote the number in the system at time ¢ then {X (¢),¢ > 0}
is a birth and death process with @, = u,mn > 1 and A\, = A\,n > 0.
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Example 23. (A Multiserver Exponential Queueing System). Consider an
exponential queueing system in which there are s servers available, each serving
at rate . An entering customer first waits in line and then goes to the first
free server. Assuming arrivals are according to a Poisson process having rate A,
this is a birth and death process with parameters

] onp, 1<n<s
Hn = S, n> S

Ap=A,n>0

To see why this is true, reason as follows: If there are n customers in the
system, where n < s, then n servers will be busy. Since each of these servers
works at rate u, the total departure rate will be nu. On the other hand, if there
are n customers in the system, where n > s, then all s of the servers will be
busy, and thus the total departure rate will be su. This is known as an M /M /s
queueing model.
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