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Page 6
Example 1. State 0, when it rains, state 1 when it does not rain. Then the
preceding is a two-state Markov chain.

Page 7
Example 2.

state 0: if it rained both today and yesterday,

state 1: if it rained today but not yesterday,

state 2: if it rained yesterday but not today,

state 3: if it did not rain either yesterday or today.

2



Page 8

Pn+mij = P{Xn+m = j|X0 = i}

=

∞∑
k=0

P{Xn+m = j,Xn = k|X0 = i}

=

∞∑
k=0

P{Xn+m = j|Xn = k,X0 = i}P{Xn = k|X0 = i}

=

∞∑
k=0

PmkjP
n
ik

Page 9, Example 4.

P(2) = P2 =

∥∥∥∥ 0.7 0.3
0.4 0.6

∥∥∥∥ · ∥∥∥∥ 0.7 0.3
0.4 0.6

∥∥∥∥ =

∥∥∥∥ 0.61 0.39
0.52 0.48

∥∥∥∥ ,
P(4) = (P2)2 =

∥∥∥∥ 0.61 0.39
0.52 0.48

∥∥∥∥ · ∥∥∥∥ 0.61 0.39
0.52 0.48

∥∥∥∥ =

∥∥∥∥ 0.5749 0.4251
0.5668 0.4332

∥∥∥∥ .
3



Page 9, Example 6. To determine P (N ≤ 8), define a Markov chain with
states 0,1,2,3 where for i < 3 state i means that we currently are on a run of
i consecutive heads, and where state 3 means that a run of three consecutive
heads has already occurred. Thus, the transition probability matrix is

P =


1/2 1/2 0 0
1/2 0 1/2 0
1/2 0 0 1/2
0 0 0 1


Because there would be a run of three consecutive heads within the first eight
flips if and only if X8 = 3, the desired probability is P 3

08. Squaring P to obtain
P2, then squaring the result to obtain P4, and then squaring matrix gives the
results

P8 =


81/256 44/256 24/256 107/256
68/256 37/256 20/256 131/256
44/256 24/256 13/256 175/256

0 0 0 1


Hence, the probability that there will be a run of three consecutive heads within
the first eight flips is 107/256 ≈ .4180.
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(b) Noting that N = 8 if the pattern has not yet occurred in the first 7
transitions, the state after 7 transitions is 2, and the next flip lands heads, shows
that

P (N = 8) =
1

2
P7

0,2

Page 13
suppose that state i is transient. Hence, each time the process enters state i
there will be a positive probability, namely, 1− fi, that it will never again enter
that state. Therefore, starting in state i, the probability that the process will
be in state i for exactly n time periods equals fn−1i (1 − fi), n ≥ 1. In other
words, if state i is transient then, starting in state i, the number of time periods
that the process will be in state i has a geometric distribution with finite mean
1/(1− fi).
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Page 14
From the preceding two paragraphs, it follows that state i is recurrent if and
only if, starting in state i, the expected number of time periods that the process
is in state i is infinite. But, letting

In =

{
1, if Xn = i
0, if Xn 6= i

We have that
∑∞
n=0 In represents the number of periods that the process is in

state i

E

[ ∞∑
n=0

In|X0 = i

]
=

∞∑
n=0

E[In|X0 = i] =

∞∑
n=0

P (Xn = i|X0 = i) =
∞∑
n=0

Pnii .
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Page 14, Corollary 1
We note that, since state i communicates with state j, there exist integers k
and m such that P kij > 0, Pmji > 0. Now, for any integer n

Pm+n+k
jj ≥ P kijPniiPmji

So ∞∑
n=1

Pm+n+k
jj ≥ Pmji P kij

∞∑
n=1

Pnii =∞.

Page 16 Example 10

• Since it is impossible to be even (using the gambling model interpretation)
after an odd number of plays we must, of course, have that

P 2n−1
00 = 0, n = 1, 2, . . .
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Page 16 Example 10 continuous

• On the other hand, we would be even after 2n trials if and only if we won n
of these and lost n of these. Because each play of the game results in a win
with probability p and a loss with probability 1− p, the desired probability is
thus the binomial probability

P 2n
00 = Cn2np

n(1− p)n =
(2n)!

n!n!
pn(1− p)n ≈ 4pn(1− p)n√

πn
, n = 1, 2, 3, . . .

since Cn2n ≈ 22n/
√
nπ. Then by showing

∞∑
n=1

4pn(1− p)n√
πn

=∞,

thus all states are recurrent.
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Page 17 Proposition 2
Because i and j communicate there is a value n such that P i,j > 0. Let X0 = i
and say that the first opportunity is a success if Xn = j, and note that the
first opportunity is a success with probability Pni,j > 0. If the first opportunity is
not a success then consider the next time (after time n) that the chain enters
state i. (Because state i is recurrent we can be certain that it will eventually
reenter state i after time n.) Say that the second opportunity is a success if
n time periods later the Markov chain is in state j. If the second opportunity
is not a success then wait until the next time the chain enters state i and say
that the third opportunity is a success if n time periods later the Markov chain
is in state j. Continuing in this manner, we can define an unlimited number of
opportunities, each of which is a success with the same positive probability Pni,j.
Because the number of opportunities until the first success occurs is geometric
with parameter Pni,j, it follows that with probability 1 a success will eventually
occur and so, with probability 1, state j will eventually be entered.
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Page 18 Proposition 3

Suppose that the Markov chain starts in state i, and let T1 denote the
number of transitions until the chain enters state j; then let T2 denote the
additional number of transitions from time T1 until the Markov chain next
enters state j; then let T3 denote the additional number of transitions from time
T1 + T2 until the Markov chain next enters state j, and so on. Note that T1
is finite because Proposition before tells us that with probability 1 a transition
into j will eventually occur. Also, for n ≥ 2, because Tn is the number of
transitions between the (n− 1)th and the nth transition into state j, it follows
from the Markovian property that T2, T3, . . . are independent and identically
distributed with mean mj . Because the nth transition into state j occurs at
time T1+ · · ·+Tn we obtain that πi, the long-run proportion of time that chain
is in the state j is

π = lim
n→∞

n∑n
i=1 Ti

= lim
n→∞

1

1
n

n∑
i=1

Ti

=
1

mj
.
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Page 18 Proposition 4
Suppose that i is positive recurrent and that i ↔ j. Now, let n be such that
Pni,j > 0. Because πi is the long-run proportion of time that the chain is in
state i, and Pni,j is the long-run proportion of time when the Markov chain is in
state i that it will be in state j after n transitions

πiP
n
i,j = long-run proportion of time the chain is in i and will be in j after n

transitions
= long-run proportion of time the chain is in j and was in i n transitions

ago
≤ long-run proportion of time the chain is in j

Hence, πj ≥ πiPni,j > 0, showing that j is positive recurrent.
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Page 20. Example 11.
The long run proportions πi, i = 0, 1, 2 are obtained by solving the set of
equation in Theorem 1. In this case these equations are

π0 = 0.5π0 + 0.3π1 + 0.2π2

π1 = 0.4π0 + 0.4π1 + 0.3π2

π2 = 0.1π0 + 0.3π1 + 0.5π2

or
π = PTπ

with π1 + π2 + π3 = 1 and π = (π0, π1, π2)
T solving yields

π0 =
21

62
, π1 =

23

62
, π2 =

18

62
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Page 20. Example 12. The long run proportions πi thus satisfy

π0 = 0.45π0 + 0.05π1 + 0.01π2

π1 = 0.48π0 + 0.70π1 + 0.50π2

π2 = 0.07π0 + 0.25π1 + 0.49π2

with π0 + π1 + π2 = 1. Hence

π0 = 0.07, π1 = 0.62, π − 2 = 0.31

In other words, a society in which social mobility between classes can be
described by a Markov chain with transition probability matrix given by the
transition probability matrix has, in the long run, 7 percent of its people in
upper-class jobs, 62 percent of its people in middle-class jobs, and 31 percent
in lower-class jobs.
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Page 21. Example 13. To begin, note that randomly choosing a parent and
then randomly choosing one of its genes is equivalent to just randomly choosing
a gene from the total gene population. By conditioning on the gene pair of the
parent, we see that a randomly chosen gene will be type A with probability

P{A} = P{A|AA}p0 + P{A|aa}q0 + P{A|Aa}r0 = p0 + r0/2

similarly, it will be the type a with probability

P{a} = q0 + r0

Thus, Thus, under random mating a randomly chosen member of the next
generation will be type AA with probability p, where

p = P{A}P{A} = (p0 + r0/2)
2

Similarly, the randomly chosen member will be type aa with probability

q = P{a}P{a} = (q0 + r0/2)
2
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Page 21. Example 13. Continuous
and will be type Aa with probability

r = 2P{A}P{a} = 2(p0 + r0/2)(q0 + r0/2)

Since each member of the next generation will independently be of each of the
three gene types with probabilities p, q, r, it follows that the percentages of the
members of the next generation that are of type AA, aa, orAa are respectively
p, q, and r. If we now consider the total gene pool of this next generation,
then p + r/2, the fraction of its genes that are A, will be unchanged from the
previous generation. This follows either by arguing that the total gene pool has
not changed from generation to generation or by the following simple algebra:

p+ r/2 = (p0 + r0/2)
2 + (p0 + r0)(q0 + r0/2)

= (p0 + r0/2)(p0 + r0/2 + q0 + r0/2)

= p0 + r0/2 = P{A}

since p0+ r0+ q0 = 1. Thus, the fractions of the gene pool that are A and a are
the same as in the initial generation. From this it follows that, under random
mating, in all successive generations after the initial one the percentages of the
population having gene pairs AA, aa, and Aa will remain fixed at the values
p,q, and r. This is known as the Hardy–Weinberg law. 15



Page 21. Example 13. Continuous

Suppose now that the gene pair population has stabilized in the percentages
p,q,r, and let us follow the genetic history of a single individual and her
descendants. (For simplicity, assume that each individual has exactly one
offspring.) So, for a given individual, let Xn denote the genetic state of her
descendant in the nth generation. The transition probability matrix of this
Markov chain, namely,

AA aa Aa
AA p+ r

2 0 q + r
2

aa 0 q + r
2 p+ r

2
Aa p

2 +
r
4

q
2 +

r
4

p
2 +

q
2 +

r
2

is easily verified by conditioning on the state of the randomly chosen mate. It
is quite intuitive (why?) that the limiting probabilities for this Markov chain
(which also equal the fractions of the individual’s descendants that are in each
of the three genetic states) should just be p, q, and r.

16



Page 21. Example 13. Continuous
Because one of the equations in Theorem 1 is redundant, it suffices to show
that

p = p(p+
r

2
) + r(

p

2
+
r

4
) = (p+

r

2
)2

q = q(q +
r

2
) + r(

q

2
+
r

4
) = (q +

r

2
)2

But this follows from the above equation, and thus the result is established.
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Page 23. Example 14.
(a) To find Pi,j , suppose there are i families checked into the hotel at the
beginning of a day. Because each of these i families will stay for another day
with probability q = 1− p it follows that Ri, the number of these families that
remain another day, is a binomial(i, q) random variable. So, letting N be the
number of new families that check in that day, we see that

Pi,j = P (Ri +N = j)

Conditioning on Ri and using that N is Poisson with mean λ, we obtain

Pi,j =

i∑
k=0

P (Ri +N = j|Ri = k)Cki q
kpi−k

=

i∑
k=0

P (N = j − k|Ri = k)Cki q
kpi−k

=

min (i,j)∑
k=0

P (N = j − k|Ri = k)Cki q
kpi−k

=

min (i,j)∑
k=0

e−λ
λj−k

(j − k)!
Cki q

kpi−k
18



Page 23. Example 14. Continuous
(b) Using the preceding representation Ri +N for the next state from state i,
we see that

E[Xn|Xn−1 = i] = E[Ri +N ] = iq + λ

Consequently
E[Xn|Xn−1] = Xn−1q + λ

Iterating the preceding gives

E[Xn] = λ+ qE[Xn−1] = λ+ q(λ+ qE[Xn−2])

= · · · · · · = λ(1 + q + q2 + · · ·+ qn−1) + qnE[X0]

and yielding the result

E[Xn|X0 = i] =
λ(1− qn)

p
+ qni.
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Page 23. Example 14. Continuous
(c) To find the stationary probabilities we will not directly use the complicated transition

probabilities derived in part (a). Rather we will make use of the fact that the stationary

probability distribution is the only distribution on the initial state that results in the next state

having the same distribution. Now, suppose that the initial state X0 has a Poisson distribution

with mean α. That is, assume that the number of families initially in the hotel is Poisson

with mean α. Let R denote the number of these families that remain in the hotel at the

beginning of the next day. Then, using the result that if each of a Poisson distributed (with

mean α) number of events occurs with probability q, then the total number of these events

that occur is Poisson distributed with mean αq, it follows that R is a Poisson random variable

with mean αq. In addition, the number of new families that check in during the day, call it N ,

is Poisson with mean λ, and is independent of R. Hence, since the sum of independent Poisson

random variables is also Poisson distributed, it follows that R + N , the number of guests at

the beginning of the next day, is Poisson with mean λ+ αq. Consequently, if we choose α so

that

α = λ+ αq

then the distribution of X1 would be the same as that of X0. But this means that when the

initial distribution of X0 is Poisson with mean α = λ
p , then so is the distribution of X1,

implying that this is the stationary distribution. That is, the stationary probabilities are

πi = e
−λ/p

(λ/p)
i
/i!, i ≥ 0.
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Page 24. Proposition 3.
Proof: If we let aj(N) be the amount of time the Markov chain spends in
state j during time periods 1, . . . , N , then

N∑
n=1

r(Xn) =

∞∑
j=0

aj(N)r(j)

Since aj(N)/N → πj the result follows from the preceding upon dividing by
N and then letting N →∞.
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page 27. The Gambler’s Ruin Problem
If we let Xn denote the player’s fortune at time n, then the process {Xn, n =
0, 1, 2, . . .} is a Markov chain with transition probabilities

P00 = PNN = 1

Pi,i+1 = p = 1− Pi,i−1, i = 1, . . . , N − 1.

This Markov chain has three classes, namely, {0}, {1, 2, ..., N − 1}, and {N};
the first and third class being recurrent and the second transient. Since each
transient state is visited only finitely often, it follows that, after some finite
amount of time, the gambler will either attain his goal of N or go broke.

Let Pi, i = 0, 1, . . . , N , denote the probability that, starting with i, the
gambler’s fortune will eventually reach N . By conditioning on the outcome of
the initial play of the game we obtain

Pi = pPi+1 + qPi−1, i = 1, 2, . . . , N − 1

or equivalently since p+ q = 1

pPi + qPi = pPi+1 + qPi−1 or Pi+1 − Pi =
q

p
(Pi − Pi−1), i = 1, . . . , N − 1

22



page 27. The Gambler’s Ruin Problem, continuous
Hence, since P0 = 0, we obtain from the preceding line that

P2 − P1 =
q

p
(P1 − P0) =

q

p
p1,

P3 − P2 =
q

p
(P2 − P1) =

(
q

p

)2

p1,

· · · · · ·

Pi − Pi−1 =
q

p
(Pi−1 − Pi−2) =

(
q

p

)i−1
p1,

· · · · · ·

PN − PN−1 =
q

p
(PN−1 − PN−2) =

(
q

p

)N−1
p1,

Adding the first i− 1 of these equations yields

Pi − P1 = P1

[(
q

p

)
+

(
q

p

)2

+ · · ·+
(
q

p

)i−1]
23



page 27. The Gambler’s Ruin Problem, continuous
or

Pi =

{
1−(q/p)i
1−(q/p)P1, if qp 6= 1

ip1, if qp = 1

Now, using the fact that PN = 1, we obtain

P1 =

{
1−(q/p)
1−(q/p)N , if qp 6= 1
1
N , if qp = 1

Hence

Pi =

{
1−(q/p)i

1−(q/p)N , if qp 6= 1
i
N , if qp = 1

Note that, as N →∞,

Pi =

 1−
(
q
p

)i
, if qp >

1
2

0, if qp ≤
1
2

24



Page 27. Example 15.
(a) The desired probability is obtained from the equation above by letting
i = 5, N = 15, and p = 0.6. Hence, the desired probability is

1− (23)
5

1− (23)
15
≈ 0.87

(b) the desired probability is

1− (23)
10

1− (23)
30
≈ 0.98
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Page 28. A Model for Algorithm Efficiency

To obtain a feel for whether or not the preceding statement is surprising, let
us consider a simple probabilistic (Markov chain) model as to how the algorithm
moves along the extreme points. Specifically, we will suppose that if at any
time the algorithm is at the jth best extreme point then after the next pivot
the resulting extreme point is equally likely to be any of the j − 1 best. Under
this assumption, we show that the time to get from the N th best to the best
extreme point has approximately, for large N , a normal distribution with mean
and variance equal to the logarithm (base e) of N.
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Page 28. A Model for Algorithm Efficiency, continuous
Consider a Markov chain for which P11 = 1 and

Pij =
1

i− 1
, j = 1, . . . , i− 1, i > 1

and let Ti denote the number of transitions needed to go from state i to state
1. A recursive formula for E[Ti] can be obtained by conditioning on the initial
transition:

E[Ti] = 1 +
1

i− 1

i−1∑
j=1

E[Ti]

Starting with E[T1] = 0, we successively see that

E[T2] = 1,E[T3] = 1 +
1

2
,E[T4] = 1 +

1

3
(1 + 1 +

1

2
) = 1 +

1

2
+

1

3

and it is not difficult to guess and then prove inductively that

E[Ti] =
i−1∑
j=1

1/j
27



Page 28. A Model for Algorithm Efficiency, continuous
However, to obtain a more complete description of TN , we will use the
representation

TN =

N−1∑
j=1

Ij

where Ij = 1 if the process ever enters j otherwise 0. The importance of the
preceding representation stems from the following: I1, . . . , IN−1 are independent
and

PIj=1 = 1/j, 1 ≤ j ≤ N − 1

Given Ij+1, . . . , IN , let n = min{i : i > j, Ii = 1} denote the lowest
numbered state, greater than j, that is entered. Thus we know that the process
enters state n and the next state entered is one of the states 1, 2, . . . , j. Hence,
as the next state from state n is equally likely to be any of the lower number
states 1, 2, . . . , n− 1 we see that

P{Ij = 1|Ij+1, ..., IN} =
1/(n− 1)

j/(n− 1)
= 1/j

Hence, P{Ij = 1} = 1/j, and independence follows since the preceding
conditional probability does not depend on Ij+1, . . . , IN . 28



Page 28. A Model for Algorithm Efficiency, continuous

Since logN ≈
N−1∑
j=1

1/j when N →∞, we have

(i) E[TN ] =
∑N−1
j=1 1/j

(ii) Var(TN) =
∑N−1
j=1 (1/j)(1− 1/j)

(iii) For N large, TN has approximately a normal distribution with mean logN
and variance logN .
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Page 32 Example 16.
The matrix PT , which specifies Pij, i, j ∈ {1, 2, 3, 4, 5, 6}, is as follows:

PT =

∥∥∥∥∥∥∥∥∥∥∥∥

0 0.4 0 0 0 0
0.6 0 0.4 0 0 0
0 0.6 0 0.4 0 0
0 0 0.6 0 0.4 0
0 0 0 0.6 0 0.4
0 0 0 0 0.6 0

∥∥∥∥∥∥∥∥∥∥∥∥
Inverting I−PT gives

S = (I−PT )
−1 =


1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149


Hence (a) s3,5 = 0.9228, (b) S3,2 = 2.3677

30



Page 32 Example 16. Continuous
(c) Since s3,1 = 1.4206 and s1,1 = 1.6149, then

f3,1 =
s3,1
s1,1

= 0.8797

As a check, note that f3,1 is just the probability that a gambler starting with 3
reaches 1 before 7. That is, it is the probability that the gambler’s fortune will
go down 2 before going up 4; which is the probability that a gambler starting
with 2 will go broke before reaching 6. Therefore,

f3,1 = 1− 1− (0.6/0.4)2

1− (0.6/0.4)6
= 0.8797

which checks with our earlier answer.
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Page 38 Example 17.

(a) Since µ = 3
4 ≤ 1, it follows that π0 = 1.

(b) π0 satisfies

π0 =
1

4
+

1

4
π0 +

1

2
π2
0

or
2π2

0 − 3π0 + 1 = 0

The smallest positive solution of this quadratic equation is π0 =
1
2.

(c) Since the population will die out if and only if the families of each of the
members of the initial generation die out, the desired probability is πn0 . For (a)
this yields πn0 = 1, and for (b), πn0 = 1

2n.
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Page 43 Example 18.

If X represents the amount of time that the customer spends in the bank,
then the first probability is just

P{X > 15} = e−15λ = e−3/2 ≈ 0.223

The second question asks for the probability that a customer who has spent ten
minutes in the bank will have to spend at least five more minutes. However,
since the exponential distribution does not “remember” that the customer has
already spent ten minutes in the bank, this must equal the probability that an
entering customer spends at least five minutes in the bank. That is, the desired
probability is just

P{X > 5} = e−5λ = e−1/2 ≈ 0.607.
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Page 46 Example 19.

(a) Because the number of arrivals in 7 days is Poisson with mean 7λ = 14,
it follows that the probability there will be 10 arrivals is e−14(14)10/10!.

(b) E[S20] = 20/λ = 10.

Page 49 Example 21.

We start by deriving an equation for M(t +h) by conditioning on X(t). This
yields

M(t+ h) = E[X(t+ h)] = E[E[X(t+ h)|X(t)]]

Now, given the size of the population at time t then, ignoring events whose
probability is o(h), the population at time t + h will either increase in size by
1 if a birth or an immigration occurs in (t, t + h), or decrease by 1 if a death
occurs in this interval, or remain the same if neither of these two possibilities
occurs. That is, given X(t)

X(t+ h) =

 X(t) + 1, with probability [θ +X(t)λ]h+ o(h)
X(t)− 1, with probability X(t)µh+ o(h)
X(t), with probability 1− [θ +X(t)λ+X(t)µ]h+ o(h)

34



Page 49 Example 21. continuous

Therefore

E[X(t+ h)|X(t)] = X(t) + [θ +X(t)λ−X(t)µ]h+ o(h)

Taking expectations yields

M(t+ h) =M(t) + (λ− µ)M(t)h+ θh+ o(h)

or, equivalently

M(t+ h)−M(t)

h
= (λ− µ)M(t) + θ +

o(h)

h

Taking the limit as h→ 0 yields the differential equation

M ′(t) = (λ− µ)M(t) + θ

35



Page 49 Example 21. continuous

If we now define the function h(t) by

h(t) = (λ− µ)M(t) + θ

then
h′(t) = (λ− µ)M ′(t)

Therefore, the differential equation above can be rewritten as

h′(t)

λ− µ
= h(t) or

h′(t)

h(t)
= λ− µ

Integration yields

log[h(t)] = (λ− µ)t+ c, or h(t) = Ke(λ−µ)t

Putting this back in terms of M(t) gives

θ + (λ− µ)M(t) = Ke(λ−µ)t 36



Page 49 Example 21. continuous

To determine the value of the constant K, we use the fact that M(0) = i
and evaluate the preceding at t = 0. This gives

θ + (λ− µ)i = K

Substituting this back in the preceding equation for M(t) yields the following
solution for M(t) :

M(t) =
θ

λ− µ
[e(λ−µ)t − 1] + ie(λ−µ)t

Note that we have implicitly assumed that λ = µ. If λ = µ, then differential
equation above reduces to

M ′(t) = θ

Integrating and using that M(0) = i gives the solution

M(t) = θt+ i
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